
INTERNATIONAL
STANDARD

lSO/IEC
13818-6

First edition
1998-09-01

Information technology - Generic coding
of moving pictures and associated audio
information -
Part 6:
Extensions for DSM-CC

Technologies de I’informa tion - Codage g&&ique des images animhes
et des informations sonores associges -

Partie 6: Extensions pour DSM-CC

Reference number
ISOA EC 13818-6: 1998(E)

ISO/IEC 13818=6:1998(E)

CONTENTS

0. INTRODUCTION .. XIX

0.1 Guiding Factors in the Formulation of DSM-CC ... xix
0.2 DSM-CC Client-Network-Server Model ... xx
0.3 Outline of the DSM-CC Specification ... xx

0.3.1 User-to-Network .. xx
0.3.2 User-to-User ... xxi

0.4 Supported Network Technologies .. xxi
0.5 Supported Connection Types ... xxi
0.6 DSM-CC Interfaces .. xxi
0.7 DSM-CC Interface Protocols

...
... xx111

0.8 Communications Requirements ... xxv
0.9 Methods of Specification ... xxv

0.9.1 Messages ... xxv
0.9.2 Message Flow Diagram Scenarios .. xxvi
0.9.3 Specification and Description Language .. xxvi
0.9.4 Interface Definition Language (IDL)

...
.. xxv111

0.9.5 Remote Procedure Call (RPC)
...

.. xxv111

0.9.5.1 Independence of RPC ... xxix
0.9.5.2 Preferred and Default RPC ... xxix
0.9.5.3 Local Equivalent Functions .. xxix

1. GENERAL*... 1

1.1 Scope ... 1
1.2 Profiles and Compliance .. 1

1.2.1 Functional Categories of the DSM-CC protocols .. 1
1.2.2 User-to-Network Session Messages .. 2

1.2.2.1 U-N Core Session Message Functional Groups ... 2
1.2.2.2 U-N Extended Session Message Functional Groups ... 2

1.2.3 User-User Interfaces .. 2
1.2.3.1 U-U Core Interfaces .. 2
1.2.3.2 U-U Extended Interfaces ... 3

1.3 Definitions ... 3
1.4 Acronyms .. 4
1.5 Normative References ... 6

2. DSM-CC MESSAGE HEADER .**~~~~~**~*~.~~***~.~**..~~~*~~~..~~~~~.*..~.9~.~.***~~..~.~~*~~~~~*..~.~~**~*~.~~~*~~.**~*~.~* •..~.~~.~~ 7

2.1 DSM-CC Adaptation Header Format .. 8
2.1.1 DSM-CC Conditional Access Adaptation Format ... 9
2.1.2 DSM-CC User ID Adaptation Format ... 9

3. USER-TO-NETWORK CONFIGURATION MESSAGES ... 10

3.1 Overview and the General Message Format .. 10
3.2 User-to-Network configuration parameters ... 10

3.2.1 DSM-CC specific configuration parameters .. 10
3.2.2 Network specific configuration parameters ... 11
3.2.3 User defined configuration parameters .. 12 . . .

.
0 ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Gekve 20 l Switzerland
Printed in Switzerland

ii

0 ISO/IEC ISO/IEC 13818=6:1998(E)

3.3 User to Network Configuration Messages ... 12
3.3.1 UNConfigRequest message definition ... 13
3.3.2 UNConfigConfirm message definition .. 13
3.3.3 UNConfigIndication message definition ... 14
3.3.4 UNConfigResponse message definition .. 14

3.4 User-to-Network Configuration Message Field Data Types .. 15
3.5 User Initiated UNConfigRequest message Sequence .. 15
3.6 Network Initiated UNConfigIndication message Sequence ... 16
3.7 Broadcasting of UNConfigIndication messages .. 16
3.8 Mixed User/Network Initiated Configuration Sequences .. 17
3.9 User-to-Network Configuration Reason Codes ... 17
3.10 User-to-Network Configuration Response Codes .. 17

4. USER-TO-NETWORK SESSION MESSAGES .. 19

4.1 Overview and the General Message Format .. 19
4.2 Session Messages .. 19

4.2.1 U-N Functional groups .. 23
4.2.1.1 U-N Core Group .. 23
4.2.1.2 Extended Functional groups .. 24

4.2.2 Use of UserData structure in session messages ... 24
4.2.3 Use of Resources() structure in session messages ... 25
4.2.4 Session Set-Up group message definitions .. 25

4.2.4.1 ClientSessionSetUpRequest .. 25
4.2.4.2 ClientSessionSetUpConfirm .. 26
4.2.4.3 ServerSessionSetUpIndication .. 27
4.2.4.4 ServerSessionSetUpResponse ... 27

4.2.5 Session Release group message definitions ... 28
4.2.5.1 ClientSessionReleaseRequest .. 28
4.2.5.2 ClientSessionReleaseConfirm .. 29
4.2.5.3 ClientSessionReleaseIndication ... 29
4.2.5.4 ClientSessionReleaseResponse .. 29
4.2.5.5 ServerSessionReleaseRequest ... 30
4.2.5.6 ServerSessionReleaseConfirm ... 30
4.2.5.7 ServerSessionReleaseIndication .. 31
4.2.5.8 ServerSessionReleaseResponse ... 31

4.2.6 Add Resource group message definitions .. 32
4.2.6.1 ClientAddResourceIndication .. 32
4.2.6.2 ClientAddResourceResponse .. 32
4.2.6.3 ServerAddResourceRequest .. 33
4.2.6.4 ServerAddResourceConfirm .. 33

4.2.7 Delete Resource group message definitions .. 34
4.2.7.1 ClientDeleteResourceIndication .. 34
4.2.7.2 ClientDeleteResourceResponse ... 35
4.2.7.3 ServerDeleteResourceRequest ... 35
4.2.7.4 ServerDeleteResourceConfirm .. 36

4.2.8 Continuous Feed Session group message definitions .. 36
4.2.8.1 ServerContinuousFeedSessionRequest .. 36
4.2.8.2 ServerContinuousFeedSessionConfirm ... 37

4.2.9 Status group message definitions ... 37
4.2.9.1 ClientStatusRequest ... 37
4.2.9.2 ClientStatusConfirm .. 38
4.2.9.3 ClientStatusIndication ... 38
4.2.9.4 ClientStatusResponse .. 38
4.2.9.5 ServerStatusRequest .. 39
4.2.9.6 ServerStatusConfirm .. 39
4.2.9.7 ServerStatusIndication ... 40
4.2.9.8 ServerStatusResponse .. 40

. . .
111

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

4.2.10 Reset group message definitions .. 41
4.2.10.1 ClientResetRequest ... 41
4.2.10.2 ClientResetConfirm .. 41
4.2.10.3 ClientResetIndication ... 42
4.2.10.4 ClientResetResponse .. 42
4.2.10.5 ServerResetRequest .. 42
4.2.10.6 ServerResetConfirm ... 43
4.2.10.7 ServerResetIndication ... 43
4.2.10.8 ServerResetResponse ... 43

4.2.11 Session Proceeding group message definitions ... 44
4.2.11.1 ClientSessionProceedingIndication .. 44
4.2.11.2 ServerSessionProceedingIndication ... 44

4.2.12 Connect group message definitions ... 44
4.2.12.1 ClientConnectRequest .. 44
4.2.12.2 ServerConnectIndication .. 45

4.2.13 Session Transfer group message definitions .. 45
4.2.13.1 ClientSessionTransferIndication ... 45
4.2.13.2 ClientSessionTransferResponse ... 46
4.2.13.3 ServerSessionTransferRequest ... 46
4.2.13.4 ServerSessionTransferConfirm ... 47
4.2.13.5 ServerSessionTransferIndication .. 47
4.2.13.6 ServerSessionTransferResponse ... 48

4.2.14 Session In Progress group message definitions ... 49
4.2.14.1 ClientSessionInProgress ... 49
4.2.14.2 ServerSessionInProgress .. 49

4.3 User-to-Network Session Message Field Data Types .. 49
4.4 Reason Codes .. 52
4.5 Response Codes ... 53
4.6 MPEG-2 DSM-CC statusTypes ... 55
4.7 Resource Descriptors ... 56

4.7.1 DSM-CC User-to-Network Resource Descriptor .. 56
4.7.2 Specifying Ranges and Lists of values in resource descriptors .. 62
4.7.3 Horizontal Association of Resource Descriptors ... 64
4.7.4 Vertical Resource Sharing ... 64
4.7.5 Resource Descriptor Definitions .. 65

4.7.5.1 ContinuousFeedSession resource descriptor definition ... 66
4.7.5.2 AtmConnection resource descriptor definition .. 67
4.7.5.3 MpegProgram resource descriptor definition .. 67
4.7.5.4 Physical Channel resource descriptor definition .. 68
4.7.5.5 TSUpstreamBandwidth resource descriptor definition .. 69
4.7.5.6 TSDownstreamBandwidth resource descriptor definition ... 69
4.7.5.7 AtmSvcConnection resource descriptor definition .. 70
4.7.5.8 ConnectionNotify resource descriptor definition ... 70
4.7.5.9 IP resource descriptor definition .. 70
4.7.5.10 ClientTdmaAssignment resource descriptor definition .. 71
4.7.5.11 PSTNSetup resource descriptor definition ... 71
4.7.5.12 NISDNSetup resource descriptor definition ... 71
4.7.5.13 NISDNConnection resource descriptor definition .. 72
4.7.5.14 Q922Connections resource descriptor definition ... 72
4.7.5.15 SharedResource resource descriptor definition .. 72
4.7.5.16 SharedRequestId resource descriptor definition ... 72
4.7.5.17 HeadEndList resource descriptor definition ... 73
4.7.5.18 AtmVcConnection resource descriptor definition .. 73
4.7.5.19 SdbContinuousFeed resource descriptor definition .. 74
4.7.5.20 SdbAssociations resource descriptor definition .. 74
4.7.5.21 SdbEntitlement resource descriptor definition ... 75

4.8 Client Initiated Command Sequences .. 75

iv

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4.8.1 Client Session Set-Up Command Sequence .. 76
4.8.1.1 Client Initiates Session Set-Up Request .. 76
4.8.1.2 Network Rejects Client Session Request ... 78
4.8.1.3 Server Rejects Server Session Indication .. 78
4.8.1.4 Client Has Final UserData .. 79
4.8.1.5 Client Initiates Early Release ... 79
4.8.1.6 Server Does not respond to serverSessionSetUpIndication ... 80
4.8.1.7 Network Rejects Server’s Resource AllocationStep 7 (Network): 80
4.8.1.8 Client Unable to Use Resources .. 80

4.8.2 Client Session Release Command Sequence ... 81
4.8.2.1 Client Initiates Release Request .. 81
4.8.2.2 Network Rejects Client Release Request ... 82
4.8.2.3 Server Rejects Server Release Indication .. 82

4.8.3 Client Initiated Status Command Sequence ... 82
4.9 Server Initiated Command Sequences ... 83

4.9.1 Server Continuous Feed Session Set-Up Command Sequence .. 83
4.9.1.1 Server Initiates Continuous Feed Session Set-Up .. 84

4.9.2 Server Add Resource Command Sequence ... 84
4.9.2.1 Server Initiates Add Resource Request ... 85

4.9.3 Server Session Delete Resource Command Sequence ... 86
4.9.4 Server Session Release Command Sequence ... 87

4.9.4.1 Server Initiates Release Request .. 87
4.9.4.2 Network Rejects Server Release Request .. 88
4.9.4.3 Client Rejects Client Release Indication .. 88

4.9.5 Server Continuous Feed Session Release Command Sequence ... 88
4.9.5.1 Server Initiates Continuous Feed Session Release Request ... 89
4.9.5.2 Network Rejects Server Release Request .. 90
4.9.5.3 Client Rejects Client Release Indication .. 90

4.9.6 Server Status Command Sequence .. 90
4.9.7 Server Session Forward Command Sequence ... 91

4.9.7.1 Client Initiates Session Set-Up .. 92
4.9.7.2 Network Rejects Forward .. 93

4.9.8 Server Session Transfer Command Sequence ... 93
4.9.8.1 Server A Initiates Session Transfer ... 94
4.9.8.2 Network Rejects Transfer Request .. 95
4.9.8.3 Server B Rejects the Transfer Request .. 95
4.9.8.4 Server B Unable to Allocate Resources for Transfer ... 96
4.9.8.5 Client Rejects Transfer .. 96

4.9.9 Transferred Session Release .. 96
4.9.9.1 SRM is Selecting sessionIds .. 96
4.9.9.2 Server is Selecting sessionId ... 96

4.10 Network Initiated Command Sequences .. 97
4.10.1 Network Initiated Session Release Command Sequence ... 98

4.10.1.1 Network Initiates Session Release .. 98
4.10.2 Network Initiated Continuous Feed Session Release Command Sequence 98

4.10.2.1 Network Initiates Continuous Feed Session Release .. 99
4.10.3 Network Initiated Client Status Command Sequence .. 100

4.10.3.1 Network Initiates Client Status command sequence ... 100
4.10.4 Network Initiated Server Status Command Sequence ... 101

4.10.4.1 Network Initiates Server Status command sequence .. 101
4.11 Reset Procedures ... 101

4.11.1 Client Initiated Reset Command Sequence .. 102
4.11.1.1 Client Initiates Reset command sequence ... 102

4.11.2 Server Initiated Reset Command Sequence ... 102
4.11.2.1 Server Initiates Reset command sequence .. 103

4.11.3 Network Initiated Reset Command Sequence .. 103
4.11.3.1 Network Initiates Reset command sequence .. 103

ISOLIEC 13818=6:1998(E) 0 ISO/IEC

5. USER-TO-USER INTERFACES o~~~o~~~b~~~~~~~~~~~~b~~~~b~~~~b~~~~~~~~~~~~~~~~~~~*~~~~~*~*~~m~*~*~*~**~~~~~~*~~~~*~~~**~o~o~~~~~*~* 105

5.1 Introduction ... 105
5.1.1 Contents ... 105
5.1.2 Intended Usage .. 105

5.2 The User-to-User System Environment ... 107
5.2.1 U-U System Hardware User Entities ... 107
5.2.2 U-U System Logical Entities ... 107
5.2.3 Application and Service Interfaces .. 109
5.2.4 Categorization of Client Library Interface Sets ... 110

5.2.4.1 Consumer Client .. 110
5.2.4.2 Producer Client .. 111
5.2.4.3 Client Library Profiles ... 111

5.2.5 Core Interfaces .. 112
5.2.5.1 Core Client Application Portability Library .. 113
5.2.5.2 Core Client Service Inter-operability Library .. 115

5.2.6 Extended Interfaces ... 116
5.2.6.1 Extended Client Application Portability Library ... 117
5.2.6.2 Extended Client Service-interoperability Library .. 118

5.3 Overview of the Interface Definition Language(IDL) ... 118
5.3.1 Operations ... 120
5.3.2 Attributes ... 121
5.3.3 Language Mapping .. 121
5.3.4 Encoding .. 121
5.3.5 Typographical Conventions ... 122
5.3.6 Syntactical Conventions .. 122

5.4 Common Definitions ... 122
5.4.1 Basic Types ... 122
5.4.2 Entity Identification ... 123
5.4.3 Interface Identification .. 124
5.4.4 Access Roles for Operations .. 126

5.4.4.1 Syntax for Access Control ... 126
5.4.5 Exceptions ... 127
5.4.6 Stream and Event Synchronization .. 130

5.5 Application Portability Interfaces(AP1) ... 131
5.5.1 Core Interfaces .. 131

5.5.1.1 Base ... 132
5.5.1.1.1 Summary of Base Primitives ... 132
5.5.1.1.2 DSM Base close .. 133
5.5.1.1.3 DSM Base destroy ... 133

5.5.1.2 Access .. 133
5.5.1.2.1 Setting Permissions .. 134
5.5.1.2.2 Access Definitions ... 135

5.5.1.3 Stream .. 136
5.5.1.3.1 Stream Definitions, Exceptions ... 137
5.5.1.3.2 Normal Play Time Temporal Positioning .. 137

5.5.1.3.2.1 Application NPT Values .. 138
5.5.1.3.3 Summary of Stream Primitives .. 138
5.5.1.3.4 Stream State Machine .. 139

5.5.1.3.4.1 State Machine ... 139
5.5.1.3.4.2 Basic State Machine ... 141
5.5.1.3.4.3 Complete state machine .. 142

5.5.1.3.5 DSM Stream pause .. 143
5.5.1.3.6 DSM Stream resume .. 144
5.5.1.3.7 DSM Stream status .. 145
5.5.1.3.8 DSM Stream reset .. 146
5.5.1.3.9 DSM Stream jump ... 146

vi

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.1.3.10 DSM Stream play .. 147
5.5.1.4 File ... 148

5.5.1.4.1 File Definitions, Exceptions .. 148
5.5.1.4.2 Summary of File Primitives ... 149
5.5.1.4.3 DSM File read ... 149
5.5.1.4.4 DSM File write .. 150

5.5.1.5 Directory .. 151
5.5.1.5.1 Directory Definitions, Exceptions ... 152
5.5.1.5.2 Summary of Directory Primitives .. 154
5.5.1.5.3 DSM Directory list .. 155
5.5.1.5.4 DSM Directory resolve .. 156.
5.5.1.5.5 DSM Directory bind .. 156
5.5.1.5.6 DSM Directory bind context .. 157 -
5.5.1.5.7 rebind ... 158
5.5.1.5.8 DSM Directory rebind context ... 158
5.5.1.5.9 DSM Directory unbind .. 159
5.5.1.5.10 DSM Directory new context ... 160 -
5.5.1.5.11 DSM Directory bind-new context .. 160 -
5.5.1.5.12 DSM Directory destroy ... 161
5.5.1.5.13 DSM Directory open ... 161
5.5.1.5.14 DSM Directory close ... 162
5.*5.1.5.15 DSM Directory get .. 163
5.5 .. 1.5.16 DSM Directory put .. 164

5.5.1.6, Session ... 165
5.5.1.6.1 Service Transfer .. 165
5.5.1.6.2 Summary of Session Primitives ... 166
5.5.1.6.3 DSM Session attach ... 166
5.5. I-6.4 DSM Session detach .. -167

5.5.1.7 ServiceGateway ... 168
5.5.1.7.1 Summary of ServiceGateway Primitives ... 168

5.5.1.8 First .. 168
5.5.1.8.1 Summary of First Primitives .. 168
5.5.1.8.2 DSM First root .. 169
5.5.1.8.3 DSM First service .. 169

5.5.2 Extended Interfaces ... 169
5.5.2.1 Download .. 171

5.5.2.1.1 Download Definitions, Exceptions .. 171
5.5.2.1.2 Summary of Download Primitives ... 171
5.5.2.1.3 DSM Download info ... 171
5.5.2.1.4 DSM Download allot .. 172
5.5.2.1.5 DSM Download start ... 172
5.5.2.1.6 DSM Download cancel .. 173

5.5.2.2 Event .. 173
5.5.2.2.1 Event Definitions, Exceptions ... 174
5.5.2.2.2 Summary of Event Primitives .. 174
5.5.2.2.3 DSM Event subscribe .. 174
5.5.2.2.4 DSM Event unsubscribe .. 175
5.5.2.2.5 DSM Event notify .. 176

5.5.2.3 Composite .. 177
5.5.2.3.1 Summary of Composite Primitives .. 177
5.5.2.3.2 DSM Composite list subs ... 177 -
5.5.2.3.3 DSM Composite bind subs ... 178 -
5.5.2.3.4 DSM Composite unbind subs ... 179 -

5.5.2.4 View .. 179
5.5.2.4.1 Non-Database View ... 180
5.5.2.4.2 Database View ... 180
5.5.2.4.3 View Procedures .. 180

vii

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

5.5.2.4.4 Definition: View Style Attribute .. 181
5.5.2.4.5 View Definitions: Statement, Result .. 182
5.5.2.4.6 Summary of View Primitives ... 182
5.5.2.4.7 DSM View query ... 183
5.5.2.4.8 DSM View read ... 184
5.5.2.4.9 DSM View execute .. 185

5.5.2.5 State ... 185
5.5.2.5.1 Summary of State Primitives ... 185
5.5.2.5.2 DSM State suspend .. 186
5.5.2.5.3 DSM State resume ... 187

5.5.2.6 Interfaces ... 187
5.5.2.6.1 TCKind Constants ... 188
5.5.2.6.2 Exception TCKind Constants .. 189
5.5.2.6.3 Interfaces Definitions .. 190
5.5.2.6.4 Summary of Interfaces Primitives .. 190
5.5.2.6.5 DSM Interfaces show .. 190
5.5.2.6.6 DSM Interfaces define ... 192
5.5.2.6.7 DSM Interfaces check ... 193
5.5.2.6.8 DSM Interfaces undefine ... 194

5.5.2.7 Security .. 194
5.5.2.7.1 DSM Security authenticate .. 194

5.5.2.8 Config .. 195
5.5.2.8.1 Config Definitions ... 197
5.5.2.8.2 Summary of Config Primitives .. 197
5.5.2.8.3 DSM Config inquire .. 197
5.5.2.8.4 DSM Config wait ... 197

5.5.2.9 LifeCycle ... 198
5.5.2.9.1 DSM LifeCycle create ... 198

5.5.2.10 Kind .. 199
5.5.2.10.1 Summary of Kind Primitives ... 199
5.5.2.10.2 DSM Kind has a
5.5.2.10.3 DSM-Kind-is a

... 199
- - - .. 200

5.5.3 C Language Mappings ... 201
5.5.3.1 Scoped Identifiers .. 201
5.5.3.2 C Mapping for Operations ... 201

5.5.3.2.1 C Mapping for Basic Data Types .. 202
5.5.3.2.2 Constants ... 202
5.5.3.2.3 Struct Types ... 202
5.5.3.2.4 Sequence Types ... 202
5.5.3.2.5 Strings .. 203
5.5.3.2.6 Any .. 203
5.5.3.2.7 ev ... 203
5.5.3.2.8 Object .. 203

5.5.3.3 API Definitions .. 204
5.5.3.3.1 C Mapping for the Synchronous Interface ... 204

5.5.3.3.1.1 Base .. 204
5.5.3.3.1.2 Access ... 204
5.5.3.3.1.3 Stream ... 205
5.5.3.3.1.4 File .. 206
5.5.3.3.1.5 Directory ... 206
5.5.3.3.1.6 Session .. 207
5.5.3.3.1.7 First .. 207
5.5.3.3.1.8 Event .. 208
5.5.3.3.1.9 Download ... 208
5.5.3.3.1.10 Composite ... 208
5.5.3.3.1.11 View ... 209
5.5.3.3.1.12 State .. 209

. . .
Vlll

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.3.3.1.13 Interfaces .. 210
5.5.3.3.1.14 Security ... 210
5.5.3.3.1.15 LifeCycle .. 210
5.5.3.3.1.16 Kind .. 210

5.5.3.3.2 C Mapping for the Synchronous Deferred Interface .. 211
5.5.3.3.2.1 Config ... 211
5.5.3.3.2.2 How to Convert Synchronous to Synchronous Deferred 211

5.6 Service Interoperability Interfaces(SI1) ... 211
5.6. ConnBinder and Resource to Connection Association .. 212

5.6.1.1 Selector .. 214
5.6.2 Remote Procedure Call .. 214
5.6.3 The Object Reference .. 214

5.6.3.1 Min Protocol Profile .. 215
5.6.3.2 Child Protocol Profile .. 216
5.6.3.3 Options Protocol Profile .. 216
5.6.3.4 Lite Protocol Profiles ... 217
5.6.3.5 BIOP Protocol Profile ... 217
5.6.3.6 ONC Protocol Profile .. 218

5.6.4 ServiceContextList .. 218
5.6.4.1 ServiceContext .. 219

5.6.5 Core Interfaces .. 220
5.6.5.1 Base ... 220
5.6.5.2 Access .. 220
5.6.5.3 Stream .. 222

5.6.5.3.1 Transport and Application Level NPT .. 224
5.6.5.3.2 Consistent Quantization Rules ... 224

5.6.5.4 File ... 224
5.6.5.5 B indingIterator .. 225
5.6.5.6 NamingContext .. 226
5.6.5.7 Directory .. 227

5.6.6 Extended Interfaces ... 229
5.6.6.1 SessionUU ... 229

5.6.6.1.1 Partial Path .. 230
5.6.6.2 ServiceGatewayUU ... 230

5.6.6.2.1 Summary of ServiceGatewayUU Primitives .. 230
5.6.6.3 Sessions1 ... 231
5.6.6.4 ServiceGatewayS ... 231

5.6.6.4.1 Summary of ServiceGatewayS Primitives .. 232
5.6.6.5 DownloadSI ... 232
5.6.6.6 Event .. 235
5.6.6.7 Composite .. 236
5.6.6.8 View .. 238
5.6.6.9 State ... 240
5.6.6.10 Interfaces .. 241

5.7 Application Boot Process .. 241
5.7.1 Session attach0 Pre-conditions ... 242
5.7.2 Session attach0 Procedure .. 243

5.7.2.1 Resolving Path-specific Parameters ... 243
5.7.2.1.1 Post-condition .. 244

5.7.2.2 Establishing the U-N Session .. 244
5.7.2.2.1 ClientSessionSetupRequest ... 244
5.7.2.2.2 ClientSessionSetupConfirm ... 245
5.7.2.2.3 Session Establishment Post-conditions .. 246

5.7.2.3 Download .. 246
5.7.3 Session Tear-down .. 248
5.7.4 Session Transfer Implications .. 248

ix

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

6. USER COMPATIBILITY .. 249

6.1 Compatibility Descriptors .. 249
6.1 I . IEEE OUI Specifier ... 251

7. USER-TO-NETWORK DOWNLOAD ... 252

7.1 Overview ... 252
7.1.1 Download Network Models ... 253
7.1.2 Preconditions and Assumptions ... 254

7.2 Download Message Set ... 255
7.2.1 Download Control Message Format .. 255
7.2.2 Download Data Message Format ... 255

7.2.2.1 DSM-CC Download Data Header ... 255
7.3 Message Descriptions .. 256

7.3.1 DownloadInfoRequest ... 257
7.3.2 DownloadInfoResponse and DownloadInfoIndication .. 257
7.3.3 DownloadDataBlock ... 259
7.3.4 DownloadDataRequest .. 259
7.3.5 DownloadCancel ... 260
7.3.6 DownloadServerInitiate ... 263

7.4 Message Sequence for Flow-Controlled Download Scenario .. 263
7.4.1 Getting Download Protocol Parameters .. 264
7.4.2 Starting Download ... 265
7.4.3 Acknowledgments ... 265
7.4.4 Timers and Re-transmission .. 266
7.4.5 Abort ... 267
7.4.6 Flow-Controlled Scenario over Reliable Transport ... 267

7.5 Message Sequence for Data Carousel Scenario ... 267
7.5.1 Getting Data Carousel Parameters ... 267
7.5.2 Starting Acquisition and Module Re-Assembly ... 268

7.5.2.1 Pseudo-Code Example of Module Re-assembly .. 268
7.5.3 Timers .. 269
7.5.4 Module Coherency .. 270
7.5.5 Data Delivery Rate .. 270

7.6 Message Sequence for Non-Flow-Controlled Download Scenario ... 270
7.6.1 Getting Download Protocol Parameters .. 271
7.6.2 Image Assembly and Coherency .. 271
7.6.3 Timers .. 271

7.7 Protocol State Machines for flow-controlled download scenario .. 271
7.7.1 State Variables common to Client and Download Server .. 272

7.7.1.1 Service Type: reliableservice, unreliableService .. 272
7.7.1.2 Download configured buffersize: buffersize .. 272
7.7.1.3 Download configured maximumBlockSize: blocksize ... 272
7.7.1.4 Download Identifier: Did ... 272
7.7.1.5 Download negotiated blocksize: Did.blockSize .. 272
7.7.1.6 Download negotiated windowsize: Did.windowSize .. 272
7.7.1.7 Download negotiated Acknowledgment Period: Did.ackPeriod 272
7.7.1.8 Download negotiated Window Timer: Did.tWindow .. 272
7.7.1.9 Download negotiated Scenario Timer: Did.tScenario ... 272
7.7.1.10 Download negotiated compatibilities: Did.compatibilities ... 272
7.7.1.11 Download Number of Modules: Did.numModules .. 272
7.7.1.12 Download Module Identifier: Did.moduleId .. 272
7.7.1.13 Download Module Version: Did.moduleId.version .. 273
7.7.1.14 Download Module Size: Did.moduleId.moduleSize .. 273
7.7.1.15

7.7.2 ’
Download Expired downloadld Holding timer: Did.tHold .. 273

Client-only State Variables .. 273
7.7.2.1 Download Lower Receive Window Edge: Did.NmoduleId, Did.NblockNum.273

X

0 ISO/IEC ISO/IEC 13818=6:1998(E)

7.7.2.2 Number received blocks: Did.Nblock. .. 273
7.7.2.3 Acknowledgment threshold: Did.AckThreshold .. 273

7.7.3 Server-only State Variables ... 273
7.7.3.1 Lower Transmit Window Edge: Did.LmoduleId, Did.LblockNum 273
7.7.3.2 Upper Transmit Window Edge: Did.UmoduleId, Did.UblockNum 273
7.7.3.3 Data Sending Rate Timer: Did.tSend .. 273

7.7.4 Client Conditions ... 273
7.7.4.1 Invalid ServerId ... 273
7.7.4.2 Number of re-transmission exceeded ... 274
7.7.4.3 Unacceptable blocksize ... 274
7.7.4.4 Unacceptable WindowSize .. 274
7.7.4.5 Unacceptable Acknowledgment Period ... 274
7.7.4.6 Unacceptable Window Timer .. 274
7.7.4.7 Unacceptable Scenario Timer .. 274
7.7.4.8 Unacceptable Compatibilities .. 274
7.7.4.9 Unacceptable Module Table .. 274
7.7.4.10 Acknowledgment period full .. 274
7.7.4.11 Download complete .. 274

7.7.5 Download Server Conditions ... 274
7.7.5.1 Unacceptable maximumBlockSize .. 274
7.7.5.2 Unacceptable buffersize .. 275
7.7.5.3 Unacceptable Compatibilities .. 275

7.7.6 Client Procedures .. 275
7.7.6.1 Initial Setup of State Variables .. 275
7.7.6.2 Sending DownloadDataRequest Messages .. 275
7.7.6.3 Sending DownloadCancel Messages ... 275
7.7.6.4 Increment Lower Receive Window Edge .. 275
7.7.6.5 Increment block counter .. 276
7.7.6.6 Transition to DCExpire State .. 276

7.7.7 Download Server Procedures .. 276
7.7.7.1 Initial Setup of State Variables .. 276
7.7.7.2 Increment Lower Transmit Window Edge ... 277
7.7.7.3 Set Upper Transmit Window Edge .. 277
7.7.7.4 Sending DownloadDataBlock Messages ... 277
7.7.7.5 Sending DownloadCancel Messages ... 277
7.7.7.6 Transition to DSExpire State ... 277

7.7.8 State Machine SDL .. 277
7.8 Partial Protocol State Machines for non-flow-controlled download scenario 277

8. STREAM DESCRIPTORS ... 279

8.1 Normal Play Time ... 279
8.1.1 NPT Reference Descriptor .. 279
8.1.2 Reconstruction of NPT .. 280
8.1.3 NPT Conversion to Seconds and Microseconds .. 281
8.1.4 NPT Uncertainty .. 281

8.1.4.1 Frequency of NPT Reference Descriptor ... 281
8.1.5 NPT Endpoint Descriptor .. 282

8.2 Stream Mode Descriptor ... 282
8.3 Stream Event Descriptor .. 283

9. TRANSPORT .. 284

9.1 DSM-CC Requirements on Lower-Level Network Transport Protocol 284
9.1.1 U-N Message Categories ... 284
9.1.2 U-U Interface Categories ... 284

9.2 Encapsulation within MPEG-2 Transport Streams .. 285
9.2.1 Role of MPEG-2 Transport Stream in the Protocol Stack ... 285
9.2.2 DSM-CC Sections ... 285

xi

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

9.2.2.1 Semantic definition of fields in DSMCC section .. 286 -
9.2.3 DSM-CC Stream Types ... 288
9.2.4 DSM-CC Multi-protocol Encapsulation .. 288
9.2.5 U-N Message Categories ... 289
9.2.6 U-U Service Inter-operability Interface using Remote Procedure Call 289
9.2.7 DSM-CC Stream Descriptors .. 289

9.2.7.1 Semantic definition of fields in DSM-CC Descriptor List ... 289
9.3 Encapsulation within MPEG-2 Program Streams .. 289

9.3.1 DSM-CC Stream Descriptors .. 289
9.3.1.1 Semantic definition of fields in DSM-CC-program-stream-Descriptor List290

9.3.2 U-N Messages and U-U SSI .. 290

10. U-N SWITCHED DIGITAL BROADCAST -- CHANNEL CHANGE PROTOCOL 291

10.1 Overview ... 291
10.1.1 Preconditions and Assumptions ... 291
10.1.2 General Message Format ... 291

10.2 Switched Digital Broadcast Channel Change Protocol Messages ... 291
10.2.1 Use of Private Data in SDB CCP messages ... 292
10.2.2 Use of BroadcastProgramId in SDB CCP messages ... 292
10.2.3 SDB CCP message definitions .. 292

10.2.3.1 SDBProgramSelectRequest message definition ... 293
10.2.3.2 SDBProgramSelectConfirm message definition ... 293
10.2.3.3 SDBProgramSelectIndication message definition .. 294
10.2.3.4 SDBProgramSelectResponse message definition ... 294

10.3 SDB Channel Change Protocol Command Scenarios .. 294
10.3.1 Client Initiated Program Select Command Sequence .. 294
10.3.2 SDB Server Initiated Program Select Command Sequence ... 296

10.4 SDB Reason and Response Codes ... 297
10.4.1 SDB Reason Codes ... 297
10.4.2 SDB Response Codes .. 298

10.5 SDB State Machine ... 298
10.5.1 SDB State Machine for the Client Side ... 298
10.5.2 State machine for the SDB Server Side ... 300

11. U-U OBJECT CAROUSEL .. 303

11.1 Introduction ... 303
11.2 Concepts .. 304

11.2.1 Supported U-U Objects and Interfaces .. 304
11.2.2 Service Domain and Service Gateway ... 304
11.2.3 Object References .. 305
11.2.4 Transport of BIOP Messages ... 305
11.2.5 Module Delivery Parameters ... 306
11.2.6 Taps ... 306

11.3 Broadcast Inter ORB Protocol ... 307
11.3.1 Inter-operable Object Reference (IOR) ... 307

11.3.1.1 Profile Body Definition .. 307
11.3.1.1.1 Object Location Component .. 307
11.3.1.1.2 ConnBinder Component .. 307

11.3.2 Message Set Definition .. 308
11.3.2.1 Generic Object Message Format .. 308
11.3.2.2 Directory Message Format ... 310
11.3.2.3 File Message Format .. 311
11.3.2.4 Stream Message Format ... 311
11.3.2.5 Service Gateway Message Format .. 313

11.3.3 Transport Definitions ... 313
11.3.3.1 BIOP Messages .. 313
11.3.3.2 Module Delivery Parameters .. 313

xii

0 ISO/IEC ISO/IEC 13818=6:1998(E)

11.3.3.3 IOR of Service Gateway ... 314
11.4 MPEG-2 Descriptors ... 315

11.4.1 Carousel identifier descriptor .. 316
11.4.2 Association tag descriptor ... 316
11.4.3 Deferred association tags descriptor .. 318

12. USER-TO-NETWORK PASS-THRU MESSAGES ... 319

12.1 Overview and the General Message Format .. 319
12.2 Pass-Thru Messages .. 319

12.2.1 Use of PassThruData() structure in Pass-Thru messages ... 320
12.2.2 Pass-Thru message definitions ... 321

12.2.2.1 PassThruRequest .. 321
12.2.2.2 PassThruIndication ... 321
12.2.2.3 PassThruReceiptRequest .. 321
12.2.2.4 PassThruReceiptConfirm .. 322
12.2.2.5 PassThruReceiptIndication ... 322
12.2.2.6 PassThruReceiptResponse .. 323

12.3 User-to-Network Pass-Thru Message Field Data Types .. 323
12.4 Pass-Thru Message Scenario ... 324

12.4.1 Pass-Thru Message scenario .. 324
12.4.1.1 The Sending User sends a PassThruRequest .. 324

12.5 Pass-Thru Receipt Message Scenario .. 324
12.5.1 Pass-Thru Receipt Message scenario ... 325

12.5.1.1 The Sending User sends a PassThruReceiptRequest .. 325
12.6 Pass-Thru Response Codes .. 326
12.7 Pass-Thru Type Codes ... 326
12.8 State Machine .. 326

ANNEX A (NORMATIVE) USER-NETWORK PROTOCOL STATE MACHINES..327

A.1 Introduction ... 327
A.2 U-N Session ... 327
A.3 U-N Download - Flow Controlled Scenario ... 364
A.4 U-N Switched Digital Broadcast Channel Change Protocol .. 377
A.5 U-N Pass-Thru ... 390

ANNEX B (INFORMATIVE) APPLICATION EXAMPLES .. 399

B.1 Introduction ... 399
B.2 Video Stream Play ... 399
B.3 Building a Directory Hierarchy ... 401
B.4 Movie Information Database ... 402
B.5 View as a Personalized Directory .. 408

ANNEX C (INFORMATIVE) ONC RPC XDR MAPPINGS ... 410

c.1 Overview ... 410
c.2 General RPC Message Formats ... 410
c.3 CORBA IDL C to XDR Mapping ... 412

c.3.1 Mapping for Integer Data Types ... 412
C.3.2 Mapping for void ... 412
c.3.3 Mapping for Constants .. 413
c.3.4 Mapping for octet .. 413
c.3.5 Mapping for Fixed-length Constructed Types ... 413

c.3.5.1 Mapping for struct ... 413
C.3.6 Mapping for sequences .. 413

C.3.6.1 Example: Mapping for opaque .. 413
C.3.6.2 Example: Mapping for PathSpec ... 414

c.3.7 Mapping for string ... 415
c.4 DSM-CC ONC Protocol Profile for the Interoperable Object Reference 415

. . .
x111

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

c.5 Exceptions ... 416
C.6 Request and Reply Header Structures ... 417
c.7 DSM-CC RPC Program Numbers ... 418

c.7.1 RPC Program Dispatch Tables Mapping ... 418

ANNEX D (INFORMATIVE) USING DSM-CC U-N SESSION MESSAGES WITH ATM.............42 1

D.1 Methods of using DSM-CC over ATM ... 421
D.l.l Session Method ... 421
D.1.2 Network Method with AddResource messages between the Server and the SRM 42 1
D.1.3 Network Method with NO AddResource messages between the Server and the SRM42 1
D.l.4 Integrated Method ... 422

D.2 Association of DSM-CC connection resources to ATM SVCs ... 423
D.2.1 DSM-CC resourceId Mapping into Q-293 1 ... 423

D.3 Session Method Command Sequences .. 424
D.3.1 Session Set-Up .. 424

D.3.1.1 Client Session Set-Up .. 425
D.3.2 Add Resource Request .. 428

D.3.2.1 Add Resource Request by the Server .. 429
D.3.3 Resource Deletion ... 430

D.3.3.1 Resource Deletion by the Server ... 431
D.3.4 Session Tear-Down ... 433

D.3.4.1 Session Tear-Down by Server ... 434
D.3.4.2 Session Tear-Down by Client .. 436

D.4 Network Method with DSM-CC AddResource messages between the Server and SRM437
D.4.1 Session Set-Up .. 437

D.4.1.1 Client Session Set-Up, Server ATM Connection Set-Up .. 437
D.4.2 Add ,Resource Request .. 440

D.4.2.1 Add Resource Request by Server and ATM SVC Connection Set-Up by Server440
D.4.3 Resource Deletion ... 442

D.4.3.1 Resource Deletion Request by Server and ATM SVC Connection Release by Server442
D.4.4 Session Tear-Down ... 443

D.4.4.1 Session Tear-Down Request by Server and ATM SVC Connection Release by Client . .443
D.4.4.2 Session Tear-Down Request by Client and ATM SVC Connection Release by Server . ,444
D.4.4.3 Session Tear-Down Request by Server and ATM SVC Connection Release by Server . . 445

D.5 Network Method with NO DSM-CC AddResource messages between the Server and SRM446
D.5.1 Session Set-Up .. 446

D.5.1.1 Client Session Set-Up .. 447
D.5.2 Add Resource Request .. 447

D.5.2.1 Add Resource Request by the Server .. 447
D.5.3 Connection Clearing .. 449

D.5.3.1 Connection Clearing by the Server .. 449
D.5.3.2 Connection Clearing by the Client ... 451

D.5.4 Session Tear-Down ... 451
D.5.4.1 Session Tear-Down by Server ... 451
D.5.4.2 Session Tear-Down by Client .. 452

D.6 Integrated Method Command Sequences .. 453
D.6.1 Session Set-Up .. 454

D.6.1.1 Client Session Set-Up .. 454
D.6.1.2 Server Session Set-Up ... 455

D.6.2 Integrated Method for Adding Resources .. 455
D.6.3 Connection Clearing .. 456
D.6.4 Session Tear-Down ... 456

D.6.4.1 Server Session Tear-Down .. 457
D.6.4.2 Client Session Tear Down ... 457

D.7 References ... 457

ANNEX E (INFORMATIVE) UN0 INTER-OPERABLE RPC PROTOCOL STACK..459

xiv

0 ISO/IEC ISO/IEC 13818=6:1998(E)

E.1 Abstract ... 459
E.2 Motivation ... 459
E.3 Solution Space ... 459
E.4 Inter-operation Framework .. 460
E.5 Protocol Selection ... 461
E.6 Common Data Representation ... 461

E.6.1 Encapsulation .. 462
E.6.2 Alignment .. 462
E.6.3 Primitive Data Types ... 462
E.6.4 Compound Types ... 463
E.6.5 TypeCode .. 463

E.7 UN0 Session Protocol ... 464
E.7.1 Message Set ... 464

E.7.1.1 Request Message ... 464
E.7.1.2 Reply ... 465
E.7.1.3 CancelRequest ... 466
E.7.1.4 LocateRequest ... 466
E.7.1.5 LocateReply ... 466
E.7.1.6 CloseConnection .. 466
E.7.1.7 MessageError ... 466

E.7.2 Session Semantics .. 466
E.8 Transport and Network Semantics ... 467

ANNEX F (INFORMATIVE) USE OF U-U OBJECT CAROUSEL ... 468

F.l Introduction ... 468
F.2 Purpose of U-U Object Carousels ... 468
F.3 IDL structures .. 468

F.3.1 Inter-operable object Reference .. 468
F.3.2 Generic object Message ... 470
F.3.3 Directory Message ... 470

F.4 Support for New Object Representations .. 471
F.5 How to resolve an object from its IOR .. 472
F.6 Service Gateway and Download support ... 474
F.7 U-U Object Carousels on top of MPEG-2 TS Broadcast Networks .. 475

ANNEX G (INFORMATIVE) SHARED RESOURCES AND THE ASSOCIATION TAG 477

G.l Introduction ... 477
G.2 Use of the Association Tag .. 477
G.3 Use of the SharedResource Descriptor .. 478
G.4 Use of the SharedRequestId Descriptor ... 478
G.5 Common Examples of Use .. 479

G.5.1 Download Phase, Multiple ATM SVCs .. 479
G.5.1.1 End-to-End ATM ... 479
G.5.1.2 Non-ATM HFC Client View ... 480

G.5.2 Video Play Phase, Multiple ATM SVCs ... 481
G.5.2.1 End-to-End ATM ... 481
G.5.2.2 Non-ATM HFC Client View ... 482

G.5.3 Single Asymmetric ATM SVC .. 483
G.5.3.1 End-to-End ATM ... 483
G.5.3.2 Non-ATM HFC Client View ... 484

G.5.4 Single Asymmetric ATM PVC .. 486
G.5.5 Download Phase, Multiple ATM WCs .. 486
G.5.6 Video Play Phase, Multiple ATM WCS ... 486
G.5.7 Use of sharedResourceRequest Descriptors .. 486

ANNEX H (IN-FORMATIVE) SWITCHED DIGITAL BROADCAST SERVICE 487

H.l Introduction ..**..*********.******.. 487

xv

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

H.2 Switched Digital Broadcast Service .. 487
H.3 Functional Flows ... 488

H.3.1 Broadcast Program Configuration ... 488
H.3.2 Client Service Profile Transfer to the SDB Server .. 489
H.3.3 Broadcast Program Guide Transfer to Client .. 490
H.3.4 Switched Digital Broadcast Service Session Establishment. ... 490
H.3.5 Client Initiated Channel Changes .. 492
H.3.6 Network Initiated Channel Changes .. 493
H.3.7 Digital Broadcast Session Release ... 495

ANNEX I (INFORMATIVE) EXAMPLE U-N LIFE CYCLE WALK THROUGH . 497

1.1
I.2
I.3

1.3.1
1.3.2
1.3.3

I.4
1.4.1
1.4.2
1.4.3

I.5
1.51
15.2
1.5.3

Introduction ... 497
General Flow ... 497
U-N-Configuration .. 498

Pre Conditions ... 498
Procedure ... 498
Post Conditions ... 498

U-N Session Setup ... 499
Pre Conditions ... 499
Procedure ... 499
Post Conditions ... 502

U-N Download .. 503
Pre Conditions ... 503
Procedure ... 504
Post Conditions ... 504

ANNEX J (INFORMATIVE) EXAMPLE OF AN OS1 NSAP ADDRESS FORMAT505

J.1 Purpose .. 505
5.2 Introduction ... 505
5.3 E. 164 NSAP .. 505

ANNEX K (INFORMATIVE) STREAM PLAYLIST ... 507

K.1 Overview ... 507
K.2 DSM QStream next ... 509

ANNEX L (INFORMATIVE) SERVICE TRANSFER MESSAGE FLOWS 510

L.1
L.l.1
L.1.2

L.2
L.2.1
L.2.2

L.3
L.3.1
L.3.2
L.3.3
L.3.4
L.3.5
L.3.6

Introduction 510
Use of service transfer in the normal course of service . 510
Use of Service Transfer in emergency cases . 511

Basic application level Service Transfer . 511
Service Transfer: sourceserver to destinationserver with sourceserver Session Release.. .5 11
Service Transfer: sourceserver to destinationserver, Service maintained on sourceserver 5 12

Enhanced application level Service Transfer . 513
Release the Session with the sourceserver . 513
Maintain minimum resources with the sourceserver . 514
Maintain the service with the sourceserver . 515
Fall back to Server A after Session release with the sourceserver . 515
Resumption of the full context on Server A after reduced Session . 515
Emergency Service Transfer . 516

ANNEX M (INFORMATIVE) T.120 INTER-WORKING ... 519

M.l Introduction ... 519
M.2 Reference Model for side-by-side integrated DSM-CC/T. 120 .. 519
M.3 Features, Functions and Services of the DSM-CC and the T. 120 specifications52 1

M.3.1 Features, Functions and Services of DSM-CC .. 521
M.3.2 Features, Functions and Services of T. 120 .. 521

xvi

0 ISO/IEC ISO/IEC 13818=6:1998(E)

M.3.3 Inter-working of DSM-CC and T. 120 Features, Functions and Services 521
M.4 DSM-CC and T. 120 Components Harmonized ... 522
M.5 Specifics for inter-operation between DSM-CC and T. 120 ... 523

M.5.1 Terminal 1 creates a conference .. 524
M.5.2 Terminal 2 queries a conference .. 524
M.5.3 Terminal 2 joins the conference .. 524

M.6 T. 120 service within DSM-CC .. 536
M.6.1 An Example of Extending DSM-UU to provide custom interfaces 536

ANNEX N (INFORMATIVE) THE RELATION OF DSM-CC TO MHEG-5 539

N.1 Overview ... 539
N.2 Name Space ... 539

N.2.1 MHEG Object References ... 540
N.2.2 Content References .. 540

N.3 Stream Events and Normal Play Time ... 540
N.4 Example of DSM-CC file structure for an application .. 541
N.5 Example of Mapping High-Level API Actions on DSM-CC U-U Primitives 542

xvii

ISOAEC 13818=6:1998(E) 0 ISO/IEC

Foreword

IS0 (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of IS0 or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal
with particular fields of technical activity. IS0 and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with IS0 and IEC, also take part in
the work.

In the field of information technology, IS0 and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 138 18-6 was prepared by Joint Technical Committee ISO/IEC JTC 1, Znforrnation
technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 138 18 consists of the following parts, under the general title Information technology - Generic coding of
moving pictures and associated audio information:

Part I: Systems

Part 2: Video

Part 3: Audio

Part 4: Compliance testing

Part 5: Software simulation

Part 6: Extensions for DSM-CC

Part 7: Advanced Audio Coding (AAC)

Part 9: Extension for real time interjace for systems decoders

Part 10: Conformance extensions for DSM-CC

Annex A forms an integral part of this part of ISO/IEC 138 18. Annexes B to N are for information only.

. . .
xv111

0 ISO/IEC ISOLIEC 13818=6:1998(E)

0. Introduction
The Digital Storage Media Command and Control (DSM-CC) specification is an integral part of ISO/IEC 138 18
(MPEG-2). It consists of a modular set of protocols that may be combined or used individually to provide a wide range
of functionality which may be used to support emerging multimedia technologies.

The concepts and protocols of DSM-CC provide the general capability to browse, select, download, and control a
variety of bit stream types. DSM-CC also provides a mechanism to manage network and application resources through
the concept of a “session”. A Session is an associated collection of resources required to deliver a Service. Examples of
resources are MPEG-2 Transport Stream packet identifiers and network bandwidth. The Session complements a
“Service Domain”, which is a collection of interfaces to browse and select services, and control the delivery of bit
streams.

One of the strengths of DSM-CC is in its abstraction from underlying networks; a suite of uniform interfaces are visible
to the application, shielding it from the details of inter-working among heterogeneous networks - e.g., Hybrid Fiber
Coax (HFC), Asynchronous Transfer Mode (ATM), Asymmetric Digital Subscriber Loop (ADSL), Internet Protocol
(IP), and combinations of these technologies as part of an end-to-end multimedia system. In other words, a server may
simultaneously and uniformly interact through a single network interface with clients connected to different network
types, without requiring a separate network interface to each client.

The session signaling layer provides a uniform, flexible, and extensible method for managing heterogeneous resource
types. In addition to the network and service types described in this specification, DSM-CC may be extended to support
other networks and services through the definition of new resource types.

In DSM-CC, a bit stream is sourced by a Server and delivered to a Client. Both the Client and the Server are logical
embodiments and do not imply a singular device in an actual implementation.

Application/service examples are interactive multimedia retrieval (including video-on-demand), Internet access, digital
video broadcasting, data downloading, and audio/video/graphics conferencing.

0.1 Guiding Factors in the Formulation of DSM-CC
The DSM-CC specification was influenced by the following factors:

0 A wide range of network topologies may be used to deliver DSM-CC.
0 Resources are finite and need to be managed.
0 Latencies need to be minimized to provide (interactive) services.
0 DSM-CC applications need to be supported by an underlying protocol that facilitates communications

between a Server-side application and a corresponding Client-side application.

xix

ISO/IEC 13818=6:1998(E)

0.2 DSM-CC Client-Network-Server Model

CLIENT
USER

C Connection
1 !’ (User to User

/

0 ISO/IEC

SERVER
USER

*May provide session, connection and configuration management and control.

Figure O-1 DSM-CC basic Client-Network-Server model

Figure O-l depicts the basic model used in DSM-CC. A Session and Resource Manager (SRM) provides logically
centralized management of the DSM-CC Sessions and Resources. DSM-CC User-to-Network (U-N) messages flow
between the Client and SRM and the Server and SRM. Both the Client and the Server are called Users of DSM-CC. The
U-N session protocol establishes a Session and groups all the resources required for delivering a service. The service
interactions are carried between the Client and the Server participating in the Session using DSM-CC User-to-User (U-
U) messages. The SRM also does U-N configuration management and control of both Clients and Servers to allow their
participation in the DSM-CC environment.

DSM-CC supports network topologies which consist of multiple Clients and multiple Servers. Any Client-Server pair
can communicate together by establishing a Session. Each Client can have multiple simultaneous Sessions with any
specific Server or any combination of Servers. For this phase of DSM-CC, a Session is typically limited to one Client,
one Server, and one SRM. The exception is the case of Continuous Feed Sessions (CFS). A CFS may be used by, e.g., a
stream broadcasting application, where broadcast “feeds” are established with the network with no particular Client
specified. Clients may “attach” to a CFS by setting up a Session with the network to connect to the CFS and, optionally,
to establish Client-unique resources (such as a return control channel that may be needed by an interactive application
which shares a downstream feed, e.g., game show voting). Alternatively, Clients may “attach” to a CFS or another
broadcast “feed” by using the U-N Switched Digital Broadcast Channel Change Protocol (SDB-CCP), when no Client-
unique Resources are needed by the application (such as with traditional “pay-per-view”).

0.3 Outline of the DSM-CC Specification
DSM-CC consists of a set of User-to-Network and User-to-User protocols. These protocols are described in the clauses
listed below.

0.3.1 User-to-Network
0 DSM-CC Message Header, clause 2
0 U-N Configuration messages, clause 3
0 U-N Session messages and flow diagrams for Session and Resource management, clause 4
0 U-N Download messages, clause 7
0 U-N Switched Digital Broadcast Channel Change Protocol, clause 10
0 U-N Pass Thru messages, clause 12
0 The transport of DSM-CC U-N messages using MPEG-2 Systems (ISO/IEC 138 18-l), clause 9
0 The transport of generic IP messages using DSM-CC Sections and MPEG-2 Systems, clause 9

xx

0 ISO/IEC ISO/IEC 13818=6:1998(E)

0.3.2 User-to-User
0 U-U Remote Procedure Call @PC), clause 5
0 U-U Session interface, clause 5
0 U-U Download interface, clause 5
l U-U Object Carousel interface, clause 11
l U-U Local Object interface, clause 5
l U-U Stream Descriptors, clause 8

0.4 Supported Network Technologies
DSM-CC does not specify the underlying physical, data link, transport, or RPC layers of the overall protocol stack.
However, DSM-CC does specify requirements for these layers in clause 9.

0.5 Supported Connection Types
DSM-CC supports the following connection types:

l Point-to-point
l Point-to-multi-point (broadcast)

User-to-User application and service exchanges are carried over point-to-point type connections.

The point-to-multi-point type connections are used to feed a single stream to multiple Clients. In this case, no single
Client has control (e.g., for the purpose of pause, fast forward) of the received bit stream. However, in the case where
the network (as opposed to the Client) does stream switching such as with Switched Digital Broadcast (SDB)
applications, a means is provided for Clients to switch between streams using the SDB channel change protocol
(SDB-CCP). The latter is useful for applications such as the so-called “enhanced pay-per-view” or “near video on
demand”.

0.6 DSM-CC Interfaces
The DSM-CC model (Figure O-l) consists of three Subsystems:

l Client
l Server
l Session & Resource Manager (SRM)

Each subsystem is a logical embodiment within a DSM-CC System. It does not map directly to physical equipment. The
SRM represents the DSM-CC functionality within a DSM-CC network (the Network).

In order to define interfaces, a DSM-CC System Reference Model is used to subdivide the DSM-CC environment into a
hierarchy of several levels (see Figure O-2):

l System
l Subsystem
l Entity
l Sub-entity

A Subsystem may contain more than one Entity. The types of Entities are:

l Client User-to-User Entity
l Client User-to-Network Entity
l Server User-to-User Entity
l Server User-to-Network Entity
l SRM User-to-Network Entity

DSM-CC signaling is always exchanged between specific Subsystem Entities.

xxi

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

From the normative perspective, the System Reference Model does not show any more detail below the Entities.
However, for informative reasons, the Entities have in some cases been further divided into Sub-entities. For example,
the Client and Server U-N Entities include a Session Manager, Resource Manager, and a Configuration Manager. On the
Server side, the U-U Entity includes a Service Gateway and an Object Access Manager.

DSM-CC recognizes that Subsystems will require other Entities which are not specified by this part of ISO/IEC 138 18.
Examples are a Connection Management Entity and Application Entities.

Figure O-2 shows the different entities and sub-entities of the DSM-CC system.

To show the boundaries between Entities, Figure O-2 is divided into four layers:

l The Application Entity layer, which is outside the scope of this part of ISO/IEC 138 18
l The User-to-User Entity, which is an Application/Service Control/Management Layer
l The User-to-Network Entity, which is a Session and Resource Control/Management Layer
l The Connection Control Entity, which is (typically part of) a Transport Layer, and is outside the scope of this

part of ISO/IEC 13818.

Client
r ---- I

Session
*

U-U Download

Local Objects

Object Carousel

Client
Session l

m--m ---w

i
ZZnection 1
! Manager & !
1 Protocols I L-w-4

User-to-User
- B - - - - w -

User-to-Network

SRM

.--w----v-

+ ---
FNetwork I
; Connection 1
pgr I

v--4

I -II- I I I

Server
l- ---- I

U-U Library

Object Access
Manager

Service
Gateway

A
--I---I-m-

Server
l ,

Session
Manaaer

I Application I

---- ----

I Connection I
1 Manager & i
L Protocols I ---a

I -w-d
= Not specified by this standard

Figure O-2 DSM-CC System Reference Model

Each of the lines with arrows in Figure O-2 represents a logical interface. DSM-CC defines three types of interfaces:

l Inter-Entity

xxii

0 ISO/IEC ISO/IEC 13818=6:1998(E)

0 Intra-Entity
0 Intra-Subsystem

The Inter-Entity interfaces are between peer Entities in different Subsystems. The interfaces between the Sub-entities
within a common Entity are called Intra-Entity interfaces. The interfaces between Entities within a common Subsystem
are called Intra-Subsystem interfaces.

The DSM-CC System Reference Model specifies three communication paths over which DSM-CC messages are
exchanged. The communication between U-U Entities are represented as the DSM-CC U-U Protocol. The
communication between U-N Entities are represented as the DSM-CC U-N Protocol.

l Client U-U Entity to Server U-U Entity (U-U)
l Client U-N Entity to SRM U-N Entity (U-N)
l Server U-N Entity to SRM U-N Entity (U-N)

Table O-l summarizes Inter-Entity interfaces and Intra-Subsystem interfaces within the scope of DSM-CC.

07 .

Table O-1 DSM-CC Interface Scope Summary

Peer 1

Client U-U Library

Client U-U Library

Client Session Gateway

Client Resource Manager

Server Session Manager

Server Resource Manager

Client Configuration

Server Configuration

Server DSM Source (e.g.
MPEG-2 Transport / Video /
Audio)

Download Server (Source)

Object Carousel Server

Peer 2

Server Service Gateway

Server Object Access

SRM

SRM

SRM

SRM

SRM

SRM

Client DSM Consumer

U-N Download Client
(Consumer)

Object Carousel Client

Protocol Inter-
Entity

u-u X

u-u X

U-N X

U-N X

U-N X

U-N X

U-N X
Config

U-N X
Config

(MPEG) X’

Down- X1
load

Object X’
Carousel
/ Down-

load

Intra-
Subsystem

SDB Server

Client Application

(SDB) Client SDB- X’
CCP

Client U-U Library u-u

Note 1: Interface not shown on Figure O-2.

X

DSM-CC Interface Protocols
Figure O-3 depicts DSM-CC protocols used at DSM-CC interface points. The top section of the figure contains some
applications which may use DSM-CC. The middle section of the figure contains all of the DSM-CC specified protocols.
The specific Transport Layers, the bottom section, are not specified by this part of ISO/IEC 138 18.

Note that Figure O-3 applies to the case where the full suite of DSM-CC protocols (except for the extended protocol
groups) are employed. DSM-CC allows each protocol to be implemented without the others (see subclause 1.2 Profiles
and Compliance). If the U-U Library is not used, then the implementation will not have an Application Portability
Interface specified by DSM-CC.

. . .
xx111

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Applications

.,........ DSM-CC U-U LibraryJPL Interface-¤ .
DSM-CC User-to-User Library

Download Carousel

DSM-CC DSM-CC
U-N U-N
Configuration Session

DSM-CC
SDB
Channel
Change

DSM-CC
U-N Download

DSM-CC U-N Message

.
RPC Stu

RPC

Transport

Figure O-3 DSM-CC Interface Protocols

DSM-CC provides access to Stream and Data objects for applications (e.g., MHEG applications and scripting language
applications). The primary application interface layer is the DSM-CC U-U Library Interface Definition Language (IDL),
or Application Portability Interface. The U-U Library may in turn make use of the U-N Session Management, U-N
Download, and U-U Object Carousel layer to establish and manage Sessions and Resources required for the
management and delivery of the Stream and Data objects.

Table O-2 lists the DSM-CC protocols. The protocols which use the DSM-CC message format are U-N Configuration,
U-N Session, U-N SDB-CCP, U-N Download, and U-U Object Carousel (because it, in turn, uses U-N Download). In
some cases, the use of a message passing interface is needed because the Client device may not have higher layer
protocols (e.g., RPC) resident.

The U-U Library uses the services of the U-N protocols, but also adds its own on-the-wire protocol, the U-U RPC Stub
Library, which are based on existing Remote Procedure Call (RPC) interfaces. The protocols which use RPC do so
because it provides sophisticated object based services.

The third category is IDL, which is used in communicating within the Subsystem to applications.

xxiv

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Table O-2 The DSM-CC Protocols used on the Interfaces

DSM-CC Protocols

U-N Configuration

U-N Session

U-N Download

U-N Switched Digital Broadcast
Channel Change

U-N Pass Thru Client

u-u RPC Client

U-U Session

U-U Download

U-U Object Carousel

U-U Local Objects

Peer 1 Peer 2

Client / Server SRM

Client / Server

Client

SRM

Download server

Client SDB server

Server

RPC server

Client Application Client U-U Library

Client Application Client U-U Library

Object Carousel
Client

Object Carousel

Client Application U-U Library

U-N 1 IDL/RPC 1 U-N IDL/RPC
Message Message
Format Format

X X

X X

X X

X X

X X

RPC RPC

IDL

IDL

I IDL I

The transport layer in Figure O-3 may consist of any protocol which meets the transport requirements described in clause
9. Examples are, TCP or UDP over IP, AAL- over ATM, or DSM-CC/private - sections over MPEG-2 Transport
Stream.

0.8 Communications Requirements
The DSM-CC U-N Configuration, U-N Session, U-N SDB-CCP and U-N Download messages all use the DSM-CC
Message Format and are implemented using a simple message passing method; therefore, all have similar Transport
Layer requirements. The U-U Object Carousel uses the U-N Download protocol and its associated transport
requirements. The U-U RPC Stub Library uses RPC and its associated transport requirements.

The requirements for the underlying Transport services for all DSM-CC protocols are provided in detail in clause 9,
Transport.

0.9 Methods of Specification

0.9.1 Messages
U-N messages are described in tables which list the bit or byte level assignment for all of the fields in each message. The
syntactical structure of the messages are defined by Syntax Tables like the example below. Field names are shown in
bold and always have an associated number of bytes indicated. All numeric values are unsigned big-endian (most
significant byte first, most significant bit first) unless otherwise specified. The method of syntax description supports
loops and ‘procedures’ using a pseudo-C syntax. In the example below, a for0 loop, in normal font, indicates that the
field uuDataByte repeats uuDataCount times Also, the structure has been named UserData(), which now can in turn be
referenced in other larger structures.

xxv

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Syntax
UserData() {

uuDataLength
for(i=O;icuuDataCount;i++) {

uuDataByte
>
privateDataLength
for(i=O;i<privateDataLength;i++) (

privateDataByte

Num. of Bytes

2

1

2

1

Figure O-4 Example of U-N message syntax

The messages for U-N Configuration and U-N Session flow between Client and Network (SRM), and Server and
Network (SRM). For consistency, the suffix of each of these messages use the following terminology:

Request - A message sent from a User (Client or Server) to the Network to begin a scenario.

Confirm - A message being sent from the Network to a User (Client or Server) in response to a Request
message.

Indication - A message which is sent from the Network to a User.

Response - A message from a User to the Network in response to an Indication message.

Clause 9, Transport, defines the communications requirements (reliability, addressing etc.) for the delivery of these
messages.

A standard programming API for the use of these messages is outside the scope of this part of ISO/IEC 138 18.

0.9.2 Message Flow Diagram Scenarios
Flow diagrams have been provided to help explain the use of the DSM-CC message protocols. These diagrams show the
sequence and direction of flow for the messages of a specific scenario. In these diagrams, the time axis runs vertically,
with messages lower on the diagrams representing later transmission. The selected scenarios are the most typical ones
and do not represent the exhaustive list of examples of scenarios. The Specification and Description Language (SDL)
representations provide a more exhaustive representation, including exception cases.

0.9.3 Specification and Description Language
The SDL-language is officially defined in ITU-T recommendation 2.100. For the translation of the DSM-CC
specification into SDL, SDL-88 (2.100 blue book) is used. There are several advantages to using SDL:

0 Contrary to the textual part, usage of SDL in the specification makes it unambiguous due to the fact that SDL is
a formal language.

0 One representation of SDL is the graphical one. This makes the language more comprehensible.
0 The SDL specification can be analyzed for completeness and correctness.
0 It is easy to generate executable code in order to simulate and validate the specification.
0 The specification can also be used for conformance test purposes.

For simulation purposes, Message Sequence Charts (MSC), as defined in ITU-T recommendation 2.120, are used.

A model described in SDL consists of three different types of levels.

1. System level
2. Block level
3. Process level

The highest level of the SDL model is the system level. The system is surrounded by the environment represented by a
rectangle in the graphical representation. On the system level, the model of the system is described in a very rough shape

xxvi

0 ISOAEC ISO/IEC 13818=6:1998(E)

divided into one or more blocks. The blocks can contain either new blocks or processes. At some block level, the
content is one or several processes in each block. The process level could then describe logical parts of the system
related to each other with the signals exchanged between them.

A static process is created at start-up time for the system. A dynamic process is created during runtime by another
process. The number of dynamic processes which may be created is set by a constant value. A process can be stopped by
the process itself at any point in time.

A process is a state machine and the only way to move from one state to another state is via a transition. One or several
possible transitions can be connected to a state. A transition is always initiated by either an input signal or an enabling
condition. An input signal can be generated by an output signal from an outside process, from within the same process,
or by an expired timer. Here, the environment is also regarded as a process. The input signal is put in an input queue
which is a common queue for the process

When an input signal is consumed, a transition is started and the actual code defined between the state and the next state
is executed. In the graphical representation, the code consists of one or several graphical symbols with some additional
plain text; variables may be assigned new values in a task, questions may be answered in a decision, an output signal
may be sent to another process, etc.

Figure O-5 shows some common SDL symbols. Complete specification of SDL is outside of the scope of this
specification, but may be found in ITU-T 2.100 and 2.120.

The intent is to have the message flow diagrams and prose be consistent with the SDL tables. Since the SDL is more
exhaustive, if there is any form of contradiction between the prose and SDL, the SDL shall take precedence.

xxvii

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Block reference symbol

I

Process reference symbol

0
Start symbol

0
State symbol

0
Input symbol

I

Output symbol

D
Decision symbol

0

Procedure call symbol

Eli

Procedure reference svmbol

Procedure start svmbol

Procedure return svmbol

Task svmbol

Create request symbol

I

Stop symbol

X

Save symbol

Enabling condition symbol

(>

Comment symbol c-----’
.,,J

I

I
w-.-I--

Text extension symbol
I

Text symbol

1

Create line symbol

Connector symbol

0
Figure O-5 SDL Symbols

0.9.4 Interface Definition Language (IDL)
The U-U API primitives that use RPC are defined in terms of OMG Interface Definition Language (IDL), defined by
ISO/IEC 14750. The IDL provides a grammar for defining the function call-like API specification for each primitive.
Primitives written in the IDL are compiled by an IDL compiler to produce client and server stubs (executable code that
implements packet formation, dispatch, receipt, and interpretation) and a header file used during compilation of the
client and server applications.

0.9.5 Remote Procedure Call (RPC)
U-U functionality exploits a Remote Procedure Call (RPC) protocol. A RPC allows implementation of a client-server
model in which applications on a client are written to call functions that are similar to those that might be used if all
actions were to be executed locally. For those U-U API primitives that use the RPC, the RPC and data encoding defines
the actual bits that are exchanged as primitives are executed.

The downstream reply from the Server can be delivered via encapsulation within a MPEG-2 Transport Stream. Although
this part of ISO/IEC 138 18 specifies how to encapsulate common protocols (e.g., IP) over MPEG-2 Transport, there is ’
no requirement that control messages or RPC messages be delivered within MPEG-2 Transport Streams.

. . .
xxv111

0 ISO/IEC ISO/IEC 13818=6:1998(E)

0.9.5.1 Independence of RPC
DSM-CC may be implemented using any RPC which utilizes primitives that are legal within the Interface Definition
Language (IDL). The RPC will include a data representation choice which defines how data structures are mapped to
bits: for example, Common Data Representation (CDR) or External Data Representation (XDR).

Different implementations of RPC may generate different bit patterns on a communication link for the same primitive.
Communication between a client using one RPC and a server using a different RPC would require a translator
(executing on either the server or client side) to convert the RPC packet contents from one protocol to the other.

0.9.5.2 Preferred and Default RPC
DSM-CC User-to-User has designated OMG Universal Networked Objects (UNO) RPC as the default and preferred
RPC (see clause 5). The preferred and default data representation is Common Data Representation (CDR).

In the absence of prior arrangement, the default RPC between two DSM-CC Users is the UN0 RPC. Note that the UN0
RPC supports the ability to subsequently negotiate a change to a different RPC.

0.9.5.3 Local Equivalent Functions
For DSM-CC implementations in which the client and server functions are known to be entirely local (i.e., do not
require message exchange over a network), those U-U and U-N primitives that use an RPC may be compiled by an
alternative IDL compiler which produces a single equivalent local function call definition. This allows many
applications to be simply ported between networked applications and stand-alone applications (e.g., CD-player).
Alternatively, if separate server and client processes are executing locally, the RPC protocol may be used without
modification.

xxix

INTERNATIONAL STANDARD OISOAEC ISOAEC 13818=6:1998(E)

Information technology - Generic coding of moving pictures
and associated audio information
Part 6:
Extensions for Digital Storage Media Command and Control
(DSM-CC)

1 m General

1.1 Scope
The concepts and protocols of this part of ISO/IEC 138 18 (DSM-CC) provide the general capability to browse, select,
download, and control a variety of bit stream types. DSM-CC also provides a mechanism to manage network and
application resources through the concept of a Session, an associated collection of resources required to deliver a
Service. The Session complements a “Service Domain”, a collection of interfaces to browse and select services, and
control the delivery of bit streams.

DSM-CC defines the syntax and semantics for a set of User-to-Network and User-to-User protocols:

0 DSM-CC Message Header
l U-N Configuration messages
0 U-N Session messages and flow diagrams for Session and Resource management
0 U-N Download messages
0 U-N Switched Digital Broadcast Channel Change Protocol
0 U-N Pass Thru messages
0 The transport of DSM-CC U-N messages using ISO/IEC 13818-1.
0 The transport of generic IP messages using DSM-CC sections and ISO/IEC 138 18- 1, clause 9
0 U-U Remote Procedure Call
0 U-U Session interface
0 U-U Download interface
0 U-U Object Carousel interface
0 U-U Local Object interface
0 U-U Stream Descriptors

1.2 Profiles and Compliance
The DSM-CC protocols are modular and may be used individually or together to provide the needed range of features
and functionality. In other words, an embodiment of DSM-CC is not required to implement every functional category
(see below). However, if an embodiment implements operations that would be analogous to a functional category, then
the embodiment shall implement the complete syntax and semantics of the corresponding DSM-CC functional category.

1.2.1 Functional Categories of the DSM-CC protocols
0 User-to-Network Configuration
0 User-to-Network Core Session Messages
a User-to-Network Extended Session Messages
0 User-to-Network Flow Controlled Download
0 User-to-Network Non-Flow Controlled Download
0 User-to-Network Data Carousel Download
0 User-to-Network Pass Thru
0 User-to-Network Pass Thru Receipt

1

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

0 User-to-Network Switched Digital Broadcast Channel Change
0 User-to-User Core Interfaces
0 User-to-User Extended Interfaces

1.2.2 User-to-Network Session Messages
The U-N Session Message protocol has been divided into Core and Extended categories. DSM-CC U-N
implementations shall completely support all groups within the Core category (see below). The Extended category has
been further divided into independent functional message groups. Implementation of the features/functions provided by
the Extended category is not required. However, if an Extended category group is implemented, the complete set of
messages within that group shall be implemented.

1.2.2.1 U-N Core Session Message Functional Groups
Session Setup Group
Session Release Group
Add Resource Group
Delete Resource Group
Continuous Feed Session Setup Group
Status Request Group
Reset Group
Session Proceeding Group (optional send by Network, required receive by User)
Session Connect Group (optional send by User, required forward by Network, required receive by both)

1.2.2.2 U-N Extended Session Message Functional Groups
l Session Transfer Group
l Session in Progress Group

1.2.3 User-User Interfaces
The U-U IDL Interfaces have been divided into two categories: Core Interfaces and Extended Interfaces. Each of these
is further divided into Consumer and General. The Consumer interfaces are designed for applications where data
transfers are primarily from the Server to the Client. Consumer interfaces include file read and video stream control.
General interfaces, on the other hand, extend the Consumer interfaces to include author and writer functions. A Client
with a General interface can, for example, create Directories and store multimedia objects in them.

Core General

Core Consumer

Extended General

Extended Consumer

Figure l-6 U-U IDL Interface Groups

DSM-CC U-U Client implementations shall fully support the Core Consumer Interfaces. DSM-CC U-U Server
implementations shall fully support the Core General Interfaces. Each interface within the Extended set of interfaces
may be implemented separately; however, if any interface is implemented, it shall be implemented as either the complete
Extended Consumer Interface or the complete Extended General Interface.

1.2.3.1 U-U Core Interfaces
l Base common close0 and destroy0 operations
l Access common permissions, size, history attributes
l Stream to control continuous streams, e.g. video

0 ISO/IEC ISO/IEC 1381%6:1998(E)

l File to read and write files
l Directory to create and browse multimedia directories
l Session function calls to perform U-N Session message sequences
l ServiceGateway combined Directory and Session
l First to obtain initial ServiceGateway and application objects

1.2.3.2 U-U Extended Interfaces
l Download
l Event
l Composite
l View
l State
l Interfaces
l Security
l Configuration
l Life cycle
l Kind

1.3 Definitions

function calls to perform U-N Download
to subscribe to data events synchronized with audio/video
for grouping several application objects in a set
to query and store databases
to suspend and resume applications
to define and verify new interfaces
to post authentication data for a subsequent request
to configure for synchronous or asynchronous RPC
to create an Inter-operable Object Reference
to test the kind of an object

For the purposes of this part of ISO/IEC 138 18, the definitions given in ISO/IEC 138 18, ISO/IEC 11172, and the
following definitions apply.

1.3.1. Application

1.3.2. Association Tag

1.3.3. Client

1.3.4. Connection

1.3.5. Downstream

1.3.6. Entity

1.3.7. Inter-Entity Interface

1.3.8. Intra-Entity Interface

Software that executes in a client environment

In the case of connection resources, an Association Tag identifies the groups of
resources or shared resources that together make up a User to User connection.
An Association Tag is unique within a session and has end-to-end significance.

A consumer of a service from one or more Servers.

A transport link that provides the capability to transfer information between
two or more end points.

Data delivery from the Server to the Client

A functional module within a Subsystem, e.g. a Client Subsystem has a U-N
Entity and an U-U Entity.

An interface between two Entities which are in different Subsystems

An interface between two Sub-entities which are both within the same Entity.

1.3.9. Intra-Subsystem Interface An interface between two Entities which are in the same Subsystem.

1.3.10. Main Resident The application (or process) on the Client which is present before execution of
Application any DSM-CC protocols, and is the initiator of the first DSM-CC protocol

exchange, e.g. U-N Configuration.

1.3.11. Network A collection of communicating elements that provides connections and may
provide session control and/or connection control to User(s).

1.3.12. Primary Service The first service with which the Client interacts in a related collection of
services.

0 ISO/IEC ISO/IEC 13818=6:1998(E)

1.3.13. Resident Download

1.3.14. Resource Descriptor

1.3.15. Resource Sharing

1.3.16. Server

1.3.17. Service

1.3.18. Service Gateway

1.3.19. Session

1.3.20. Session and Resource
Manager

1.3.2 1. Sub-entity

1.3.22. Subsystem

1.3.23. System

1.3.24. Tap

1.3.25. Upstream

1.3.26. User

1.4 Acronyms
ADSL
AFI
API
ASN. 1lBER
ATM
BIOP
CDR
CFS
CORBA
CPDU
CRC
CCP
DCE
DSM

A resident library capable of performing the DSM-CC Download protocols.

A resource descriptor stores information for a particular resource associated
with a session. It contains enough information for the Network to allocate the
resource, track the resource once it is allocated, and de-allocate it once it is no
longer needed.

In a situation where two or more resources are contained within another
resource, then that resource is a shared resource. The sharing of the resource is
indicated by the shared resource descriptor which identifies the resource
number of the shared resource.

A provider of a service to one or more Clients.

A logical entity in the system that provides function(s) and interface(s) in
support of one or more applications. The distinction of a service from other
objects is that end-user access to it is controlled by a Service Gateway.

The interface which provides a directory of services and enables a Client to
attach to a service domain.

An association between two Users providing the capability to group together
the resources needed for an instance of a service.

A DSM-CC subsystem which provides a logically centralized management of
DSM-CC Sessions and Resources over one or more underlying network
technologies.

An internal functional partition of an Entity.

A unit of logical ‘equipment’ within a DSM-CC System, e.g. Client, Server, or
SRM.

The embodiment of the entire scope of DSM-CC, including all Subsystems and
their interfaces.

An application-visible object bound to a lower layer communications channel.

Data delivery from the Client to the Server.

An end system that is connected to a network that can transmit information to
or receive information from other such end systems by means of the Network.
A User may function as a Client, Server, or both.

Asymmetric Digital Subscriber Loop
Authority and Format identifier
Application Programming Interface
Abstract Syntax Notation l/Basic Encoding Rules
Asynchronous Transfer Mode
Broadcast Inter-ORB Protocol
Common Data Representation
Continuous Feed Session
Common Object Request Broker Architecture
Common Protocol Data Unit
Cyclic Redundancy Check/Code
Channel Change Protocol
Distributed Computing Environment
Digital Storage Media

4

0 ISO/IEC ISO/IEC 13818=6:1998(E)

DSM-CC
FCS
FTTC
GIT
GPDU
HFC
IDL
IIOP
IOR
ITU
IP
IWU
LLC
MAC
MHEG
MPEG
MSL
NDR
NPT
NSAP
OMG
ONC
OPE
ORB
OS1
OUI
PA
PCR
PDU
PES
PID
PIN
PVC
PMT
PS
PSI
RPC
SDB
SDL
SDV
SE
SNAP
SQL
SRM
STC
svc
TCP
TS
UDP
U-N
UN1
UN0
u-u
VOD
VCR
VCI
VP1

Digital Storage Media - Command and Control
Frame Check Sequence
Fiber To The Curb
Generic Identifier Transport (ITU-T)
General Protocol Data Unit
Hybrid Fiber Coax
Interface Definition Language
Internet Inter-ORB Protocol
Inter-operable Object Reference
International Telecommunications Union
Internet Protocol
Inter-Working Unit
Logical Link Control
Medium Access Control
Multimedia/Hypermedia Experts Group
Moving Picture Experts Group
Multimedia Scripting Language
Network Data Representation (DCE)
Normal Play Time
Network Service Access Point
Object Management Group
Open Networked Computing
Other Protocol Element (MHEG)
Object Request Broker
Open Systems Interconnection
Organization Unique Identifier
Physical Address
Program Clock Reference (ISO/IEC 138 18- 1)
Protocol Data Unit
Packetized Elementary Stream (ISO/IEC 138 18- 1)
Packet Identifier (ISO/IEC 138 18- 1)
Personal Identification Number
Permanent Virtual Connection (ATM Forum)
Program Map Table (ISO/IEC 138 18- 1)
Program Stream (ISO/IEC 138 18- 1)
Program Specific Information (ISO/IEC 138 18- 1)
Remote Procedure Call
Switched Digital Broadcast
Specification and Description Language
Switched Digital Video
SubElement
SubNetwork Attachment Point
Structured Query Language
Session and Resource Manager
System Time Clock (ISO/IEC 138 18- 1)
Switched Virtual Connection (ATM Forum)
Transport Control Protocol
Transport Stream (ISO/IEC 138 18- 1)
User Datagram Protocol
User-to-Network
User to Network Interface (ITU-T / ATM Forum)
Universal Network Objects
User-to-User
Video On Demand
Video Cassette Recorder
Virtual Channel Identifier (ITU-T / ATM Forum)
Virtual Path Identifier (ITU-T / ATM Forum)

0 ISO/IEC ISO/IEC 13818=6:1998(E)

XDR External Data Representation

1.5 Normative References
The following standards contain provisions which, through reference in this text, constitute provisions of this part of
ISO/IEC 138 18. At the time of publication, the editions indicated were valid. All standards are subject to revision, and
parties to agreements based on this part of ISO/IEC 138 18 are encouraged to investigate the possibility of applying the
most recent edition of the standards indicated below. Members of IEC and IS0 maintain registers of currently valid
International Standards.

l

l

l

l

l

l

l

l

l

l

l

l

l

American National Standards Institute X3.1351 (1992), Database Language. [also known as SQL 921
ISO/IEC 8824: 1990, Information technology - Open systems interconnection - Specification of Abstract Syntax
Notation One (ASN. I).
ISO/IEC 8825: 1990, Information technology - Open systems interconnection - Specification of basic encoding
rules for Abstract Syntax Notation One (ASN. I).
ISO/IEC 11172-l: 1993, Information technology - Coding of moving pictures and associated audio for digital
storage media at up to about I.5 Mbit/s - Part 1: Systems.
IS0 11578: 1996, Information technology - Open systems interconnection - Remote Procedure Call.
ISOAEC 138 18-l: 1996, Information technology - Generic coding of moving pictures and associated audio
information: Systems. [corresponds to ITU-T Rec. H.222.0 (1995)]
ITU-T Recommendation E. 164 (05/97), The international public telecommunication numbering plan..
ITU-T Recommendation Q.93 1 (03/93), ISDN user-network interface layer 3 specification for basic call control.
ITU-T Recommendation Q.293 1 (02/95,06/97 amendment), Digital Subscriber Signalling System No.2 - User-
network interface (UNI) layer 3 specification for basic call/connection control.
ITU-T Recommendation Q.2932.1 (7/96), Digital Subscriber Signalling System No.2 - Generic functional
protocol: Core functions.
ITU-T Recommendation 4.2957 (02/95), Stage 3 description for additional transfer supplementary services using
B-ISDN digital subscriber Signalling System No.2 (DSS 2) - Basic Call.
ITU-T Recommendation 4.297 1 (10/95), Broadband integrated services digital network (B-ISDN) - Digital
subscriber signalling system No.2 (DSS 2) User-network interface layer 3 specification for point-to-multipoint
call/connection control.
ITU-T Recommendation 2.100 (03/93, 10196 addendum), CCIm Specification abd description language (SD,!,).
ITU-T Recommendation Z. 120 (10/96), Message Sequence Chart (MST).
Internet Engineering Task Force RFC 1014, XDR: External Data Representation standard, 06/01/1987.
Internet Engineering Task Force RFC 1057, RPC: Remote Procedure Call Protocol speczfication version 2,
06/01/1988.
Object Management Group, Common Object Request Broker: Architecture and Specification, Version 2.1, August
1997. [also known as OMG CORBA/IIOP 2.1. Includes definition of the Common Data Representation, Remote
Procedure Call mechanism, and Interface Definition Language syntax and semantics]

0 ISOIIEC ISO/IEC 13818=6:1998(E)

2m DSM-CC Message Header
All MPEG-2 DSM-CC messages begin with the DSM-CC MessageHeader with the exception of DSM-CC User-to-User
interfaces which use the RPC mechanism. This header contains information about the type of message being passed as
well as any adaptation data which is needed by the transport mechanism including conditional access information
needed to decode the data. Table 2-l defines the format of a DSM-CC message header.

Table 2-l MPEG-2 DSM-CC Message Header Format

Syntax
rlsmccMessageHeader() {

protocolDiscriminator
dsmccType
messageId
transactionId
reserved
adaptationLength
messageLength
if(adaptationLength>O) (

dsmccAdaptationHeader()
1

t

Num. of Bytes

1
1
2
4
1
1
2

The protocolDiscriminator field is used to indicate that the message is a MPEG-2 DSM-CC message. The value of this
field shall be 0x11.

The dsmccType field is used to indicate the type of MPEG-2 DSM-CC message. Table 2-2 defines the possible
dsmccTypes.

Table 2-2 MPEG-2 DSM-CC dsmccType values

dsmccType
0x00
0x01

0x02

0x03

0x04

0x05

0x06-Ox7F
0x80-OxFF

Description
ISO/IEC 138 18-6 Reserved
Identifies the message as an ISO/IEC 138 18-6 IS
User-to-Network configuration message.
Identifies the message as an ISO/IEC 138 18-6 IS
User-to-Network session message.
Identifies the message as an ISO/IEC 138 18-6 IS
Download message.
Identifies the message as an ISO/IEC 138 18-6 IS
SDB Channel Change Protocol message.
Identifies the message as an ISO/IEC 138 18-6 IS
User-to- Network pass-thru message.
ISO/IEC 138 18-6 Reserved.
User Defined message type.

The messageId field indicates the type of message which is being passed. The values of the messageId are defined
within the scope of the dsmccType.

The transactionId field is used for session integrity and error processing and shall remain unique for a period of time
such that there will be little chance that command sequences collide. The transactionId is of local significance (i.e.,
Server-Network or Client-Network) only; the transactionId contained in the request-confirm command pair shall be
identical, and the transactionId contained in the related indication-response command pair shall be identical; however,
the transactionId contained in the request-confirm command pair may differ from the transactionId in the indication-

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

response command pair. Refer to the specific subclause relating to the messageType for usage. The download protocol
applies a different semantic to this field. Refer to clause 7 “U-N Download messages” for these semantics.

The transactionId is constructed of a 2 bit transactionId originator indication and a 30 bit transaction number. Figure 2-l
describes the format of the transactionId field:

t
Bits I

31 23 15 7 0

L----- Transaction Number
bits O-29

Transaction Id Originator
bits 30-3 1

Figure 2-l Format of transactionId field

The coding of the transactionId originator indication is described in Table 2-3:

Table 2-3 MPEG-2 DSM-CC transactionId originator

The reserved field is ISO/IEC 138 18-6 reserved. This field shall be set to OxFF.

The adaptationLength field indicates the total length in bytes of the adaptation header.

The messageLength field is used to indicate the total length in bytes of the message following this field. This length
includes any adaptation headers indicated in the adaptationLength and the message payload indicated by the messageId
field.

2.1 DSM-CC Adaptation Header Format
Adaptation headers are used to facilitate any network specific requirements. The general format of the DSM-CC
Adaptation Header is defined in Table 2-4. Adaptation header use is optional.

Table 2-4 General format of the DSM-CC Adaptation Header

Syntax
dsmccAdaptationHeader() {

adaptationType
for(i=O; i<(adaptationLength- 1); i++) {

adaptationDataByte
1

Num. of Bytes \

1

1

The adaptationType field is used to indicate the type of adaptation header. Table 2-5 defines the possible values of the
adaptationType field.

0 ISO/IEC ISO/IE,C 13818=6:1998(E)

Table 2-5 DSM-CC adaptationTypes

Adaptation Type Description
0x00 ISO/IEC 138 18-6 Reserved.
0x01 DSM-CC Conditional Access adaptation format.
0x02 DSM-CC User ID adaptation format.

0x02-Ox7F ISO/IEC 138 18-6 Reserved
- User Defined adaptation type. 0x80-OxFF

The adaptationLength is included in the dsmccMessageHeader (see Table 2- 1) and indicates the length of the adaptation
header including the adaptationType field. The content of the adaptation data depends on the adaptationType.

2.1 .l DSM-CC Conditional Access Adaptation Format
Table 2-6 indicates the format of the conditional access adaptation fields.

Table 2-6 DSM-CC Conditional Access Adaptation Format

Syntax
dsmccConditionalAccess() {

reserved
caSystemId
conditionalAccessLength
for(i=O;icconditionalAccessLength;i++) (

conditionalAccessDataByte

Num. of Bytes

1
2
2

1

The reserved field is included for alignment purposes and shall be set to OxFF

The caSystemId field specifies the type of conditional access system being used, as defined by the corresponding
CA - system - ID field in ISO/IEC 138 18-1, “MPEG2 Systems”.

The conditionalAccessLength and conditionaiAccessDataByte fields contain the data required for the particular type
of conditional access mechanism being used. The length and content of the conditional access data depends on the
conditionalAccessType.

2.1.2 DSM-CC User ID Adaptation Format
Table 2-7 indicates the format of the User ID adaptation fields.

Table 2-7 DSM-CC User ID Adaptation Format

dsmccUserId() {
reserved
userId

I

Syntax Num. of Bytes

1
20

The reserved field is included for alignment purposes and shall be set to OxFF.

The userId field identifies the address of the User which sends a request or response message, or which will receive an
indication or confirm message. This field contains either the clientId or serverId fields, which are defined in clause 4,
depending upon context.

9

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

3. User-to-Network Configuration Messages

3.1 Overview and the General Message Format
The User-to-Network Configuration messages provide User devices (Clients or Servers) with the configuration
parameters that are required for the device to operate on the Network. Implementation of the User-to-Network
Configuration messages is not required if a particular Network implementation uses some other means to provide these
parameters.

The User-to-Network Configuration messages shall be only used to transfer configuration parameters to a User device.
If large amounts of data are to be transferred to a User device, the U-N Download protocol described in clause 7 may be
used for this purpose. The User-to-Network Configuration parameters may be used to pass the information needed to
perform the download function.

The User-to-Network Configuration messages use the DSM-CC Message Format defined in clause 2. The dsmccType in
the message header shall be set to 0x01 for User-to-Network Configuration messages. Table 3-l defines the User-to-
Network Configuration Message format. This format is called the unConfigurationMessage().

Table 3-1 General Format of DSM-CC User-to-Network Configuration Message

Syntax
unConfigurationMessage () {

dsmccMessageHeader()
MessagePayload

,)

The dsmccMessageHeader is defined in clause 2 “DSM-CC Message Header”.

The MessagePayload is constructed from data fields and differs in structure depending on the function of the particular
message as defined by the messageId. subclause 3.3 defines the DSM-CC User-to-Network Configuration Messages.

3.2 User-to-Network configuration parameters
There are three sections of configuration parameters which are contained in the User-to-Network Configuration
messages:

0 DSM-CC specific configuration parameters

0 Network specific configuration parameters

0 User defined configuration parameters

3.2.1 DSM-CC specific configuration parameters
The DSM-CC specific configuration messages are used to define parameters which are used by the User-to-Network
Messages. Table 3-2 defines the format of the dsmccConfigurationParameters section of the User-to-Network
Configuration messages.

10

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Table 3-2 Format of dsmccCo&gurationParameters section

Syntax
dsmccConfigurationParameters() (

messageTimer
sessionInProgressTimer
messageRetryCount
sessionIdAssignor
resourceIdAssignor
maximumForwardCount

Num. of Bytes

4
4
1
1
1
1

The messageTimer field contains the value that should be used by the User’s state machine in the messageTimer
parameter. This value is represented in milliseconds. This value is used in the User-to-Network Session messages to set
the tMsg timer.

The sessionInProgressTimer field contains the value that should be used by the User’s state machine in the
sessionInProgressTimer parameter. This value is represented in milliseconds. This value is used in the User-to-Network
Session messages to set the tSIP timer. If this value is set to 0, this is an indication that Session In Progress messages are
not used.

The messageRetryCount field contains the value that should be used by the User’s state machine in the
messageRetryCount parameter.

The sessionIdAssignor field indicates whether the sessionId is assigned by the User requesting the session or by the
Network. A value of 0 indicates that the Network will assign the sessionld. A value of 1 indicates that the User shall
assign the sessionId.

The resourceIdAssignor field indicates whether the resourceId is assigned by the User requesting the resource or by the
Network. A value of 0 indicates that the Network will assign the resourceId. A value of 1 indicates that the User shall
assign the resourceId.

The maximumForwardCount field indicates the maximum number of times that a session request may be forwarded
before it is rejected. If this count is set to 0, this is an indication that session requests shall not be forwarded.

3.2.2 Network specific configuration parameters
Table 3-3 defines the format of the networkConfigurationParameters section of the User-to-Network Configuration
messages. This table includes specified network-related parameters, such as the OS1 NSAP addresses, that are used by
the DSM-CC Session messages. Other parameters which are specific to the particular network implementation may also
be included in this section. These other parameters are outside of the scope of this part of ISO/IEC 138 18.

Table 3-3 Format of networkConfigurationParameters section

Syntax
networkConfigurationParameters() {

userId
primaryServerId
networkParameterLength
for(i=O;icnetworkParameterLength;i++) (

networkParameterDataByte
1

Num. of Bytes

20
20
2

1

The userId field contains the OS1 NSAP that will be used to uniquely identify the User on the Network. In the case of a
Client, the userId becomes the Client’s clientId used in clause 4 “User-to-Network Session Messages”. Similarly, the
userId becomes the Server’s serverId when assigned to a Server by the U-N Configuration protocol.

11

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

The primaryServerId field contains the OS1 NSAP that will be used to uniquely identify the address of the primary
server on the Network. In the case of the Client device, this may be the address of the Server which supplies the initial
download, applications, etc. to the User.

The networkParameterLength field defines the total number of networkParameterDataBytes.

The networkParameterDataByte field defines the configuration parameters specific to the network implementation.
The content of this ,field is outside of the scope of this part of ISOAEC 138 18.

3.2.3 User defined configuration parameters
Table 3-4 defines the format of the UserDefinedConfigurationParameters section of the User-to-Network Configuration
messages. The use of these configuration parameters are outside of the scope of this part of ISO/IEC 138 18.

Table 3-4 Format of userDefinedConfigurationParameters section

Syntax
userDefinedConfigurationParameters() (

UserDefinedParameterLength
for(i=O;i<userDefinedParameterLength;i++) (

UserDefinedParameterDataByte

Num. of Bytes

2

1

The UserDefinedParameterLength field defines the total number of UserDefinedParameterDataBytes.

The UserDefinedParameterDataByte field contains configuration information which is outside of the scope of this
specification.

3.3 User to Network Configuration Messages
Table 3-5 lists the messages which have been defined for the User-to-Network Configuration Messages.

Table 3-5 DSM-CC U-N Configuration messageId’s

messageId Message Name

0x0000 Reserved

0x000 1 UNConfigRequest

0x0002 UNConfigConfirm

0x0003 UNConfigIndication

Description

ISO/IEC 138 18-6 Reserved.

Sent from a User to the Network to request
configuration from the network.

Sent from the Network to the User in response to
the UNConfigRequest.

Sent from the Network to the User to configure a
User device.

0x0004

0x0005 -
ox7FFFF

UNConfigResponse

Reserved

Sent from a User to the Network in response to a
UNConfigIndication message.

ISO/IEC 138 18-6 Reserved.

0x8000 -
OXFFFF

User Defined User Defined U-N Configuration message.

12

0 ISO/IEC ISO/IEC 13818=6:1998(E)

3.3.1 UNConfigRequest message definition
This message is sent from a User to the Network to request that the Network return the configuration parameters for that
User. Table 3-6 defines the syntax of the UNConfigRequest message.

Table 3-6 DSM-CC UNConfigRequest message

Syntax
UNConfigRequest() {

dsmccMessageHeader()
deviceId
reserved
compatibilityDescriptor()

Num. of Bytes

6
2

The deviceId field is defined in Table 3- 11. It is a globally unique number which defines a User. The Network uses this
field to configure the User device.

The compatibilityDescriptor structure is defined in clause 6. This structure contains the current configuration
parameters for the User device.

3.3.2 UNConfigConfirm message definition
This message is sent from the Network to the User in response to a UNConfigRequest message. Table 3-7 defines the
syntax of the UNConfigConfirm message.

Table 3-7 DSM-CC UNConfigConfirm message

Syntax
UNConfigConfirm() (

dsmccMessageHeader()
deviceId
response
dsmccConfigurationParameters()
networkConfigurationParameters()
userDefinedConfigurationParameters()

\

Num. of Bytes

6
2

The deviceId field is defined in Table 3- 11. It is a globally unique number which defines a User. The value of the
deviceId in the UNConfigConfirm message is set by the Network to the value received from the User in the
UNConfigRequest message.

The response field shall be set by the Network to indicate the status of the configuration request. Values for this field
are defined in Table 3-12. If the value returned in this field is a value other than rspOk, then all data following the
response field shall not be processed by the User.

The dsmccConfigurationParameters contain parameters which are specific to DSM-CC User-to-Network. These
parameters are defined in subclause 3.2.1.

The networkConfigurationParameters contain parameters which are specific to a particular network implementation
as well as some parameters which are common to all DSM-CC User-to-Network implementations. These parameters are
defined in subclause 3.2.2

The userDefinedConfigurationParameters contains parameters which are outside of the scope of this specification.
The format of this section is defined in subclause 3.23

13

ISOKIEC 13818-6:1998(E) 0 ISOfIEC

3.3.3 UNConfiglndication message definition
This message is sent from the Network to a User device to configure the device. Table 3-8 defines the syntax of the
UNConfigIndication message.

Table 3-8 DSM-CC UNConfigIndication message

Syntax
UNConfigIndication() (

dsmccMessageHeader()
deviceId
reason
compatibilityDescriptor()
dsmccConfigurationParameters()
networkConfigurationParameters()
userDefinedConfigurationParameters()

Num. of Bytes

6
2

The deviceId field is defined in Table 3-10. It is a globally unique number which defines a User. The Network uses this
field to configure the User device.

The reason field shall be set by the Network to indicate the reason that the configuration indication is being sent. Codes
for this field are defined in Table 3- 11. Reason code values are also provided to allow the Network to inform the User
that a UNConfigResponse message is not to be sent in cases where the Network does not want the User to reply (e.g., a
one-way broadcast scenario).

The compatibilityDescriptor structure is defined in clause 6. This structure indicates the devices to which the
UNConfigIndication message applies.

The dsmccConfigurationParameters contain parameters which are specific to DSM-CC User-to-Network protocols.
These parameters are defined in subclause 3.2.1.

The networkConfigurationParameters contain parameters which are specific to a particular network implementation
as well as some parameters which are common to all DSM-CC User-to-Network implementations. These parameters are
defined in subclause 3.2.2.

The userDefinedConfigurationParameters contains configuration parameters which are outside of the scope of this
specification. The format of this section is defined in subclause 3.2.3.

3.3.4 UNConfigResponse message definition
This message is sent from the User to the Network in response to a UNConfigIndication message. Table 3-9 defines the
syntax of the UNConfigResponse message.

Table 3-9 DSM-CC UNConfigResponse message

Syntax I Num. of Bytes I
UNConfigResponse() (

dsmccMessageHeader()
userId 20
response 2
reserved 2
compatibilityDescriptor()

The userId field contains the OS1 NSAP that was assigned to the User by the UNConfigIndication message. When the
UNConfigResponse message is received from a Client, the userId field contains the same value as the clientId.
Similarly, when received from a Server, the userId field is the same value as the serverId.

14

0 ISO/IEC ISO/IEC 13818-6:1998(E)

The response field shall be set to indicate the User’s response to the UNConfigIndication message. Codes for this field
are defined in Table 3-12.

The compatibilityDescriptor structure is defined in clause 6. This structure contains the current configuration
parameters for the User device.

3.4 User-to-Network Configuration Message Field Data Types
Table 3- 10 defines the data fields used in the User-to-Network Configuration Messages.

Table 3-10 User-to-Network Configuration Message Field Data Types

Field Name Length (Bytes)

deviceId 6

Range

0x0000000000 -
ox-

Description

This field is used to identify a network
device. This value shall be unique on the
Network.

Reason 2 0x0000 - OXFFFF This field indicates the reason that a
configuration message is being sent. Table
3- 11 defines the possible values for this
field.

Response 2 0x0000 - OXFFFF This field indicates the response to a
Configuration message. Table 3- 12
defines the possible values for this field.

UserId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a User. This address must
be a specific address or be able to be
resolved to a specific address by the
Network.

3.5 User Initiated UNConfigRequest message Sequence
The User device must know its address and the address of the Network in order to operate on the Network. To obtain
these addresses and other configuration parameters, a User device sends a UNConfigRequest message to the Network.
The User must send this message over the network using a pre-defined mechanism provided by the Network. This
mechanism exists at a lower protocol layer and is outside the scope of DSM-CC.

When the Network device that processes U-N Configuration messages receives a configuration request from a User
device, it determines the appropriate configuration parameters for that device and sends those parameters to the User
device in the UNConfigConfirm message with the response field set to indicate that the configuration request was
accepted. If the Network cannot configure the User device or denies the UNConfigRequest, it shall set the response field
in the message to indicate that the configuration request failed.

Figure 3-l illustrates the sequence of events that occur for a User device to request its address and configuration
information from the Network using the User-to-Network Configuration protocol. The Network optionally uses the
external directory service to obtain address, configuration and authentication information about the User device.

15

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

User

1 UNConfigRequest

Network

3-
UNConfigConfirm

2

Figure 3-1 Sequence of events for User initiated UNConfigRequest

3.6 Network Initiated UNConfiglndication message Sequence
To configure a User device, the Network sends a UNConfigIndication message to that User. Since the User-to-Network
Configuration sequence may be used to configure a device which does not yet know its network address, the network
shall send the indication over the network using a pre-defined mechanism provided by the Network. This mechanism
exists at a lower protocol layer and is outside the scope of DSM-CC. The Network may also send the indication to a
specific User address to re-configure the User device if the device has been previously configured. The reason field in
the indication shall be set to indicate the reason that the device is being configured.

When the User device receives a configuration indication from a Network, it updates the appropriate configuration
parameters and sends a the UNConfigResponse message with the response field set to indicate that the configuration
request was accepted. If the User does not accept the configuration indication, it shall set the response field in the
message to indicate that the configuration indication was rejected.

Figure 3-2 illustrates the sequence of events that occur for a Network initiated configuration of a User device.

User
UNConfigIndication

Network

1 1

2
UNConfigResponse

)3

Figure 3-2 Sequence of events for Network initiated UNConfigIndication

3.7 Broadcasting of UNConfiglndication messages
In a situation where the User device is accessed using a broadcast mechanism, the User-to-Network configuration
messages may be sent to the User device over the broadcast link in which many other Users are also listening. To
configure such a User device, the Network sends a UNConfigIndication message to the User using a pre-defined
broadcast mechanism provided by the Network. In this case, it is possible that there is no return path from the User to
the Network, in which case the UNConfigIndication message cannot be confirmed. In this case, the Network may choose
to send the UNConfigIndication message periodically to ensure that devices receive the configuration information. The
reason code in the UNConfigIndication message can also be set by the Network to indicate that a UNConfigResponse
message is not to be sent by the User.

When the User device receives a configuration indication from a Network that matches its deviceId, it updates the
appropriate configuration parameters.

Figure 3-3 illustrates the sequence of events that occur when configuration is broadcast

16

0 ISO/IEC ISO/IEC 13818=6:1998(E)

User Network
UNConfigIndication

24 1

May be received by an individual or group of User devices.
This message may be sent periodically.

Figure 3-3 Sequence of events for Network initiated broadcast UNConfigIndication

3.8 Mixed User/Network Initiated Configuration Sequences
In some network implementations, it is possible for the User to initiate a UNConfigRequest message at the same time the
Network initiates a UNConfigIndication message. For example, this could occur if a Client is attempting to recover from
a power failure at the same time the Network is attempting to update a configuration parameter of the Client. In such
cases, the actions taken by the User and Network are as follows:

User: When the User receives a UNConfigIndication message from the Network while it has an outstanding
UNConfigRequest, the User shall process the UNConfigIndication message normally and reply to the Network with a
UNConfigResponse message if a reply has been requested by the Network. When the User subsequently receives the
UNConfigConfirm message from the Network in response to its original UNConfigRequest message, the User shall
process the UNConfigConfirm message normally and again configure itself according to the parameters received from
the Network.

Network: When the Network receives a UNConfigRequest message from the User while it has an outstanding
UNConfigIndication request, the Network shall process the UNConfigRequest message normally and send a
UNConfigConfirm message to the User containing the requested configuration parameters. When the Network
subsequently receives a UNConfigResponse message from the User in response to its original UNConfigIndication
request, the Network shall process the received message normally and note that the User has been configured
successfully.

3.9 User-to-Network Configuration Reason Codes
Table 3-l 1 defines the reason codes that are defined for use by the U-N Configuration messages:

Table 3-11 User-to-Network Configuration reason codes

Response Value
rsnNorma1 0x0000

RsnNoReply 0x000 1

Reserved 0x0002 - ox7FFF
User defined 0x8000 - OXFFFF

Description
Indicates that this is a normal U-N Config Indication
message and that the User shall send a reply.
Indicates that the U-N Configuration Indication
message is being sent unsolicited to a User or group of
User and no reply is required from the Users.
ISO/IEC 138 18-6 reserved.
These response codes are defined by the User and are
outside of the scope of this specification.

3.10 User-to-Network Configuration Response Codes
Table 3- 12 defines the response codes that are defined for use by the U-N Config messages:

Table 3-12 User-to-Network Configuration message response codes
\

Response Value Description
rspOK 0x0000 Indicates that the message was processed successfully.
RspNotAvailable 0x000 1 Indicates that the U-N configuration server in the

Network is not available at this time.
RspInvalid 0x0002 Indicates that the configuration request was rejected by

17

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

RspRejected 0x0003

Reserved 0x0004 - ox7FFF
User defined 0x8000 - OxFFFF

the U-N configuration server in the Network.
Indicates that the User rejected the UNConfigIndication
message.
ISODEC 138 18-6 reserved.
These response codes are defined by the User and are
outside of the scone of this snecification.

18

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4. User-to-Network Session Messages

4.1 Overview and the General Message Format
The User-to-Network (U-N) session messages are used for setting up, tearing down, and performing other operations
which are session related. These messages are assumed to be part of a larger protocol stack and are designed to be
carried on a lower layer transport protocol (e.g., UDP/IP, TCP/IP, AALS, or Serial). Constraints on specific lower level
protocols are given in clause 9 of this part of ISO/IEC 138 18.

All U-N session messages are sent between a User (either a Client or a Server) and the Network. This clause describes
which messages are available, the format of these messages, scenarios describing how these messages are used, and the
use of Resource Descriptors which define the Network resources allocated to a session.

The syntax of these messages is extensible beyond those defined in this part of ISO/IEC 138 18. Additional messages,
resource descriptors used within those messages, and resource data elements which make up those resource descriptors
may all be defined for a specific implementation which is not covered by this part of ISO/IEC 138 18. If any of the
messages, scenarios, or resource descriptors defined in this part of ISO/IEC 138 18 are used, then these shall be
implemented exactly as defined in this part of ISO/IEC 138 18.

All messages between the Network and Users have a common message format. Table 4-l defines the User-to-Network
Session Message format. This format is called the userNetworkSessionMessage().

Table 4-l General Format of DSM-CC User-Network Session Message

Syntax
UserNetworkSessionMessage () (

dsmccMessageHeader()
MessagePayload

1

The dsmccMessageHeader is defined in clause 2 of this part of ISO/IEC 138 18.

The MessagePayload is constructed from resource descriptors and data fields and differs in structure depending on the
function of the particular message. Subclause 4.2 defines the DSM-CC User-to-Network Session Messages.

4.2 Session Messages
This subclause defines the User-to-Network Session Messages. Each message is identified by a specific messageId
which is encoded to indicate the class and direction of the message. The messageId is carried in the
dsmccMessageHeader which is defined in clause 2. Figure 4-l defines the encoding of the messageId fields used in
User-to-Network session messages. Bit 0 is the least significant bit and bit 15 is the most significant bit.

151413121110 151413121110 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 Bit Bit

lmcssagi lmcssugej \ message / \ message / \ message i \ message i
Discriminator Discriminator Scenario Scenario TYPe Type

Figure 4-1 Format of DSM-CC session messageId

The messageDiscriminator bits are used to indicate if the message flow is between the Network and the Client or
between the Network and the Server. Table 4-2 defines the possible values for the messageDiscriminator bits.

19

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-2 messageDiscriminator bit values

messageDiscriminator 1 Message Flow

00 ISOIIEC 138 18-6 Reserved.

01 Client and Network

10 Server and Network

11 ISO/IEC 138 18 l-6 Reserved.

The messagescenario bits are used to indicate the message sequence that the message is in. Table 4-3 defines the
possible values for the messagescenario bits.

Table 4-3 messagescenario bit values
\

messagescenario Description

0000000000 ISO/IEC 138 18-6 Reserved.

0000000001 Session Set-Up

0000000010 Session Release

0000000011 Add Resource

0000000100 Delete Resource

0000000101 Continuous Feed Session Set-Up

0000000110 Status

0000000111 Reset

0000001000 Session Proceeding

0000001001 Session Connect

0000001010 Session Transfer

0000001011 Session In Progress

0000001100- ISO/IEC 138 18-6 Reserved.
0111111111

1000000000- User Defined Message Scenario
1111111111

Most of the control messages in this part of ISO/IEC 138 18 use a confirmation mechanism. When a Network, Client or
Server issues a request or indication message, the receiver of that message issues a definite response to that message.
There are some cases of U-N session messages which do not use this mechanism. Specifically, these cases include:

0 Session Proceeding Messages
0 Session Connect Messages
0 Session In Progress Messages

Request messages are generated when the Server or Client initiates a message. The Network responds to a Request
message with a Confirm message. Messages which are sent to the Server or Client from the Network are Indication
messages. The. Client and Server respond to an Indication message with a Response message.

20

0 ISO/IEC ISO/IEC 13818-6:1998(E)

Request and Indication messages may contain a reason code which indicates the reason for the message. These reason
codes are defined in Table 4-59. Response and Confirm messages may contain a response code which indicates the
response to a Request or Indication message. These response codes are defined in Table 4-60.

The messageType bits are used to indicate the directionality of the message. Table 4-4 defines the possible values for
the messagescenario bits.

\
messageType

0000

Table 4-4 messageType bit values

Description

Request Message. This indicates that the message is
being sent from the User to the Network to begin a
scenario.

0001

0010

0011

0100-1111

Confirm Message. This indicates that the message is
being sent from the Network to the User in response to
a Request message.

Indication Message. This indicates that the message is
being sent from the Network to the User.

Response Message. This indicates that the message is
being sent from the User to the Network in response to
an Indication Message.

ISOIIEC 138 18-6 Reserved.

Table 4-5 defines the messageId’s which are used in the DSM-CC User-to-Network Session Messages.

Table 4-5 MPEG-2 DSM-CC U-N Messages

Client Command Client Server Server Command
messageId messageId

ISO/IEC 138 18-6 reserved 0x0000 - 0x8000 - ISO/IEC 13 8 18-6 reserved
Ox400f Ox800f

ClientSessionSetUpRequest 0x4010 0x8010 ISO/IEC 13 8 18-6 reserved

ClientSessionSetUpConfirm 0x4011 0x8011 ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved 0x4012 0x8012 ServerSessionSetUpIndication

ISOIIEC 138 18-6 reserved 0x40 13 0x8013 ServerSessionSetUpResponse

ISOIIEC 13 8 18-6 reserved 0x4014 - 0x8014 - ISO/IEC 138 18-6 reserved
Ox401f Ox801f

ClientSessionReleaseRequest 0x4020 0x8020 ServerSessionReleaseRequest

ClientSessionReleaseConfirm 0x402 1 0x802 1 ServerSessionReleaseConfirm

ClientSessionReleaseIndication 0x4022 0x8022 ServerSessionReleaseIndication

ClientSessionReleaseResponse 0x4023 0x8023 ServerSessionReleaseResponse

ISO/IEC 138 18-6 reserved 0x4024 - 0x8024 - ISO/IEC 138 18-6 reserved
Ox402f Ox802f

21

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Client Command Client
messageId

Server
messageId

Server Command

ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved

ClientAddResourceIndication

ClientAddResourceResponse

ISO/IEC 13 8 18-6 reserved

ISO/IEC 13 8 18-6 reserved

ISO/IEC 138 18-6 reserved

ClientDeleteResourceIndication

ClientDeleteResourceResponse

ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved

I 0x4030 I 0x8030 I
ServerAddResourceRequest

0x403 1 0x803 1 ServerAddResourceConfirm

0x4032 0x8032 ISO/IEC 138 18-6 reserved

0x4033

0x4034 -
Ox403f

0x4040

0x8033

0x8034 -
Ox803f

0x8040

0x404 1 0x804 1

0x4042 0x8042

0x4043 0x8043

0x4044 - 0x8044 -
Ox404f Ox804f

0x4050 0x8050

0x405 1 0x805 1

0x4052 - 0x8052 -

ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved

ServerDeleteResourceRequest

ServerDeleteResourceConfirm

ISO/IEC 13 8 18-6 reserved

ISO/IEC 138 18-6 reserved

ISOIIEC 138 18-6 reserved

ServerContinuousFeedSession
Request

ServerContinuousFeedSession
Confirm

ISO/IEC 138 18-6 reserved

ClientStatusRequest

ClientStatusConfirm

ClientStatusIndication

ClientStatusResponse

[SO/IEC 138 18-6 reserved

Ox405f

0x4060

Ox805f

0x8060

0x406 1 0x806 1

0x4062

0x4063

0x4064 -
Ox406f

0x8062

0x8063

0x8064 -
Ox806f

ServerStatusRequest

ServerStatusConfirm

ServerStatusIndication

ServerStatusResponse

ISO/IEC 138 18-6 reserved

ClientResetRequest

ClientResetConfirm

ClientResetIndication

ClientResetResponse

[SO/IEC 138 18-6 reserved

0x4070 0x8070 ServerResetRequest

0x407 1 0x807 1 ServerResetConfirm

0x4072

0x4073

0x4074 -
Ox407f

0x8072

0x8073

0x8074 -
Ox807f

ServerResetIndication

ServerResetResponse

ISO/IEC 138 18-6 reserved

[SO/IEC 138 18-6 reserved

XientSessionProceedingIndication

[SO/IEC 138 18-6 reserved

0x4080 -
0x408 1

0x4082

0x4083 -
Ox408f

0x8080
0x808 1

0x8082

0x8083 -
Ox808f

ISO/IEC 138 18-6 reserved

ServerSessionProceedingIndication

ISO/IEC 13 8 18-6 reserved

22

0 ISO/IEC ISO/IEC 13818=6:1998(E)

I
Client Command Client Server Server Command

messageId messageId
I

ClientConnectRequest 0x4090 0x8090 ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved 0x409 1 0x809 1 ISO/IEC 138 18-6 reserved

ISO/IEC 138 18-6 reserved 0x4092 0x8092 ServerConnectIndication

ISO/IEC 138 18-6 reserved 0x4093 - 0x8093 - ISO/IEC 138 18-6 reserved
1 Ox409f 1 Ox809f I

I
ISOIIEC 138 18-6 reserved Ox40aO Ox80aO ServerSessionTransferRequest

ISOLEC 138 18-6 reserved Ox40a 1 Ox80a 1 ServerSessionTransferConfirm

ClientSessionTransferIndication Ox40a2 Ox80a2 ServerSessionTransferIndication

ClientSessionTransferResponse Ox40a3 Ox80a3 ServerSessionTransferResponse

ISOIIEC 13 8 18-6 reserved Ox40a4 - Ox80a4 - ISO/IEC 13 8 18-6 reserved
1 Ox40af 1 Ox80af I I

ClientSessionInProgressRequest Ox40bO Ox80bO ServerSessionInProgressRequest

ISOIIEC 138 18-6 reserved Ox40bl - Ox80bl - ISO/IEC 138 18-6 reserved
Ox40bf Ox80bf

I
ISOIIEC 13 8 18-6 reserved ox4oco - 0x80~0 - ISO/IEC 138 18-6 reserved

0x5 fff Ox9fff
I

User definable messageId’s. Private 0x6000 - OxaOOO - User definable messageId’s. Private -
use, outside of the scope of this part

1 ox7fff 1
Oxffff use, outside of the scope of this part

of ISO/IEC 13818. 1 ofISO/IEC 13818. -
I

4.2.1 U-N Functional groups
In this subclause, the U-N session messages are divided into functional groups. A functional group is a grouping which
allows a specific implementation not to implement every group. However, if a specific implementation implements
operations of a group type, then the embodiment shall implement the complete syntax and semantics of the
corresponding functional group.

4.2.1.1 U-N Core Group
The following U-N session messages belong to the core group of messages required for basic U-N operation:

Session Set-Up Group:
0 ClientSessionSetUpRequestKonfirm
0 ServerSessionSetUpIndicationLResponse

Session Release Group:
0 ClientSessionReleaseRequest/Confirm/Indication/Response
0 ServerSessionReleaseRequest/Confirm/Indicatio~esponse

Add Resource Group:
0 ClientAddResourceIndicationResponse
0 ServerAddResourceRequestiConfirm

23

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

Delete Resource Group:
0 ClientDeleteResourceIndication/Response
0 ServerDeleteResourceRequestKonfirm

Continuous Feed Session Set-Up Group:
a ServerContinuousFeedSessionRequestiConfirm

Status Group:
0 ClientStatusRequest/Confirm/Indication/Response
0 ServerStatusRequestKonfirm/Indication/Response

Reset Group:
0 ClientResetRequestKonfirm/Indication/Response
0 ServerResetRequestKonfirmLndicationLResponse

The following message groups are optional within the core group. A particular implementation of DSM-CC may choose
whether or not to implement these groups. The requirement to implement these functions is determined by using U-N
Configuration messages or through a private agreement between the Network and the Users.

Session Proceeding Group:
0 ClientSessionProceedingIndication
0 ServerSessionProceedingIndication

The above messages may be optionally sent by the Network; however, if sent, the User shall be
required to receive and process these messages.

Session Connect Group:
0 ClientConnectRequest
0 ServerConnectIndication

The ConnectRequest message may be optionally sent by a Client; however, if sent, the Network
shall be required to receive and process this message, then send a ConnectIndication message to
the Server. The Server shall be required to receive and process a ConnectionIndication message.

4.2.1.2 Extended Functional groups
The following functions are considered to be normative but optional. If a specific implementation implements these
functions, then they shall be implemented as defined in this part of ISO/IEC 138 18. The requirement to implement these
functions is determined by using U- N Configuration messages or through a private agreement between the Network and
the Users.

Session Transfer Group:
l ClientSessionTransferIndication/Response
0 ServerSessionTransferRequest/Confirm/Indication/Response

Session In Progress Group:
0 ClientSessionInProgressRequest
0 ServerSessionInProgressRequest

4.2.2 Use of UserData structure in session messages
U-N Session messages sent from a User to the SRM which result in a corresponding message to be sent from the SRM
to another User may contain a UserData field. DSM-CC User-to-Network does not make use of this data, but if it is
present, the Network passes it on transparently to the Server or Client as the case may be. DSM-CC User-to-User clause
does define data which is transported in the uuData portion of these fields. The UserData also contains a section for
including privateData, the content of which is outside of the scope of this part of ISO/IEC 138 18. Table 4-6 defines the
format of the UserData structure which is transported in U-N session messages.

24

0 ISO/IEC ISO/IEC 13818-6:1998(E)

Table 4-6 DSM-CC U-N UserData format

Syntax
UserData {

uuDataLength
for(i=O; i<uuDataLength; i++) (

uuDataByte
1
privateDataLength
for(i=O; icprivateDataLength; i++) {

privateDataByte
I

Num. of Bytes

2

1

2

1

The uuDataLength field shall indicate the total number of uuDataBytes.

The uuDataBytes contain the uuData which is defined by the DSM-CC User-to-User clause of this part of ISO/IEC
138 18. The total number of uuDataBytes shall be padded to a multiple of four bytes.

The privateDataLength field shall indicate the total number of privateDataBytes.

The privateDataBytes contain privateData. The format and usage of this data is outside of the scope of this part of
ISO/IEC 138 18. The total number of privateDataBytes shall be padded to a multiple of four bytes.

4.2.3 Use of Resources() structure in session messages
A Session consists of a relationship between the Network and one or more Users. At least one of the Users is acting in
the role of a Server. Network resources are allocated to a session either by the Server or by requesting the allocation
from the Network. In either case, the Network shall be aware of resources which are allocated to a session. Messages
which are used to request resources from the Network or to inform the Network of resources which have been allocated
by the Server contain a Resources() data structure. This structure contains a count and a list of resource descriptors
which are defined in subclause 4.7. Table 4-7 defines the format of the Resources() data structure:

Table 4-7 DSM-CC U-N Resources format

Syntax
Resources() {

resourceDescriptorCount
for(i=O;icresourceDescriptorCount;i++) (

ResourceDescriptor()
1

Num. of Bytes

2

The resourceDescriptorCount field shall be set to indicate the total number of ResourceDescriptor() structures which
are included in the list.

The ResourceDescriptor() structure shall define the type, status, and values of a resource which is being requested or
which has been assigned to a session. Refer to subclause 4.7 for resource descriptor definitions.

4.2.4 Session Set-Up group message definitions

4.2.4.1 CIientSessionSetUpRequest
This message is sent from a Client to the Network to request that a session be established with the requested serverId.
The Network responds with a ClientSessionSetUpConfirm message. Before sending the ClientSessionSetUpConfirm
message, the Network shall send 0 or more ClientSessionRroceedingIndication messages. Table 4-8 defines the syntax
of the ClientSessionSetUpRequest message.

25

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 4-S DSM-CC U-N ClientSessionSetUpRequest message

Syntax
ClientSessionSetUpRequest() (

dsmccMessageHeader()
sessionId
reserved
clientId
serverId
UserData

Num. of Bytes

10
2

20
20

The sessionId is used to identify a session throughout its life cycle. If the Network configuration indicates that the User
which is the originator of the command sequence is responsible for generating the sessionId, this field shall be generated
by the Client. If the Network configuration indicates that the Network is responsible for generating the sessionId, this
field shall be set to all O’s and the Network shall assign the sessionId in the ClientSessionSetUpConfirm message. Both
the Network and the Client shall use the identical sessionId in all messages which refer to this session.

The clientId field shall be set by the Client and shall contain a value which uniquely identifies the Client within the
domain of the Network.

The serverId field shall be set by the Client and shall contain a value which uniquely identifies the Server with which
the Client is attempting to establish a session.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.4.2 CIientSessionSetUpConfirm
This message is sent from the Network to a Client in response to a ClientSessionSetUpRequest message. Table 4-9
defines the syntax of the ClientSessionSetUpConfirm message.

Table 4-9 DSM-CC U-N ClientSessionSetUpConfirm message

Syntax
ClientSessionSetUpConfirm() (

dsmccMessageHeader()
sessionId
response
serverId
Resources()
UserData

Num. of Bytes

10
2

20

The sessionId is used to identify a session throughout its life cycle. If the Network configuration indicates that the User
is responsible for assigning the sessionId, the Network shall set this field to the exact value of the sessionId which was
received in the ClientSessionSetUpRequest message. If the Network configuration indicates that the Network is
responsible for assigning the sessionId, this field shall be set to a unique value which identifies the session in the
Network if the response field indicates that the session set-up request succeeded.

The response field shall be set by the Network to indicate the status of the session request. If this field is set to rspOK,
this is an indication to the Client that the requested service has been established.

The serverId field shall be set by the Network to the value of the serverId field which was received in the
ServerSessionSetUpResponse.

26

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The Resources() structure defines the downstream and upstream resources which are assigned to the Client for this
session. The ResourceDescriptor fields shall be assigned by the Network. The number and type of resource descriptors
that are passed depend on the User application and the type of service being requested. For all Client resources the
requestType shall be non-negotiable. Refer to subclause 4.2.3 for more information on Resources.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.4.3 ServerSessionSetUplndication
This message is sent from the Network to a Server to establish a session which was requested by a Client. Table 4-10
defines the syntax of the ServerSessionSetUpIndication message.

Table 4-10 DSM-CC U-N ServerSessionSetUpIndication message
w

Syntax Num. of Bytes I
ServerSessionSetUpIndication() (

dsmccMessageHeader()
sessionId la 1
reserved I 2
clientId 20
serverId 20
forwardcount 2
for(i=O;icforwardCount;i++) (

forwardServerId 20
1
UserData

If the Network configuration indicates that the User is responsible for assigning the sessionId, the Network shall set the
sessionId field to the exact value of the sessionId which was received in the ClientSessionSetUpRequest message. If the
Network configuration indicates that the Network is responsible for assigning the sessionId, the sessionId field shall be
set to a unique value which identifies the session in the Network. The Server shall use this sessionId to identify this
session in future messages.

The clientId field shall be set by the Network to the value of the clientId field which was received in the
ClientSessionSetUpRequest message when the session was initially requested. The Server shall use this field to identify
the client which has requested the session.

The serverId field shall be set by the Network to the value of the serverId field which was received in the
ClientSessionSetUpRequest message when the session was initially requested.

The forwardcount field is used to indicate the number of session forwards that have occurred.

The forwardServerId is a list of serverIds of servers that have forwarded this session. There shall be exactly
forwardcount number of forwardServerIds in the list.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.4.4 ServerSessionSetUpResponse
This message is sent from a Server to the Network in response to a ServerSessionSetUpIndication message. Table 4-l 1
defines the syntax of the ServerSessionSetUpResponse message.

27

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

Table 4-l 1 DSM-CC U-N ServerSessionSetUpResponse message

Syntax
ServerSessionSetUpResponse() (

dsmccMessageHeader()
sessionId
response
serverId
nextServerId
Resources()
UserData

I

Num. of Bytes

10
2

20
20

The sessionId field shall be set to the value of the sessionId field received in the ServerSessionSetUpIndication
message.

The response field shall be set by the Server to a value which indicates the Server’s response to the
ServerSessionSetUpIndication message.

The serverId field shall be set by the Server to the value of the serverId field which was received in the
ServerSessionSetUpIndication message.

The nextServerId specifies the serverId of the Server to which this session is to be forwarded if the response field
indicates that the request is to be forwarded to another Server. If the response field does not indicate that this message is
to be forwarded, this field shall be set to 0.

The Resources() structure shall indicate all resources which are assigned to this session. This does not include any
resources which were previously negotiated with the Network. It includes only resources which were allocated to the
session by the Server.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 13818
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This data is supplied by the Server.

4.2.5 Session Release group message definitions

4.2.5.1 ClientSessionReleaseRequest
This message is sent from a Client to the Network to request that a session be torn-down. The Network responds with a
ClientSessionReleaseConfirm message. Before sending the ClientSessionReleaseConfirm message, the Network shall
also release the session between the Network and the Server. Table 4-12 defines the syntax of the
ClientSessionReleaseRequest message.

Table 4-12 DSM-CC U-N ClientSessionReleaseRequest message

Syntax
ClientSessionReleaseRequest() {

dsmccMessageHeader()
sessionId
reason
UserData

Num. of Bytes

10
2

The sessionId field shall be set by the Client to the sessionId of the session that the Client is requesting to be torn-down.

The reason field shall be set by the Client to indicate the reason that the session is being requested to be torn-down.

28

0 ISOIIEC ISO/IEC 13818=6:1998(E)

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.2 ClientSessionReleaseConfirm
This message is sent from the Network to a Client in response to a ClientSessionReleaseRequest message. Table 4- 13
defines the syntax of the ClientSessionReleaseConfirm message.

Table 4-13 DSM-CC U-N ClientSessionReleaseConfirm message

Syntax
ClientSessionReleaseConfirm() {

dsmccMessageHeader()
sessionId
response
UserData

Num. of Bytes

10
2

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ClientSessionReleaseRequest message.

The response field shall be set by the Network to indicate the status of the session release request.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.3 ClientSessionReleaselndication
This message is sent from the Network to a Client initiate a session release. Table 4-14 defines the syntax of the
ClientSessionReleaseIndication message.

Table 4-14 DSM-CC U-N ClientSessionReleaseIndication message

Syntax
ClientSessionReleaseIndication() (

dsmccMessageHeader()
sessionId
reason
UserData

Num. of Bytes 1

10
2

The sessionId field shall be set by the Network to the value of the sessionId which is being requested to be torn-down.

The reason field shall be set by the Network to indicate the reason that the session is being torn-down. If the release was
initiated by the Server, this field shall be identical to the reason field which was received in the
ServerSessionReleaseRequest message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.4 ClientSessionReleaseResponse
This message is sent from a Client to the Network in response to a ClientSessionReleaseIndication message to indicate
the Clients response to the request. Table 4-15 defines the syntax of the ClientSessionReleaseResponse message.

29

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

Table 4-15 DSM-CC U-N ClientSessionReleaseResponse message

ClientSessionReleaseResponse() (
dsmccMessageHeader()
sessionId
response
UserData

The sessionId field shall be set to the value of the sessionId field received in the ClientSessionReleaseIndication
message.

The response field shall be set by the Client to a value which indicates the Clients response to the
ClientSessionReleaseIndication message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISOAEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.5 ServerSessionReIeaseRequest
This message is sent from a Server to the Network to request that a session be torn-down. The Network responds with a
ServerSessionReleaseConfirm message. Before sending the ServerSessionReleaseConfirm message, the Network shall
also release the session between the Network and the Client. Table 4- 16 defines the syntax of the
ServerSessionReleaseRequest message.

Table 4-16 DSM-CC U-N ServerSessionReleaseRequest message

Syntax
ServerSessionReleaseRequest() {

dsmccMessageHeader()
sessionId
reason

Num. of Bytes

10
2

I UserData
I

The sessionId field shall be set by the Server to the sessionId of the session that the Server is requesting to be torn-
down.

The reason field shall be set by the Server to indicate the reason that the session is being requested to be torn-down

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.6 ServerSessionReleaseConfirm
This message is sent from the Network to a Server in response to a ServerSessionReleaseRequest message. Table 4-17
defines the syntax of the ServerSessionReleaseConfirm message.

30

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Table 4-17 DSM-CC U-N ServerSessionReleaseConfirm message

Syntax
ServerSessionReleaseConfirm() (

dsmccMessageHeader()
sessionId
response
UserData

Num. of Bytes

10
2

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerSessionReleaseRequest message.

The response field shall be set by the Network to indicate the status of the session release request.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.7 ServerSessionReleaselndication
This message is sent from the Network to a Server to initiate a session release which was requested by the Client. Table
4- 18 defines the syntax of the ServerSessionReleaseIndication message.

Table 4-18 DSM-CC U-N ServerSessionReleaseIndication message

Syntax Num. of Bytes I 1
ServerSessionReleaseIndication() (

dsmccMessageHeader()
sessionId 10
reason 2
UserData

The sessionId field shall be set by the Network to the value of the sessionId which is being requested to be torn-down.

The reason field shall be set by the Network to indicate the reason that the session is being torn-down. If the release was
initiated by the Client, this field shall be identical to the reason field which was received in the
ClientSessionReleaseRequest message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.5.8 ServerSessionReleaseResponse
This message is sent from a Server to the Network in response to a ServerSessionReleaseIndication message. Table 4-19
defines the syntax of the ServerSessionReleaseResponse message.

31

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-19 DSM-CC U-N ServerSessionReleaseResponse message

Syntax
ServerSessionReleaseResponse() {

dsmccMessageHeader()
sessionId
response
UserData

,I

Num. of Bytes

10
2

The sessionId field shall be set to the value of the sessionId field received in the ServerSessionReleaseIndication
message.

The response field shall be set by the Server to a value which indicates the Server’s response to the
ServerSessionReleaseIndication message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 13818. Refer to subclause 4.2.2 for more
information on this data.

4.2.6 Add Resource group message definitions

4.2.6.1 CIientAddResourcelndication
This message is sent from the Network to a Client to indicate that new resources have been added to the session as
requested by the Server. Table 4-20 defines the syntax of the ClientAddResourceIndication message.

Table 4-20 DSM-CC U-N ClientAddResourceIndication message

Syntax
ClientAddResourceIndication() {

dsmccMessageHeader()
sessionId
Resources()
UserData

1

Num. of Bytes

10

The sessionId field shall be set by the Network to the value of the sessionId to which the resources are being added.

The Resources() structure defines any new resources which have been added to the Client view of the session. The
ResourceDescriptor fields shall be assigned by the Network. The number and type of resource descriptors that are
passed depend on the User application and the type of service being requested.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This field shall be passed from the Server.

4.2.6.2 CIientAddResourceResponse
This message is sent from a Client to the Network in response to a ClientAddResourceIndication message to indicate the
Clients response to the request. Table 4-21 defines the syntax of the ClientAddResourceResponse message.

32

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Table 4-21 DSM-CC U-N ClientAddResourceResponse message

Syntax
ClientAddResourceResponse() {

dsmccMessageHeader()
sessionId
response
Resources()
UserData

Num. of Bytes

10
2

The sessionId field shall be set to the value of the sessionId field received in the ClientAddResourceIndication message.

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientAddResourceIndication message.

The Resources() structure contains the client view of the new resource descriptors which were added to the Session.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This field shall be set by the Client.

4.2.6.3 ServerAddResourceRequest
This message is sent from a Server to the Network to request that resources be added to a session. The Network
responds with a ServerAddResourceConfirm message. Table 4-22 defines the syntax of the ServerAddResourceRequest

Table 4-22 DSM-CC U-N ServerAddResourceRequest message

Syntax
ServerAddResourceRequest() {

dsmccMessageHeader()
sessionId
Resources()
UserData

1

Num. of Bytes

10

The sessionId field shall be set by the Server to the sessionId of the session to which the resources are being added.

The Resources() structure indicates the resources that the server is requesting that the Network add to the session or
resources which the Server has allocated to the session.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. If the sessionId is for a Continuous Feed Session, there shall be no uuData supplied within
UserData().

4.2.6.4 ServerAddResourceConfirm
This message is sent from the Network to a Server in response to a ServerAddResourceRequest message. Table 4-23
defines the syntax of the ServerAddResourceConfirm message.

33

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-23 DSM-CC U-N ServerAddResourceConfirm message

Syntax
ServerAddResourceConfirm() (

dsmccMessageHeader()
sessionId
response
Resources()
UserData

Num. of Bytes

10
2

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerAddResourceRequest message.

The response field shall be set by the Network to indicate the result of the add resource request,

The Resources() structure shall be set by the Network to values which were assigned to the requested resources.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISOLEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This data shall be passed from the Client. If the sessionId is for a Continuous Feed Session,
there shall be no uuData supplied within UserData().

4.2.7 Delete Resource group message definitions

4.2.7.1 CIientDeleteResourcelndication
This message is sent from the Network to a Client to indicate that resources have been deleted from the session as
requested by the Server. Table 4-24 defines the syntax of the ClientDeleteResourceIndication message.

Table 4-24 DSM-CC U-N ClientDeleteResourceIndication message

Syntax
ClientDeleteResourceIndication() (

dsmccMessageHeader()
sessionId
reason
resourceCount
for(i=O;icresourceCount;i++) {

resourceNum
1
UserData

Num. of Bytes

10
2
2

2

The sessionId field shall be set by the Network to the value of the sessionId from which the resources are being deleted.

The reason field shall be set by the Network to be identical to the reason field received in the
ServerDeleteResourceRequest message.

resourceCount and resourceNum fields define the resources which are being deleted from the Client side of the
session. The resourceNum in combination with the sessionId shall be used to identify a unique resource descriptor,

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

34

Table 4-25 DSM-CC U-N ClientDeleteResourceResponse message

I
I ClientDeleteResourceResponse() {

dsmccMessageHeader()
sessionId
response
UserData

Nllrn-

10
2

I

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4.2.7.2 ClientDeleteResourceResponse
This message is sent from a Client to the Network in response to a ClientDeleteResourceIndication message to indicate
the Client’s response to the request. Table 4-25 defines the syntax of the ClientDeleteResourceResponse message.

The sessionId field shall be set to the value of the sessionId field received in the ClientDeleteResourceIndication
message.

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientDeleteResourceIndication message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 13818. Refer to subclause 4.2.2 for more
information on this data. This data shall be set by the Client.

4.2.7.3 ServerDeleteResourceRequest
This message is sent from a Server to the Network to request that resources be deleted from a session. The Network
responds with a ServerDeleteResourceConfirm message. Table 4-26 defines the syntax of the
ServerDeleteResourceRequest message.

Table 4-26 DSM-CC U-N ServerDeleteResourceRequest message

Syntax
ServerDeleteResourceRequest() {

dsmccMessageHeader()
sessionId
reason
resourceCount
for(i=O;icresourceCount;i++) (

resourceNum
1
UserData

Num. of Bytes

10
2
2

2

The sessionId field shall be set by the Server to the sessionId of the session that the resources are being deleted from.

The reason field shall be set to indicate the reason that the resources are being deleted.

The resourceCount and resourceNum fields indicate the resources that the server is requesting that the Network delete
from the session. The sessionId field in conjunction with the resourceNum field shall be used to identify a unique
resource descriptor.

The UserData() structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 13818. Refer to subclause 4.2.2 for more
information on this data.

35

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

4.2.7.4 ServerDeleteResourceConfirm
This message is sent from the Network to a Server in response to a ServerDeleteResourceRequest message. Table 4-27
defines the syntax of the ServerDeleteResourceConfirm message.

Table 4-27 DSM-CC U-N ServerDeleteResourceConfirm message

Syntax
ServerDeleteResourceConfirm() {

dsmccMessageHeader()
sessionId
response
UserData

Num. of Bytes

10
2

The sessionId field shall be set by the Network to the value of the sessionId which was received in the
ServerDeleteResourceRequest message.

The response field shall be set by the Network to indicate the result of the ServerDeleteResourceRequest message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 13818. Refer to subclause 4.2.2 for more
information on this data.

4.2.8 Continuous Feed Session group message definitions

4.2.8.1 ServerContinuousFeedSessionRequest
This message is sent from a Server to the Network to request that a continuous feed session (CFS) be established. A CFS
does not connect to a specific client. Instead, the resources of a CFS may be shared among multiple clients. The
Network responds with a ServerContinuousFeedSessionConfirm message. Table 4-28 defines the syntax of the
ServerContinuousFeedSessionRequest message.

Table 4-28 DSM-CC U-N ServerContinuousFeedSessionRequest message

I Syntax Num. of Bytes
ServerContinuousFeedSessionRequest() (

dsmccMessageHeader()
sessionId 10
reserved 2
serverId 20
Resources()

sessionId shall be set by the Server and be unique within the domain of the Network if the Network configuration
indicates that the User is responsible for generating the sessionid. The Network shall use the identical sessionId in all
messages sent to the Server which refer to this session and the Server shall use the identical sessionId in all messages
sent which refer to this session. If the Network configuration indicates that the Network is responsible for generating the
sessionId, this field shall be set to 0 and the Network shall assign the sessionId in the
ServerContinuousFeedSessionConfirm message.

serverId shall be set by the Server and uniquely identify the Server within the domain of the Network.

The Resources() structure identifies any resources required for the session. These resources may be either resources
added by the Server or resources which are being requested from the Network.

36

0 ISO/IEC ISOLlEC 13818=6:1998(E)

4.2.8.2 ServerContinuousFeedSessionConfirm
This message is sent from the Network to a Server in response to a ServerContinuousFeedSessionRequest message.
Table 4-29 defines the syntax of the ServerContinuousFeedSessionConfirm message.

Table 4-29 DSM-CC U-N ServerContinuousFeedSessionConfirm message

Syntax
ServerContinuousFeedSessionConfirm() {

dsmccMessageHeader()
sessionId
response
Resources()

Num. of Bytes

10
2

The sessionId field shall be set by the Network. If the Network configuration indicates that the User is responsible for
assigning the sessionId, this field shall be set to the exact value of the sessionId which was received in the
ServerSessionSetUpRequest message. If the Network configuration indicates that the Network is responsible for
assigning the sessionId, this field shall be set to a unique value which identifies the session in the Network if the
response field indicates that the session set-up request succeeded.

The response field shall be set by the Network to indicate the status of the session request.

The Resources() structure is used to confirm Server assigned resources and to notify the Server of the status and value
of any resources which were requested from the Network.

4.2.9 Status group message definitions

4.2.9.1 ClientStatusRequest
This message is sent from a Client to the Network to request a status message. Table 4-30 defines the syntax of the
ClientStatusRequest message.

Table 4-30 DSM-CC U-N ClientStatusRequest message

Syntax
ClientStatusRequest() {

dsmccMessageHeader()
reason
clientId
statusType
statuscount
for(i=O;i<statusCount;i++) {

statusByte
1

Num. of Bytes

2
20

2
2

1

The reason field shall be set by the client to indicate the reason that the status is being requested.

The ClientId field shall be set by the client to its own id to identify itself to the Network.

The statusType field shall be set by the client to indicate the type of status being requested,

The statuscount and statusByte fields are used to transport any data which is required to indicate additional
information about the status being requested.

37

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

4.2.9.2 ClientStatusConfirm
This message is sent from the Network to a Client in response to a ClientStatusRequest message. Table 4-3 1 defines the
syntax of the ClientStatusConfirm message.

Table 4-31 DSM-CC U-N ClientStatusConfirm message

Syntax
ClientStatusConfirm() (

dsmccMessageHeader()
response
statusType
statuscount
for(i=O;i<statusCount;i++) (

statusByte
1

Num. of Bytes

2
2
2

1

The response field shall be set by the Network to indicate if the Network accepted the status request.

The statusType field shall be set by the Network to indicate the type of status being returned.

statuscount and statusByte fields shall be set by the Network to contain the status information indicated by the
statusType field.

4.2.9.3 ClientStatuslndication
This message is sent from the Network to a Client to request a status message from the Client. Table 4-32 defines the
syntax of the ClientStatusIndication message.

Table 4-32 DSM-CC U-N ClientStatusIndication message

Syntax
ClientStatusIndication() (

dsmccMessageHeader()
reason
statusType
statusCount
for(i=O;i<statusCount;i++) (

statusByte
1

Num. of Bytes

2
2
2

1

The reason field shall be set by the Network to indicate the reason that the status is being requested.

The statusType field shall be set by the Network to indicate the type of status being requested.

The statuscount and statusByte fields are used to transport any additional data which is required to indicate additional
information about the status being requested.

4.2.9.4 ClientStatusResponse
This message is sent from a Client to the Network in response to a ClientStatusIndication message to indicate the Clients
response to the request. Table 4-33 defines the syntax of the ClientStatusResponse message.

38

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Table 4-33 DSM-CC U-N ClientStatusResponse message

Syntax
ClientStatusResponse() (

dsmccMessageHeader()
response
statusType
statuscount
for(i=O;icstatusCount;i++) (

statusByte
1

‘I

Num. of Bytes

2
2
2

1

The response field shall be set by the Client to indicate if the Client accepted the status request.

The statusType field shall be set by the Client to indicate the type of status being returned.

statuscount and statusByte fields shall be set by the Client to contain the status information indicated by the
statusType field.

4.2.9.5 ServerStatusRequest
This message is sent from a Server to the Network to request a status message. Table 4-34 defines the syntax of the
ServerStatusRequest message.

Table 4-34 DSM-CC U-N ServerStatusRequest message

Syntax
ServerStatusRequest() (

dsmccMessageHeader()
reason
serverId
statusType
statuscount
for(i=O;i<statusCount;i++) (

statusByte
1

Num. of Bytes

2
20

2
2

1

The reason field shall be set by the server to indicate the reason that the status is being requested.

The serverId field shall be set by the server to its own id to identify itself to the Network.

The statusType field shall be set by the server to indicate the type of status being requested.

The statuscount and statusByte fields are used to transport any additional data which is required to indicate additional
information about the status being requested.

4.2.9.6 ServerStatusConfirm
This message is sent from the Network to a Server in response to a ServerStatusRequest message. Table 4-35 defines the
syntax of the ServerStatusConfirm message

39

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 4-35 DSM-CC U-N ServerStatusConfirm message

Syntax
ServerStatusConfirm() (

dsmccMessageHeader()
response
statusType
statuscount
for(i=O;icstatusCount;i++) (

statusByte
I

Num. of Bytes

2
2
2

1

The response field shall be set by the Network to indicate if the Network accepted the status request.

The statusType field shall be set by the Network to indicate the type of status being returned.

statuscount and statusByte fields shall be set by the Network to contain the status information indicated by the
statusType field.

4.2.9.7 ServerStatuslndication
This message is sent from the Network to a Server to request a status message from the Server. Table 4-36 defines the
syntax of the ServerStatusIndication message.

Table 4-36 DSM-CC U-N ServerStatusIndication message

Syntax L
ServerStatusIndication() (

dsmccMessageHeader()
reason
statusType
statuscount
for(i=O;i<statusCount;i++) (

statusByte
I

,I

Num. of Bytes

2
2
2

1

The reason field shall be set by the Network to indicate the reason that the status is being requested.

The statusType field shall be set by the Network to indicate the type of status being requested.

The statuscount and statusByte fields are used to transport any additional data which is required to indicate additional
information about the status being requested.

4.2.9.8 ServerStatusResponse
This message is sent from a Server to the Network in response to a ServerStatusIndication. Table 4-3’7 defines the syntax
of the ServerStatusResponse message.

40

0 ISO/IEC ISOLIEC 13818=6:1998(E)

Table 4-37 DSM-CC U-N ServerStatusResponse message

Syntax Num. of Bytes
ServerStatusResponse() (

dsmccMessageHeader()
response
statusType
statuscount
for(i=O;icstatusCount;i++) (

statusByte
I

The response field shall be set by the Server to indicate if the Server accepted the status request.

The statusType field shall be set by the Server to indicate the type of status being returned.

statuscount and statu&yte fields shall be set by the Server to contain the status information indicated by the
statusType field.

4.2.10 Reset group message definitions

4.2.10.1 ClientResetRequest
This message will be sent from the Client to the Network to initiate clearing of all sessions active for a Client. Table 4-
38 defines the syntax of the ClientResetRequest message.

Table 4-38 DSM-CC U-N ClientResetRequest message

Syntax
ClientResetRequestO {

dsmccMessageHeader()
clientId
reason

Num. of Bytes

20
2

The clientId field shall identify the Client which is being reset.

The reason field is used to indicate the reason that the sessions are being cleared.

4.2.10.2 CIientResetConfirm
This message is sent from the Network to the Client in response to the ClientResetRequest message. Table 4-39 defines
the syntax of the ClientResetConfirm message.

Table 4-39 DSM-CC U-N ClientResetConfirm message

Syntax
ClientResetConfirm() (

dsmccMessageHeader()
clientId
response

, >

Num. of Bytes

20
2

The clientId field identifies the Client which is being reset.

41

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

The response field is used to indicate the result of the reset operation.

4.2.10.3 ClientResetlndication
This message will be sent from the Network to the Client to initiate clearing of all sessions active for a Client. Table 4-
40 defines the syntax of the ClientResetIndication message

Table 4-40 DSM-CC U-N ClientResetIndication message

Syntax
ClientResetIndication() (

dsmccMessageHeader()
clientId
reason

I

Num. of Bytes

20

The clientId field shall be set by the Network to identify the Client which is being reset

The reason field is used to indicate the reason that the sessions are being cleared.

4.2.10.4 ClientResetResponse
This message is sent from the Client to the Network in response to the ClientResetIndication message. Table 4-41
defines the syntax of the ClientResetResponse message.

Table 4-41 DSM-CC U-N ClientResetResponse message

Syntax
ClientResetResponse() (

dsmccMessageHeader()
clientId
response

1

Num. of Bytes

20

The clientId field identifies the Client which is being reset.

The response field is used to indicate the result of the reset operation.

4.2.10.5 ServerResetRequest
This message will be sent from the Server to the Network to initiate clearing of all sessions. Table 4-42 defines the
syntax of the ServerResetRequest message.

Table 4-42 DSM-CC U-N ServerResetRequest message

Syntax Num. of Bytes
ServerResetRequestO (

dsmccMessageHeader()
serverId 20
reason 2

1

The serverId field identifies the Server which is being reset.

The reason field is used to indicate the reason that the sessions are being cleared.

42

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4.2.10.6 ServerResetConfirm
This message will be sent from the Network to the Server in response to the ServerResetRequest message. Table 4-43
defines the syntax of the ServerResetConfirm message.

Table 4-43 DSM-CC U-N ServerResetConfirm message

Syntax Num. of Bytes
ServerSessionResetConfirm() (

dsmccMessageHeader()
serverId
response

1

The serverId field identifies the Server which is being reset.

The response field is used to indicate the result of the reset operation.

4.2.10.7 ServerResetlndication
This message will be sent from the Network to the Server to initiate clearing of all sessions. Table 4-44 defines the
syntax of the ServerResetConfirm message.

Table 4-44 DSM-CC U-N ServerSessionResetIndication message

Syntax
ServerSessionResetIndication() (

dsmccMessageHeader()
serverId
reason

Num. of Bytes A

20
2

The serverId field identifies the Server which is being reset.

The reason field is used to indicate the reason that the sessions are being cleared.

4.2.10.8 ServerResetResponse
This message will be sent from the Server to the Network in response to the ServerResetIndication message. Table 4-45
defines the syntax of the ServerResetResponse message.

Table 4-45 DSM-CC U-N ServerResetResponse message

Syntax
ServerSessionResetResponse() {

dsmccMessageHeader()
serverId
response

Num. of Bytes

20
2

The serverId field identifies the Server which is being reset.

The response field is used to indicate the result of the reset operation.

43

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

4.2.11 Session Proceeding group message definitions

4.2.11 .I ClientSessionProceedinglndication
This message is sent from the Network to a Client in response to a ClientSessionSetUpRequest message to inform the
Client that the request is being processed. The Network may send this message 0 or more times before sending the
ClientSessionSetUpConfirm message. The Client shall reset timer tMsg to its initial value upon receipt of this message.
Table 4-46 defines the syntax of the ClientSessionProceedingIndication message.

Table 4-46 DSM-CC U-N ClientSessionProceedingIndication message

Syntax Num. of Bytes L
ClientSessionProceedingIndication() (

dsmccMessageHeader()
sessionId 10
reason 2

\

The sessionId field shall be set by the Network to indicate the session which the proceeding message is being sent for. If
the network is assigning the sessionId, this field may contain either the assigned sessionId or may be set to 0 to indicate
that the Network has not yet assigned a sessionId to the request.

The reason field shall be set by the Network to indicate the reason that the ClientSessionProceeding message is being
sent.

4.2.11.2 ServerSessionProceedinglndication
This message is sent from the Network to a Server in response to a ServerContinuousFeedSessionRequest to inform the
Server that the request is being processed. The Network may send this message 0 or more times before sending the
session set-up confirm message. The Server shall reset timer tMsg to its initial value upon receipt of this message. Table
4-47 defines the syntax of the ServerSessionProceedingIndication message.

Table 4-47 DSM-CC U-N ServerSessionProceedingIndication message

Syntax
ServerSessionProceedingIndication() (

dsmccMessageHeader()
sessionId
reason

Num. of Bytes

10
2

The sessionId field shall be set by the Network to indicate the session which the proceeding message is being sent for. If
the network is assigning the sessionId, this field may contain either the assigned sessionId or may be set to 0 to indicate
that the Network has not yet assigned a sessionId to the request.

The reason field shall be set by the Network to indicate the reason that the ServerSessionProceeding message is being
sent.

4.2.12 Connect group message definitions

4.2.12.1 ClientConnectRequest
This is an optional message which is sent from a Client to the Network to signal the network that the Client has
connected to a session and is ready to proceed with User-to-User messages. Table 4-48 defines the syntax of the
ClientConnectRequest message.

0 ISO/rEC ISO/IEC 13818=6:1998(E)

Table 4-48 DSM-CC U-N ClientConnectRequest message
L

Syntax Num. of Bytes
ClientConnectRequest() (

dsmccMessageHeader()
sessionId 10
UserData

1

The sessionId field shall be set by the Client to indicate the session which has been connected.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This data shall be supplied by the Client.

4.2.12.2 ServerConnectlndication
This message is sent from a Network to the Server to signal the network that the Client has connected to a session and is
ready to proceed with User-to-User messages. The Network sends this message upon receipt of the
ClientConnectRequest message. Table 4-49 defines the syntax of the ServerConnectIndication message.

Table 4-49 DSM-CC U-N ServerConnectIndication message

Syntax
ServerConnectIndication() (

dsmccMessageHeader()
sessionId
UserData

\

Num. of Bytes

10

The sessionId field shall be set by the Network to the sessionId which was received in the ClientConnectRequest
message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data. This data shall be supplied by the Client.

4.2.13 Session Transfer group message definitions

4.2.13.1 ClientSessionTransferlndication
This message is sent from the Network to a Client to indicate that a transfer has occurred. Table 4-50 defines the syntax
of the ClientSessionTransferIndication message.

45

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-50 DSM-CC U-N ClientSessionTransferIndication message

Syntax I
ClientSessionTransferIndication() (

dsmccMessageHeader()
sessionId
reserved
clientId
oldServerId
newServerId
Resources()
UserData

,I

Num. of Bytes

10
2

20
20
20

The sessionId identifies the session being transferred.

The clientId field shall be set by the Network to the value of the clientId field which was received in the
ServerSessionSetUpRequest message when the session was initially requested.

The oldServerId field contains the serverId for the Server from which the session is being transferred.

The newServerId field contains the serverId for the Server to which the session is being transferred.

The Resources() structure defines the downstream and upstream resources which are assigned to the Client for this
session. The ResourceDescriptor fields shall be assigned by the Network. The number and type of resource descriptors
that are passed depend on the User application and the type of service being requested.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.13.2 ClientSessionTransferResponse
This message is sent from a Client to a Network to response to a ClientSessionTransferIndication. Table 4-5 1 defines
the syntax of the ClientSessionTransferResponse message.

Table 4-51 DSM-CC U-N ClientSessionTransferResponse message

Syntax
ClientSessionTransferResponse() (

dsmccMessageHeader()
sessionId
response
UserData

Num. of Bytes

10
2

The sessionId identifies the session being transferred.

The response field shall be set by the Client to a value which indicates the Client’s response to the
ClientSessionTransferIndication message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.13.3 ServerSessionTransferRequest
This message is sent from a Server to a Network to request to transfer a session. Table 4-52 defines the syntax of the
ServerSessionTransferRequest message.

46

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Table 4-52 DSM-CC U-N ServerSessionTransferRequest message

Syntax
ServerSessionTransferRequest() (

dsmccMessageHeader()
sessionId
reserved
destServerId
baseServerId
UserData

Num. Of Bytes

10
2

20
20

The sessionId identifies the session being transferred.

The destServerId field contains the serverId for the Server to which the session is being transferred.

The baseServerId contains the first server involved in this session. It is the starting point for the session. This field is
used in case the Client wants to transfer back to the start of the transfer stack.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.13.4 ServerSessionTransferConfirm
This message is sent from a Network to a Server to response to a ServerSessionTransferRequest. Table 4-53 defines the
syntax of the ServerSessionTransferConfirm message.

Table 4-53 DSM-CC U-N ServerSessionTransferConfirm message

Syntax
ServerSessionTransferConfirm() {

dsmccMessageHeader()
sessionId
response
UserData

1

Num. of Bytes 1

10
2

The sessionId identifies the session being transferred.

The response field shall be set by the Server to a value which indicates the Client’s or SRM’s response to the
ServerSessionTransferRequest message.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.13.5 ServerSessionTransferlndication
This message is sent from the Network to a Server to indicate that a transfer is requested to that Server. Table 4-54
defines the syntax of the ServerSessionTransferIndication message.

47

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Table 4-54 DSM-CC U-N ServerSessionTransferIndication message

G,*tmv Num, nf Rvtes
uy 11LQA

ServerSessionTransferIndication() {
dsmccMessageHeader()
sessionId
reserved
clientId
srcServerId
baseServerId
Resources()
UserData

a .--m-w v- - w-y

10
2

20
20
20

The sessionId identifies the session being transferred.

The clientId field shall be set by the Network to the value of the clientId field which was received in the
ServerSessionSetUpRequest message when the session was initially requested.

The srcServerId field contains the serverId for the Server from which the session is being transferred.

The baseServerId contains the first server involved in this session. It is the starting point for the session. This field is
used in case the Client wants to transfer back to the start of the transfer stack.

The Resources() structure defines any resources which are being transferred to the new Server.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 13818
and privateData which is outside of the scope of this part of ISO/IEC 138 18. Refer to subclause 4.2.2 for more
information on this data.

4.2.13.6 ServerSessionTransferResponse
This message is sent from a Server to a Network to response to a ServerSessionTransferIndication. Table 4-55 defines
the syntax of the ServerStatusResponse message.

Table 4-55 DSM-CC U-N ServerSessionTransferResponse message

Syntax
ServerSessionTransferResponse() {

dsmccMessageHeader()
sessionId
response
Resources()
UserData

1

Num. of Bytes

10
2

The sessionId identifies the session being transferred.

The response field shall be set by the Server to a value which indicates the Server’s response to the
ServerSessionTransferIndication message.

The Resources() structure describes all resources which are active on the session. This includes transferred resources,
new resources which were negotiated with the network, and resources which were added by the Server.

The UserData structure contains uuData which is defined by the User-To-User clause of this part of ISO/IEC 138 18
and privateData which is outside of the scope of this part of ISO/IEC 13818. Refer to subclause 4.2.2 for more
information on this data.

48

Table 4-56 DSM-CC U-N ClientSessionInProgress message
I

Syntax Num. of Bytes
n

ClientSessionInProgress() (
dsmccMessageHeader()
sessionCount 2
for(i=O;i<sessionCount;i++) (

sessionId
I I 10

L

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4.2.14 Session In Progress group message definitions

4.2.14.1 ClientSessionlnProgress
This message is sent from a Client to a Network periodically to inform the Network of the sessions which are active on
the Client. The period that this message is sent, if ever, is determined by timer tSip which may be set from the
sessionInProgressTimer field in the U-N Configuration protocol or some private means which is outside the scope of
this part of ISO/IEC 138 18. Table 4-56 defines the syntax of the ClientSessionInProgress message.

The sessionCount indicates the number of sessions which are active on the Client. This count shall equal the number of
sessionId’s included in the message.

The sessionId field indicates the session which is active on the Client. This field shall be repeated for each session
which is active on the Client.

4.2.14.2 ServerSessionlnProgress
This message is sent from a Server to a Network periodically to inform the Network of the sessions which are active on
the Server. The period that this message is sent, if ever, is determined by timer tSip which may be set from the
sessionInProgressTimer field in the U-N Configuration protocol or some private means which is outside the scope of
this part of ISO/IEC 138 18. Table 4-57 defines the syntax of the ServerSessionInProgress message.

Table 4-57 DSM-CC U-N ServerSessionInProgress message

Svntax Num. of Bvtes
ServerSessionInProgress() (

dsmccMessageHeader()
sessionCount
for(i=O;i<sessionCount;i++) {

sessionId
1

2

10

The sessionCount indicates the number of sessions which are active on the Server. This count shall equal the number of
sessionId’s included in the message.

The sessionId field indicates the session which is active on the Server. This field shall be repeated for each session
which is active on the Server.

4.3 User-to-Network Session Message Field Data Types
Table 4-58 defines the data fields used in the User-to-Network Session Messages.

49

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 4-58 User-to-Network Session Message Field Data Types

Field Name

BaseServerId

Length (Bytes)

20

Range

As specified by OS1
NSAP.

Description

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. This is the identifier of the first
Server involved in a transferred session.

ClientId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Client. This address
must be a specific address or be able to be
resolved to a specific address by the
Network.

DestServerId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. This is the server to which a
session is being transferred.

DeviceId 6 oxoooooooooooo-

0x3-

A globally unique number which defines a
User or Network device.

For networks which use the ATM B-HLI
field, the second most significant bit of
the deviceId is set to 1 to indicate that the
last three octets contain the deviceNum.
For example, in the IEEE 802 MAC if the
second most significant bit is set to 1 in
the OUI (Organization Unique Identifier),
the last three octets are set by the OU
(Organizational Unit).

ForwardCount 2 0x0000 - OXFFFF Defines the number of forwardServerId’s
that are included in the message.

ForwardServerId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. This is the server to which a
session is being forwarded.

NewServerId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. Indicates the Server to which
the session is being transferred.

NextServerId As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. This is the Server to which a
session is to be forwarded.

50

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Field Name

OldServerId

Length (Bytes)

20

Range

As specified by OS1
NSAP.

Description

A globally unique OS1 NSAP address
which identifies a Server. This address
must be a specific address or be able to be
resolved to a specific address by the
Network. This identifies the Server that a
session is being transferred from.

PrivateDataByte privateDataCount 0x00 - OXFF Private data which is outside of the scope
of this part of ISO/IEC 138 18.

PrivateDataCount 2 0x0000 - OXFFFF Indicates the number of privateDataBytes
which are included in a message.

Reason 2 enumerated This field indicates the reason for a
failure. Refer to Table 4-59 for possible
values for this field.

ResourceCount 2 0x0000 - OXFFFF This field contains the number of resource
descriptors which follow the
resourceCount field in the message.

ResourceNum 2 0x0000 - OXFFFF Defines a specific resource descriptor
within the scope of a resource number
assignor.

Response 2 enumerated This field indicates the response to a
requested action. Refer to Table 4-60 for
possible values for this field.

SdbId 6 0x000000 - Oxffffff A network unique ID which identifies a
SDB service. The procedure of how the
network operator assigns sdbId’s is
outside the scope of DSM-CC.

ServerId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a Server. The serverId
must be a specific address or be able to be
resolved to a specific address by the
Network.

SessionCount 2 0x0000 - OXFFFF Indicates the number of sessionId’s
included in the message.

SessionId 10 composite The sessionId field shall consist of a
unique 6 byte deviceId and a 4 byte
session number. The sessionId may be
assigned by either the User who initiates a
session request or by the Network. This is
determined by the U-N configuration
protocol or by some other network
configuration method.

ID
Byte 4-9

Number
Byte O-3

51

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Field Name

SessionNum

Length (Bytes)

4

Range

0x00000000 -
ox-

Description

A number which uniquely identifies a
session on the device which assigns the
sessionId.

StatusByte statuscount variable Status data that depends on the statusType
field.

StatusCount 2 0x0000 - OXFFFF This field indicates the number of status
records that are being returned in a status
response.

StatusType 2 enumerated This field indicates the type of status that
is being requested or returned in a status
transaction.

UserId 20 As specified by OS1
NSAP.

A globally unique OS1 NSAP address
which identifies a User. This address must
be a specific address or be able to be
resolved to a specific address by the
Network.

UuDataByte uuDataCount 0x00 - OXFF This data is specified in the DSM-CC
User-to-User clause.

UuDataCount 2 0x0000 - OXFFFF This indicates the number of uuDataBytes
included in a message.

t

4.4 Reason Codes
The following reason codes are defined for use by the U-N session messages.

Table 4-59 User-to-Network session message reason codes

Reason Value
RsnOK 0x0000

RsnNormal 0x000 1
RsnClProcError 0x0002

RsnNeProcError 0x0003

RsnSeProcError 0x0004

RsnClFormatError 0x0005

RsnNeFormatError 0x0006

RsnSeFormatError 0x0007

RsnNeConfigCnf 0x0008

RsnSeTranRefuse 0x0009

RsnSeForwardOvl OxOOOA

RsnSeForwardMnt OxOOOB

Description
Indicates that the command sequence is proceeding
normally
Indicates normal conditions for releasing the session.
Indicates that the condition is due to procedure error
detected at the Client
Indicates that the condition is due to procedure error
detected at the Network
Indicates that the condition is due to procedure error
detected at the Server
Indicates that the condition is due to invalid format (e.g.,
missing parameter) detected at the Client
Indicates that the condition is due to invalid format (e.g.,
missing parameter) detected at Network
Indicates that the condition is due to invalid format (e.g.,
missing parameter) detected at Server
Indicates that this is a confirmed configuration sequence
(i.e., Client must respond)
Indicates that the Session transfer was refused by the
destination Server
Indicates that the session forwarding is due to overload
conditions
Indicates that the session forwarding is due to overload
maintenance conditions

52

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Reason
RsnSeForwardUncond

RsnSeRejResource
RsnNeBroadcast

RsnSeServiceTransfer

RsnClNoSession

RsnSeNoSession

RsnNeNoSession

RsnRetrans
RsnNoTransaction

RsnClNoResource
RsnClRejResource
RsnNeRejResource

RsnNeTimerExpired

RsnClSessionRelease
RsnSeSessionRelease
RsnNeSessionRelease
Reserved
User Defined

Value Description
oxoooc Indicates that the session forwarding is sent as an

unconditional request
OxOOOD Indicates that the server rejected the assigned resources.
OxOOOE Indicates that a message is being broadcast and does not

require a response.
OxOOOF Server indicates that the Client shall establish a session

to another serverId based on the context provided in the
PrivateData().

0x0010 Client indicates that the sessionId indicated in a message
is not active.

0x0011 Server indicates that the sessionId indicated in a message
is not active.

0x0012 Network indicates that the sessionId indicated in a
message is not active.

0x0013 Indicates that a message is a retransmission.
0x0014 Indicates that the message was received without a

transactionId.
0x0015 Indicates that a requested resource is not supported.
0x0016 Indicates that the Client rejected the assigned resources.
0x0017 Indicates that the Network rejected the resources

assigned by the Server.
0x0018 Indicates that the message is being sent as the result of

an expired timer.
0x0019 Indicates that the Client initiated a session release.
OxOOlA Indicates that the Server initiated a session release.
OxOOlB Indicates that the Network initiated a session release.
0x001c - ox7FFF ISO/IEC 138 18-6 reserved
0x8000 - OxFFFF User defined reason codes.

4.5 Response Codes
The following response codes are defined for use by the U-N session messages.

Table 4-60 User-to-Network session message response codes

Response Value
RspOK 0x0000

RspClNoSession 0x000 1

RspNeNoCalls 0x0002

RspNeInvalidClient 0x0003

RspNeInvalidServer 0x0004

RspNeNoSession 0x0005

RspSeNoCalls 0x0006

RspSeInvalidClient 0x0007

RspSeNoService 0x0008

Description
Indicates that the requested command completed with
no errors.
Indicates that the Client rejected the request because the
requested sessionId is invalid.
Indicates that the Network is unable to accept new
sessions.
Indicates that the Network rejected the request due to an
invalid clientId.
Indicates that the Network rejected the request due to an
invalid serverId.
Indicates that the Network rejected the request because
the requested sessionId is invalid.
Indicates that the Server is unable to accept new
sessions.
Indicates that the Server rejected the request due to an
invalid clientId.
Indicates that the Server rejected the request because
the requested service could not be provided.

53

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Response
RspSeNoCFS

RspClNoResponse

RspSeNoResponse

Reserved
RspSeNoSession

Value
0x0009

OxOOOA

OxOOOB

OxOooC - OxOOOF
0x0010

1 the reauested sessionId is invalid

Description
Indicates that the Server rejected the request because
the requested Continuous Feed Session could not be
found.
Indicates that the Network timed out before the Client
responded to an Indication message.
Indicates that the Network timed out before the Server
responded to an Indication message.
ISO/IEC 138 18-6 reserved.
Indicates that the Server rejected the request because

RspNeResourceContinue 0x00 11

RspNeResourceFailed 0x0012

RspNeResourceOK 0x0013

RspResourceNegotiate 0x0014

RspClSessProceed 0x0015

RspClUnkRequestID 0x0016

RspClNoResource 0x0017

RspClNoCalls 0x0018

RspNeNoResource 0x0019

Reserved OxOOlA - OxOOlF
RspSeNoResource 0x0020

RspSeRejResource 0x002 1
RspClProcError 0x0022

RspNeProcError 0x0023

RspSeProcError 0x0024

RspNeFormatError 0x0026

RspSeFormatError 0x0027

RspSeForwardOvl 0x0028

Indicates that a resource request completed with no
errors but, an indicated resource was assigned an
alternate value by the Network.
Indicates that a resource request failed because the
Network was unable to assign the requested resources.
Indicates that the requested command completed with
no errors.
Indicates that the Network was able to complete a
request but has assigned alternate values to a negotiable
field.
Indicates that the Network is waiting on a response from
the server.
Indicates that the Client received a message which
contained an unknown resourceRequestId.
Indicates that the Client rejected a session set-up
because it was unable to use the assigned resources.
Indicates that the Client rejected a session set-up
because it was not accepting calls at that time.
Indicates that the network is unable to assign one or
more resources to a session.
ISO/IEC 138 18-6 reserved.
Indicates that the server is unable to complete a session
set-up because the required resources are not available.
Indicates that the server rejected the assigned resources.
Indicates that the condition is due to procedure error
detected at the Client
Indicates that the condition is due to procedure error
detected at the Network
Indicates that the condition is due to procedure error
detected at the Server
Indicates that the condition is due to invalid format
(e.g., missing parameter) detected at Network
Indicates that the condition is due to invalid format
(e.g., missing parameter) detected at Server
Indicates that the session forwarding is due to overload

RspSeForwardMnt

RspClRejResource

Reserved
RspSeForwardUncond

RspNeTransferFailed

0x0029

Ox002A

Ox002B - Ox002F
0x0030

0x003 1

-
conditions
Indicates that the session forwarding is due to overload
maintenance conditions
Indicates that the client rejected a resource assigned to a
session.
ISO/IEC 138 18-6 reserved.
Indicates that the session forwarding is sent as an
unconditional request
Indicates that the session transfer failed at the network

54

Response
RspClTransferReject

RspSeTransferReject

RspSeTransferResource

RspResourceCompleted

RspForward

RspNeForwardFailed

RspClForwarded

Reserved
RspSeTransferNoRes

RspNeNotOwner

Reserved
User Defined

Value
0x0032

0x0033

0x0034

0x0035

0x0036

0x0037

0x0038

0x0039 - 0x0040
0x004 1

0x0042

0x0043 - ox7FFF
0x8000 - OxFFFF

Description
Indicates that the session transfer was rejected by the
Client
Indicates that the session transfer was rejected by the
transferred to server
Indicates that the transferred to server rejected the
session transfer due to insufficient resource
Indicates that the Server has accepted the resources
assigned by the Network.
This indicates that the Server is requesting a Session
Forward.
Indicates that the Network is unable to process a
Session Forward.
Indicates that the session was forwarded to the indicated
clientId.
ISO/IEC 138 18-6 reserved.
The transfer to Server could not get enough resources,
so it rejected the transfer.
An action was requested on a session by a User which
was not the owner of that session.
ISO/IEC 13 8 18-6 reserved
User defined Response Code

4.6 MPEG-2 DSM-CC statusTypes

0 ISO/IEC ISOAEC 13818=6:1998(E)

I

The statusType field is used to indicate the type of status being requested or returned. Table 4-61 defines the possible
statusTypes. In this table, resourceId is the combination of a sessionId and a resourceNum which uniquely identify a
resource descriptor within a session.

55

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-61 MPEG-2 DSM-CC statusType values

statusType

0x0000
0x000 1

0x0002

0x0003

0x0004

0x0005

0x0006 -
ox7FFF

0x8000 -
OXFFFF

I

Description Required Fields Required fields
for User Status for User Status

Request / Indication Response / Confirm
ISO/IEC 13 8 18-6 Reserved. N/A N/A
Identify Session List. This None sessionCount
status indicates the sessions for(sessionCount)
which are active. 1

sessionId
1

Identify Session Status. This sessionId sessionId
status indicates the current response
status of a session. userId

resourceCount
for(resourceCount)
1

ResourceDescriptor()
1

Identify Configuration. This None Refer to clause 6 “User
status indicates the current
configuration.

Compatibility”. The Compatibilit Y
Descriptor0 is returned for this
request.

Query Resource Descriptor. resourceIdCount resourceIdCount
This status message returns for(resourceIdCount) for(resourceIdCount)
the resource descriptors for (1
the requested resourceIDs resourceId sessionId,

I ResourceDescriptor()
>

Query Resource Status. This resourceIdCount resourceIdCount
status message returns the for(resourceIdCount) for(resourceIdCount)
status of the requested 1 1
resourceIDs resourceId sessionId,

I resourceNum,
resourceStatus

1
ISO/IEC 138 18-6 Reserved. N/A N/A

User Defined statusType. Private Use. Private Use.

m

4.7 Resource Descriptors
Resource descriptors contain the information required for the Network to allocate a resource, track the resource once it
has been allocated, and de-allocate the resource once it is no longer needed. A resource is an atomic entity which is
uniquely identified within a session by its resourceNum.

Session Set-Up and Resource Allocation message classes use resource descriptors to request, assign, and control the
various network resources of a session. Status Response/Confirm messages use resource descriptors to describe the
resources of a session and their status.

4.7.1 DSM-CC User-to-Network Resource Descriptor
Table 4-62 describes the general format of a Resource Descriptor:

56

0 ISO/IEC ISOAEC 13818=6:1998(E)

Table 4-62 General format of the DSM-CC Resource Descriptor

[

Syntax
dsmccResourceDescriptor (

commonDescriptorHeader()
resourceDescriptorDataFields()

Num. of Bytes

The commonDescriptorHeader is normative and shall be included with every resource descriptor definition. Table 4- I
63 defines the format of the commonDescriptorHeader:

Table 4-63 DSM-CC User-to-Network commonDescriptorHeader

Syntax Num. of Bytes r
commonDescriptorHeader() (

resourceRequestId 2
resourceDescriptorType 2
resourceNum 2
associationTag 2
resourceFlags 1
resourceStatus 1
resourceDescriptorDataFieldsLength 2
resourceDataFieldCount 2
if (resourceDescriptorType == Oxffff) (

typeOwnerId 3
typeOwnerValue 3

1
>

The resourceRequestId field is set by the User to correlate the resource specified in the Request message with the
result given in the Confirm message. The Network shall return this resourceRequestId the Confirm message.

The resourceDescriptorType field defines the specific resource being requested. Table 4-73 in subclause 4.7.5 defines
the resourceDescriptorTypes defined by DSM-CC.

The resourceNum field comprises a unique number and whether the resourceNum was assigned by the Network, Client
or Server. Figure 4-2 defines the format of the resourceNum field:

1514131211109 8 7 6 5 4 3 2 10 Bit

’ Number ’ \ resourceNumValue \

Assignor

Figure 4-2 Format of DSM-CC User-to-Network resourceNumber field

The resourceNumValue subfield uniquely identifies the resource within the session.

The resourceNumberAssignor subfield indicates who assigned the resource. Table 4-64 defines the values for this
field:

57

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 4-64 DSM-CC User-to-Network resourceNumberAssignor values

,,,:,,#w, ~7csl.r~ n ncnr;ntinn
ZlSSlgllUl v aa1uc UCPCl qfLlUll

Reserved 00 ISO/IEC 138 18-6 reserved.
Client 01 Resource number assigned by the

Client. This option is not currently
supported in DSM-CC and is an item
for further work.

Server 10 Resource number assigned by the
Server.

Network 11 Resource number assigned by the
Network.

The associationTag identifies the groups of resources or shared resources that together make up an end-to-end
connection or other type of association (if not connection related). An associationTag is unique within a session and has
end-to-end significance (i.e., is the same at both ends of the connection). Figure 4-3 defines the format of the
associationTag field.

151413121110 9 8 7 6 5 4 3 2 1 0 Bit

/ association
Tag \ \ associationTagValue

Assignor

Figure 4-3 Format of DSM-CC User-to-Network associationTag field

The associationTagValue portion of the field uniquely identifies the association tag within the session.

The associationTagAssignor portion of the field indicates who assigned the resource. Table 4-65 defines the values for
this field:

Table 4-65 DSM-CC User-to-Network associationTagAssignor values

assignor Value Description
Reserved 00 ISO/IEC 138 18-6 reserved.
Client 01 Association tag assigned by the Client.

This option is not currently supported
in DSM-CC and is an item for further
work.

Server 10 Association tag assigned by the Server.
Network 11 Association tag assigned by the

Network.

The resourceFlags field contains definitions of the entity which is responsible for allocating the resource, the
negotiation type of the resource, and which view of the resource is being presented. Figure 4-4 defines the bit definitions
of the resourceFlags field:

58

0 ISO/IEC ISO/IEC 13818=6:1998(E)

7 6 5 4 3 2 1 0 Bit

resource
View Attribute Allocator

Figure 4-4 Bit definitions of the resourceFlags field

The resourceAllocator flag is set by the Server to make it clear which entity in the network is responsible for allocating
and controlling the resource. When the resource is allocated by the Server the Network will not modify the resource
descriptor. Table 4-66 defines the possible values:

Table 4-66 DSM-CC User-to-Network resourceAllocator field

resourceAllocator
Unspecified

Client

Server

Value
00

01

10
11

Description
Used when the creator of the Resource
Descriptor does not know or care who
will allocate the resource.
Resource allocated by the Client. Not
currently supported in DSM-CC and is
a subject of future work.
Resource allocated by the Server.

hv the Network.

The resourceAttribute field defines how the Server and Network or Client will negotiate a resource. The values for the
resourceAttribute field are defined in Table 4-67:

Table 4-67 DSM-CC U-N Resource Descriptor resourceAttribute

resourceAttribute
Mandatory

Non-Negotiable

Mandatory
Negotiable

Non-Mandatory
Non-Negotiable

Non-Mandatory
Negotiable

Reserved

Value Description
0000 Indicates that the Network must either satisfy the requested

value exactly or the entire Resource Request command
sequence fails.

0001 Indicates that the Network must either satisfy the
negotiable range/list of values or the entire resource
request sequence fails. If the range/list has value of all
ones, then the sequence only fails if no resources are
available.

0010 Indicates that the Network must either satisfy the requested
value exactly or the resource assignment fails (does not
affect that state of the Resource Request command
sequence).

0011 Indicates that the Network may either satisfy the negotiable
range/list of values value exactly or the resource
assignment fails (does not affect that state of the Resource
Request command sequence). If the range/list has value of
all ones, then any resource value may be assigned (“don’t
care” condition).

OlOO- ISOIIEC 138 18-6 reserved.
1111

A User shall specify a resource as Mandatory Non-Negotiable when it will not consider an alternative offered by the
Network in case of failure. Thus, the Network shall not propose one. The failure to assign a Mandatory Non-Negotiable
resource shall cause the failure of the resource allocation procedure and any previously assigned resources in this
procedure shall be released.

59

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

A User shall specify a resource as Mandatory Negotiable when it will consider an alternative offered by the Network
which is within the range given in the resource descriptor. The failure to assign a Mandatory Negotiable resource (i.e.,
the Network cannot offer a resource within the requested range) shall cause the failure of the resource allocation
procedure and any previously assigned resources in this procedure shall be released.

A User shall specify a resource as Non-Mandatory Non-Negotiable when it will not consider an alternative offered by
the Network in case of failure. Thus, the Network shall not propose one. The failure of a Non-Mandatory & Non-
Negotiable resource does not stop the SRM from processing other resource requests within the same
AddResourceRequest message.

A User shall specify a resource as Non-Mandatory Negotiable when it will to consider an alternative offered by the
Network which is within the range given in the resource descriptor The failure of a Non-Mandatory Negotiable resource
(i.e., the Network cannot provide a resource within the requested range) does not stop the Network from processing
other resource requests within the same AddResourceRequest message.

The Network shall always process Mandatory Non-Negotiable resource requests before Mandatory Negotiable resource
requests since the failure of the former aborts the resource allocation procedure. Processing of non-mandatory resources
shall occur after successful processing of all mandatory resources.

A User may “re-negotiate” the Mandatory resources that fail by initiating a new AddResource command sequence with
new values.

The resourceview flags defines from which view of the Resource Descriptor is being presented. Table 4-68 defines the
allowable resource views:

Table 4-68 DSM-CC resourceView Values

View Value Description
Reserved 00 ISOIIEC 138 18-6 reserved.
ClientView 01 Resource List as seen by the Client
ServerView 10 Resource List as seen by Server
Reserved 11 ISO/IEC 138 18-6 reserved.

A resource descriptor is used to define a resource which is used by all ends of a session. Since the network technology
used to carry a session may be different on each of the endpoints of a session, the resourceview is used to indicated
which view of a resource descriptor is being presented.

If a session is inter-worked across network technologies, it shall be the responsibility of the network inter-working
equipment to determine the proper resource descriptors and values for the view of the resource descriptor that it presents
to the Users.

It is possible that a different resource descriptor type or a different number of resource descriptors must be used to
represent a resource descriptor at another endpoint in the session. In this case the Network shall be responsible for
mapping the original resource descriptor to the new descriptors and for maintaining all relationships and associations to
other resource descriptors used in the session.

For example, when MPEG is sent over ATM into the Network from a server, TSDownstreamBandwidth,
atmSvcConnection, and an mpegprogram resource descriptors may be required for the Server view of the session. In an
ATM end-to-end system, these same resource descriptors may be also used for the client view. If the Client network is
an HFC system, the Client view of these same resources may require a TSDownstreamBandwidth,
TSUpstreamBandwidth, ClientTDMAAssignment, and mpegprogram resources.

A Client view Resource List occur in the following messages types:

0 ClientSessionSetUpConfirm
0 ClientAddResourceIndication
0 ClientAddResourceResponse
0 ClientDeleteResourceIndication
0 ClientStatusRequest
0 ClientStatusConfirm

60

0 ISO/IEC ISO/IEC 13818=6:1998(E)

0 ClientStatusIndication
l ClientStatusResponse

The Client view Resource List conveys to the Client the parameters and attributes of the resources available to it during
a session. associationTags in the Client View Resource list will have the same value as associationTags in a ServerView
Resource List if the associated resources have end-to-end significance.

A Server may request that the Network include the client view resource list in the ServerAddResourceConfirm message.
The Server requests this if it has a need to know which resources are allocated by the Network for use by the Client.
Certain network implementations may require that a client view resource list appear in ServerAddResourceRequest
messages. In this case, the Server is responsible for determining which resources make up the Client Connection
Segment.

A Server view of Resource List consists of the parameters and attributes of the resources it is requesting and those which
have been assigned to it within a session. It appears in the following messages:

0 ServerAddResourceRequest
0 ServerAddResourceConfirm
0 ServerDeleteResourceReques
a ServerStatusRequest
0 ServerStatusConfirm
0 ServerStatusIndication
0 ServerStatusResponse

The resourceStatus field defines the status of the requested resource between the Server and the Network or Client. The
resourceStatus field may have the following values.

Table 4-69 DSM-CC U-N Resource Descriptor resourceStatus

resourceStatus Value
Reserved 0x00
Requested 0x01

InProgress 0x02

AlternateAssigned

Assigned

Failed

Unprocessed

Invalid

Released
Reserved
User Defined

0x03

0x04

0x05

0x06

0x07

0x08
0x09 - Ox7F
0x80 - OXFF

Description
ISO/IEC 138 18-6 Reserved
Indicates that the resource has been
requested
Indicates that the resource allocation is in
progress
Indicates that an alternative value within
the specified range/list was assigned in
response to a Negotiable resource.
Indicates that the exact resource value was
assigned
Indicates that the Network was unable to
assign a resource to satisfy the
resourceAttribute constraints.
Indicates that the Network did not process
the request because a Mandatory resource
failed prior to the processing of this
descriptor.
Indicates that the resource requested is not
valid or is unknown
Indicates that the resource was released
ISO/IEC 138 18-6 reserved.
Private Data.

The resourceDescriptorDataFieldsLength field defines the total length of the resourceDescriptorDataFields section
which follows the commonDescriptorHeader. The value of the resourceDescriptorDataFieldsLength field depends on
the particular type of the resourceDescriptor being defined and the actual data in the resource descriptor.

61

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

The resourceDataFieldCount field indicates the total number of data fields in the resource descriptor.

The QpeOwnerId and typeOwnerValue fields are defined only if the resourceDescriptorType field is set to Oxffff. In
this situation, these fields are used to indicate that the resource descriptor data fields are defined by an organization
which is outside of the scope of DSM-CC.

The typeOwnerId field is the first three bytes of an IEEE Organization Unique Identifier (OUI).

The typeOwnerValue field is a resourceDescriptorType field defined by the owner of the typeOwnerId (OUI).

Resource descriptor data fields define the actual data fields associated with a particular resourceDescriptorType. The
attributes for these fields is defined in Figure 4-5:

Figure 4-5 Attributes of DSM-CC Resource Descriptor data fields

Syntax defines the data field name and any conditionals or loops associated with the data field.

Encoding defines whether the field value may be requested as a single value (s), list of values (l), or range of values (r).

Variable is a yes or no field which defines if a data field uses the dsmccResourceDescriptorValue format of the field
(value is ‘Yes’) or if the data field uses a simple string of bytes (value is ‘No’). In the case of ‘No’, the Encoding
attribute specified for the data field has no meaning.

Number of Bytes indicates the length of each instance of the data field. There shall be exactly ‘Number of Bytes’ of
data for each occurrence of the data field in a resource descriptor.

Table 4-70 defines the format of the resourceDescriptorDataFields:

Table 4-70 DSM-CC User-to-Network resourceDescriptorDataFields

Syntax
resourceDescriptorDataFields() {

for(i=O;icresourceDataFieldCount;i++) {
if (Variable == ‘Yes’) {

dsmccResourceDescriptorValue()
} else (

for(i=O;i<resourceLength;i++) {
resourceDataValueByte

1
I

Num. Of Bytes

1

The resourceDescriptorDataFields structure contains a list of data fields which are specific to the
resourceDescriptorType defined in the commonResourceHeader. The resourceDataFieldCount field is defined in the
commonResourceHeader. The Variable attribute is defined for each field in the resource descriptor data field for the
specific resource descriptor type. If a data field is defined with the Variable attribute defined as ‘Yes’, then the data field
shall use the dsmccResourceDescriptorValue format defined in subclause 4.7.2. If the Variable attribute is defined as
‘No’, then the content of the resourceDataValueByte field shall contain exactly the number of bytes specified for that
data field.

4.7.2 Specifying Ranges and Lists of values in resource descriptors
When requesting that the network assign a value to a field in a resource descriptor, it is possible that the field may have
more than one acceptable value. DSM-CC permits the use of a range or list of values when requesting a resource value.
For example, if a User is requesting a connection resource, it may have several possible ports from which the session
may be delivered. In this case, the request may contain a list of ports from which the network may choose. In another
example, a Server may be able to deliver the service at a variable rate. In this case, the resource request may specify an
upper and lower range of bandwidth values and the network may choose an appropriate value within this range.

62

Table 4-71 dsmccResourceDescriptorValue() field format
/

Svntrrx 1 Nnm- Of Rvt.es * .-**a. VL - --I
J -

dsmccResourceDescriptorVai>T\ (
I

l

resourceValueType
if (resourceValueType = singlevalue) (

resourceValue()
)

/ 2 I

else if (resourceValueType = listvalue) {
resourceListCount
for(i=O;i<resourceListCount;i++) (

resourceValue()
1

1
else if (resourceValueType = rangevalue) {

mostDesiredRangeValue()
leastDesiredRangeValue()

1

I 2 I

0 ISO/IEC ISO/IEC 13818=6:1998(E)

If a resource descriptor data field is variable, as defined in Figure 4-5 Attributes of DSM-CC Resource Descriptor data
fields, then that field shall be encoded using the dsmccResourceDescriptorValue() format (see Table 4-7 1). If a resource
descriptor data field is not defined as variable, that resource descriptor-value shall not use the
dsmccResourceDescriptorValue() format.

The resourceValueType field indicates the format of the value which is being requested. This field corresponds to the
encoding definition (see Figure 4-5) as specified in the data field definitions for the specific resource descriptor. Table
4-72 defines the possible resourceValueTypes:

Table 4-72 DSM-CC Resource Value Types

resourceValueType Encoding Value Description

Reserved 0x0000 ISO/IEC 138 18-6 reserved.

singlevalue S 0x000 1 Indicates that a single value is being requested for this resource. In
this case, the resource value field shall contain only one element.

listvalue 1 0x0002 Indicates that the requested value contains a list of possible values
that the requester will accept. In this case, the resource value field
shall contain a resourceValueCount field and exactly
resourceValueCount elements. The list of values shall be ordered
with the most desired value as the first entry and the least desired
value as the last entry.

rangevalue r 0x0003 Indicates that the requested value contains a range of values that
the requester will accept. In this case, the resource value field shall
contain two elements. The first value shall specify the most desired
end of the range of values that will be accepted and the second
value shall specify the least desired end of the range that will be
accepted.

Reserved 0x0004 -
0x7 fff

ISO/IEC 138 18-6 reserved.

User Defined 0x8000 -
Oxffff

Resource value types in this range are user definable.

63

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

The resourceListCount field is included as the first field of the resource value when the resourceValueType field is set
to ‘listvalue’. This field indicates the number of resource values which follow this field.

resourceValue() indicates a group of resource descriptor fields for the particular resource descriptor type. These fields
are defined in subclause 4.7.5 for resource descriptors which are defined in this specification. In the case of a
singlevalue, the number and format of the fields shall match exactly those defined for a particular resource descriptor
type. In the case of a listvalue, the list of fields for that type of resource shall be repeated resourceListCount times to
indicate the acceptable combinations of fields for that resource descriptor.

In the case of a rangevalue, the mostDesiredRangeValue() and leastDesiredRangeValue() shall each specify a
resource descriptor field for the particular resource descriptor type. The SRM shall attempt to allocate resources to the
request, starting with the values defined in the most desired values and working towards the least desired values. Each
field in the resource descriptor is treated in this manner. There shall be no explicit interaction between fields. The SRM
may allocate any value in the range to an individual field with no consideration to the values allocated to other fields in
the descriptor. If specific interactions between fields is required, the listvalue method shall be used to indicate which
combination of field values is acceptable for this resource.

A resource descriptor data field which is defined as using the dsmccResourceDescriptorValue() format shall be encoded
with the resourceValueTypes which are possible for that field. A descriptor data field may be encoded in different
formats depending on the application.

4.7.3 Horizontal Association of Resource Descriptors
Resource descriptors convey information about connections and other Network resources between a User and the
Network. When more than one resource type is required to specify an end-to-end association, horizontal association of
resources shall be used. Horizontal association of resource descriptors provides the ability to correlate the resources
from one User’s view to the resources which appear in another User’s view.

An example of horizontal association of resource descriptors is the case where a resource may be of a type that provides
an end-to-end connection between Server and Client. In many network implementations, several resources of different
types are required to jointly provide a complete connection. The connection from the Server to the Network may use a
different technology than the connection from Network to the Client. In this case, each time the network technology
changes, the association tag is preserved in the resource descriptor which describes that link of the connection. In this
manner, the applications at either end of the connection are able to refer to this association tag for the connection
without knowing what type of network technology is being used at the other end.

Association Tags are used in resource related U-N messages:

l ClientSessionSetUpConfirm
l ClientAddResourceIndication
l ClientAddResourceResponse
l ClientDeleteResourceIndication
l ClientStatusRequest
l ClientStatusConfirm
l ClientStatusIndication
l ClientStatusResponse
l ServerAddResourceRequest
l ServerAddResourceConfirm
l ServerDeleteResourceRequest
l ServerStatusRequest
l ServerStatusConfirm
l ServerStatusIndication
l ServerStatusResponse

4.7.4 Vertical Resource Sharing
In situations where two or more resources are contained within a resource descriptor (e.g., as a result of multiplexing, as
is the case of MPEG Transport Streams), then that resource is a shared resource. The vertical resource sharing is

64

0 ISO/IEC ISOLIEC 13818=6:1998(E)

indicated by the shared resource descriptor which identifies the resource number of the shared resource. The association
tag of the shared resource is used to indicate the resource which is being shared.

4.7.5 Resource Descriptor Definitions
This subclause defines the data fields which are specified for the individual resource descriptors. These descriptors may
be associated under a session to form the total resources required by the session. It is possible to instantiate more than
one of the same resourceDescriptorType in a session.

The resources dewiptors listed in this subclause are defined by DSM-CC to be normative optional. This means that an
implementation of this part of ISG/IEC 138 18 may choose to implement none, any, or all of the descriptors. However, if
any of these descriptors are implemented, then they shall comply to the syntax and semantics of the descriptor as defined
in this subclause.

Table 4-73 lists the resource descriptors which are defined in this part of ISO/IEC 138 18. It is not required that an
implementation of DSM-CC contain any or all of these descriptors. If any of these descriptors are used however, it is
required that they be implemented exactly as described in this part of ISO/IEC 138 18.

Table 4-73 DSM-CC User-to-Network resourceDescriptorTypes

resourceDescriptorType

Reserved

ContinuousFeedSession

Value Description

0x0000 ISO/IEC 138 18-6 reserved.

0x000 1 Describes resources already allocated in a continuous feed
session.

AtmConnection 0x0002 Describes either an ATM PVC, or a pre-allocated SVC,
connection resource.

MpegProgram 0x0003 Provides a method of delivering the MPEG-2 Systems
Program Map Table (PMT) information ‘out of band’.

PhysicalChannel 0x0004 Indicates the use of a specific transport stream. (e.g. the
tuner channels on a Hybrid Fiber Coax (HFC) system).

TSUpstreamBandwidth 0x0005 Describes the total upstream bandwidth in bits/second
required to deliver session data from the Client to the
Server.

TSDownstreamBandwidth 0x0006 Describes the downstream bandwidth in bits/second
required to deliver session data from the Server to the
Client.

AtmSvcConnection

ConnectionNotify

0x0007 Provides ATM SVC SETUP parameters. This is used
when the Network or Client is responsible for initiating a
call.

0x0008 This is sent between the User and the Network to indicate
that a connection has been established outside of the scope
of DSM-CC. This resource descriptor contains no fields
and is used as a correlation between the session and the
connection.

IP 0x0009 This is requested from the Server to indicate that data will
be exchanged between the Server and the Client using IP
protocol.

ClientTDMAAssignment OxOOOa Sent from the Network to the Client to assign slots in the
upstream TDMA channel to a session.

PSTNSetup OxOOOb Enables a DSM-CC User to set-up a PSTN call.

65

ISO/IEC 13818-6: 1998(E) 0 ISO/IEC

resourceDescriptorType

NISDNSetup

NISDNConnection

Q.922Connections

HeadEndList

AtmVcConnection

SdbContinuousFeed

SdbAssociations

SdbEntitlement

Reserved

SharedResource

SharedRequestId

UserDefined

Value Description

oxoooc

OxOOOd

OxOOOe

0x0012

0x0013

0x0014
- Ox7ffd
Ox7ffe

Ox7fff

0x8000
- Oxfffe
Oxffff

Enables a DSM-CC User to set-up an N-ISDN call.

Describes a N-ISDN connection and marks which B
channel is in use for this connection.

Allows one or more data link connections to be
multiplexed into a single Q.922 connection.

Indicates a list of head-ends which are to be connected to a
Continuous Feed Session.

Indicates the VP1 / VCI of an ATM virtual connection,

Enables a SDB Management Server to identify program
feeds to SDB Servers and obtain broadcastProgramId’s

Enables an SDB management server to set association tags
for SDB control and SDB program channels, and enables
the Network to identify to the Client the connection
resources for SDB control and SDB program channels.

The SDB service provider uses this descriptor to enable a
client to access the SDB service.

ISOIIEC 138 18-6 reserved.

Sent by the Server to the Network, or by the Network to
the Client to instruct the recipient to share an already used
resource (the shared resource).
Sent by the Server to the Network along with the resource
descriptors in a request message and is used by the Server
to associate the resource numbers assigned by the network
to the specific resource descriptors.
Resource descriptors in this range are user definable.

Defines owner of the UserDefined resource type

9.7.5.1 ContinuousFeedSession resource descriptor definition
The ContinuousFeedSession resource descriptor is requested by the Server to connect a Client session to a continuous
feed session which has been previously established. When the Network receives this resource in a response from the
Server to a session set-up indication or in a session set-up request from the server, then the Network shall connect the
indicated resources from that continuous feed session to the session which is being established. Table 4-74 defines the
format of the ContinuousFeedSession descriptor.

Table 4-74 ContinuousFeedSession resource descriptor

I

Syntax Encoding Variable Num. of Bytes
sessionId SJ Yes 10
resourceNumCount S No 2
for(i=O; i<resourceNumCount; i++) (

resourceNum SJ91 Yes 2
I I I I

The sessionId field is used to indicate the sessionId of the continuous feed session to which the Client session will be
associated. The Network shall be responsible for mapping the continuous feed session resources to the Client session.

The resourceNumCount is the number of resource descriptors in the cfsession to be connected to the new session.

66

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The resourceNum field is used to indicate the resourceNum of the resources from the continuous feed session to be
connected to the new session.

4.7.5.2 AtmConnection resource descriptor definition
The AtmConnection resource descriptor describes an ATM PVC, or a pre-allocated ATM SVC connection. This type
of connection is most common in third-party and proxy signaling methods. Table 4-75 defines the format of the
AtmConnection resource descriptor.

Table 4-75 AtmConnection resource descriptor

Field Name Encoding

atmAddress s,r,l
atmVci SF,1
atmVpi SF,1

Variable

Yes
Yes
Yes

Field Length
In Bytes

20
2
2 \

The atmAddress field indicates the ATM address of the User. This address is supplied by the requester of the resource.
The Network may use this address to establish a connection between the Network and the User or to verify the address
of a User. This value may be sent to the appropriate entity in the Network to be used in the ATM connection
establishment procedure.

The atmVci and atmVpi parameters may be supplied by either the User or the Network. If the User is requesting a
connection, it shall set these fields to 0. After the Network has established an ATM connection, these fields shall be set
to values assigned by the Network. If the User is establishing the connection, it shall set these fields to the values used
for the connection. The VP1 value shall be right justified in the atmVpi field and this field shall be 0 filled to the left of
the VP1 value.

4.7.5.3 MpegProgram resource descriptor definition
The MpegProgram descriptor is requested by the Server to request the allocation of MPEG resources (Program
Number and PIDs) needed to deliver an MPEG Program to the Client. If the Server is the resourceAllocator, the Server
shall fill in the mpegProgramNum and PIDs (mpegPmtPid, mpegPid) values to inform the Network of the values
selected by the Server. If the resourceAllocator is the Network the mpegProgramNum and PIDs must be initially set to 0
by the Server and the Network will return Network allocated values.

Note that due to the potential for re-multiplexing of MPEG-2 Transport Streams during transport, the PIDs and Program
Number from the Server view (resourceview = serverview) need not have the same values as the Client’s view
(resourceview = clientview). The User-to-User layer of DSM-CC uses the associationTags to refer to each of the
elementary streams since the PID’s themselves can not be used as an absolute reference. DSM-CC requires that the
association tags assigned to the PIDs be preserved throughout the transport network.

This resource descriptor provides a method of delivering the MPEG Program Map Table (PMT) information ‘out of
band’. However, this shall not relieve any of the MPEG-2 Systems compliance requirements including the requirement
to include the PMT in the Transport Stream.

All of the elementary stream mpegPid values listed in the MpegProgram() descriptor must be found in the PMT found in
the in band stream. It is not required that all of the elementary stream PID’s listed in band in the PMT need to be listed
in the MpegProgram() descriptor. The MpegProgram() descriptor lists only those elementary streams (PID’s) which
need to be delivered to the Client. Elementary streams listed in the PMT but not listed in the MpegProgram() descriptor
may be dropped by the Network (e.g., in an MPEG re-multiplexer in the network).

67

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 4-76 mpegprogram descriptor

Field Name

mpegProgramNum
mpegPmtPid
mpegCaPid .

Encoding

%r,l
%bl

S

Variable

Yes
Yes
No

Field Length
In Bytes

2
2
2

elementaryStreamCount
for(i=O; i<elementaryStreamCount; i++) (

S No 2

mpegPid
stream-type
reserved
associationTag

Yes
Yes

The mpegprogradum field specifies the MPEG programNum value used in the Program Association Table (PAT)
and Program Map Table (PMT) tables for this Program.

The mpegPmtPid field specifies the PID which carries the Program Map Table (PMT) for this program.

The mpegCaPid field contains an 13 bit MPEG Packet ID (PID) as defined in ISO/IEC 138 18- 1. If the Server will
insert Conditional Access (CA) data then the PID to be used is requested/assigned with this field. If the Server either
does not need to insert CA data or is unable to insert CA data then the Server may set this field to all l’s and the
Network will not allocate a CA PID.

The elementaryStreamCount indicates the number of elementary streams used by the MPEG-2 program. There shall
be one elementary stream described for each value in this field. The value of all l’s in reserved.

The mpegPid field contains an 13 bit MPEG Packet ID (PID) as defined in ISO/IEC 138 18- 1. The upper three bits shall
be set to 0, the lower thirteen bits contain the PID. If the PIDs are to be set by the Network then the resource requester
(Server) will initially set all the mpegPid fields to 0.

The stream-type field indicates the type of the elementary stream, e.g. video, audio etc. See Table 2-36, stream-type
assignments, in ISO/IEC 138 18- 1.

The reserved field shall be set to 0.

The associationTag field is the same associationTag as used in the commonDescriptorHeader(). It uses the same name
space as all of the other associationTags within the Session. Since the add resource initiator allocates the associationTag
values, it is feasible to assign tag values within the body of a descriptor as well as in the header. The associationTag in
the descriptor header tags the MPEG Program. Each elementary stream in the session shall have a unique
associationTag.

The mpegPcr field defines which of the elementary streams, if any, in the preceding list contains the Program Clock
Reference (PCR). This value is an offset into the array of elementary streams. A value of 0 indicates the first elementary
stream in the array, 1 indicates the second elementary stream, etc. Setting this value to all l’s indicates that no PCR PID
is used.

4.7.5.4 Physical Channel resource descriptor definition
The intended use for the PhysicalChannel resource descriptor is to allocate and/or indicate the use of a specific logical
channel in a frequency division multiplexed medium, e.g. the tuner channels on a Hybrid Fiber Coax (HFC) system.

Table 4-77 PhysicalChannel resource descriptor

Field Name Encoding Variable Field Length In Bytes
channelId V-91 Yes 4
direction S No 2

68

0 ISO/IEC ISO/IEC 13818=6:1998(E)

channelId - example: specifies tuner channel number (either an index or in units of Hz). Details are private to the
implementation.

The direction field defines the direction of data flow between the Server and Client.

Table 4-78 Direction Values

direction Description
0x0000 Downstream (Server to Client)
0x000 1 Upstream (Client to Server)
0x0002 - Oxffff ISO/IEC 138 18-6 Reserved.

4.7.5.5 TSUpstreamBandwidth resource descriptor definition
The TSUpstreamBandwidth resource descriptor is requested to allocate a portion of the upstream transport stream for a
session. Multiple TSUpstreamBandwidth resource descriptors may be requested for a session. Table 4-79 defines the
format of the TSUpstreamBandwidth resource descriptor.

Table 4-79 TSUpstreamBandwidth resource descriptor

Field Name Encoding Variable Field Length In Bytes
UpstreamBandwidth SF91 Yes 4

UpstreamTransportId %l Yes 4

The UpstreamBandwidth field indicates the data rate in bits per second which have been allocated to the session for
delivery of application data to the Server. The entire range of values from 0x00000000 to Oxffffffff for
UpstreamBandwidth are valid. The Server shall set this field to the desired bandwidth to instruct the Network to assign
this bandwidth to the session. The Network shall set this field to the actual bandwidth assigned to the session.

The UpstreamTransportId field indicates the transport stream that the Client should use to send the upstream
application data to the Server. The Server shall set this field to 0 when requesting a TSUpstreamBandwidth resource
descriptor. The Network shall assign this field.

4.7.5.6 TSDownstreamBandwidth resource descriptor definition
The TSDownstreamBandwidth resource descriptor is requested to allocate a portion of the downstream transport stream
for a session. Multiple TSDownstreamBandwidth resource descriptors may be requested for a session. Table 4-80
defines the format of the TSDownstreamBandwidth resource descriptor.

Table 4-80 TSDownstreamBandwidth resource descriptor
\

Field Name Encoding Variable Field Length In Bytes
downstreamBandwidth s,r,l Yes 4

downstreamTransportId SJ Yes 4

The downstreamBandwidth field indicates the data rate in bits per second which have been allocated to the session for
delivery of application data to the Client. The entire range of values from 0x00000000 to Oxffffffff for
downstreamBandwidth are valid. The Requester shall set this field to the desired bandwidth to instruct the Network to
assign this bandwidth to the session. The Network shall set this field to the actual bandwidth assigned to the session.

The downstreamTransportId field indicates the transport stream that the Client should use to receive the downstream
application data from the Server. The Server shall set this field to 0 when requesting a TSDownstreamBandwidth
resource descriptor. The Network shall assign this field.

69

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

4.7.5.7 AtmSvcConnection resource descriptor definition
The AtmSvcConnection resource descriptor is used when requesting an ATM connection resource. The Network may
pass this request to the ATM device which sets up the connection using the appropriate signaling or the Network may set
up the connection on behalf of the devices. Table 4-81 describes the format of the AtmSvcConnection resource
descriptor. It contains all the set up message parameters required to set up the ATM SVC connection.

Table 4-81 AtmSvcConnection3.0 resource descriptor

Field Name Encoding
AtmSvcSetUp S

Variable
No

Field Length In Bytes
Parameters as they appear in the
SETUP message of the specific
signaling specification ATM UN1
3.0, 3.1,4.0 or ITU-T Q.293 1

4.7.5.8 ConnectionNotify resource descriptor definition
The ConnectionNotify resource descriptor is sent to inform the SRM that a connection (i.e. ATM SVC connection or
HFC MAC Layer connection) has been established outside of the Network. This descriptor has no data fields and is sent
in order to allow the SRM to correlate a session with the connection using the resourceId of the descriptor.

Table 4-82 defines the format of the ConnectionNotify resource descriptor.

Table 4-82 ConnectionNotify resource descriptor

Note: There are no data fields associated with this resource descriptor since the details of the connection are not within
the scope of the Network.

4.7.5.9 IP resource descriptor definition
The IP resource descriptor is requested by the server to indicate that IP data is being transported. Table 4-83 defines the
format of the IP resource descriptor.

Table 4-83 IP resource descriptor

Field Name
sourceIpAddress
snurrdnPnrt

1 . . destmatio . l nIpAddress - -
destinationIpPort
inPrntnrn1

Encoding
S
C
”

S

S
c

Variable
No
Nn
I \V

No
No

Field Length In Bytes
4
3

i
2

The sourceIpAddress field indicates the IP address of the device which is sending the IP messages.

The sourceIpPort field indicates the port from which the data will be transmitted.

The destinationIpAddress field indicates the IP address of the device to which the IP messages are sent.

The destinationIpPort field indicates the port to which the data will be transmitted.

The ipProtoco1 field indicates the protocol which is being carried over this IP stream. Table 4-84 defines these protocol
types:

70

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Table 4-84 IP Protocol Types

ipProtoco1 Value

Reserved 0x0000

Description

ISO/IEC 138 18-6 reserved.

TCP

UDP

Reserved

User Defined

0x000 1

0x0002

0x0003 - Ox7fff

0x8000 - Oxffff

Indicates that TCP is being carried over IP.

Indicates that UDP is being carried over IP.

ISOfIEC 138 18-6 reserved.

User defined

4.7.5.10 ClientTdmaAssignment resource descriptor definition
The ClientTdmaAssignment resource descriptor is assigned by the Network and sent to the Client to instruct the Client
about how/where to transmit the upstream application data. The Server may also request this resource if it has a need for
this information (for informational purposes only). Table 4-85 defines the format of the ClientTdmaAssignment resource
descriptor.

Table 4-85 ClientTdmaAssignment resource descriptor

Field Name
startSlotNumber
numberOfSlots

slotSpacing
UpstreamTransportId

Encoding
v-91
SF91
SF,1
VJ

Variable
Yes
Yes
Yes
Yes

Field Length In Bytes
4
4
4
4

The StartSlotNumber field indicates the first TDMA slot on which the session may transmit data.

The numberOfSlots field indicates the number of consecutive slots on which the session may transmit data.

The slotspacing field indicates the number of slots that the session must wait after StartSlotNumber + numberOfslots
before it may transmit again.

The UpstreamTransportId field indicates the transport stream on which the session should transmit data.

4.7.5.11 PSTNSetup resource descriptor definition
The PSTNSetup resource descriptor enables a DSM-CC server to set up a PSTN call to a DSM-CC Client.

Table 4-86 PSTNSetup resource descriptor

Field Name
callingId
calledId

Encoding
S

S

Variable
No
No

Field Length In Bytes
12
12

The callingId is a globally unique E. 163 dialin, 0 string that identifies the calling party.

The calledId is globally unique E. 163 dialin, 0 string that identifies the called party.

4.7.5.12 NlSDNSetup resource descriptor definition
The NISDNSetup resource descriptor enables a DSM-CC server to set up an N-ISDN call to a DSM-CC Client.

Table 4-87 nISDNSetup resource descriptor

71

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Field Name Encoding
nISDNSetup S

Variable
No

Field Length In Bytes
Parameters as they appear in the
SETUP message of Q.931 for
N-ISDN call setup

The nISDNSetup field contains parameters as they appear in the SETUP message of Q.93 1 for N-ISDN call setup.

4.7.5.13 NISDNConnection resource descriptor definition
This descriptor describes the N-ISDN connection, and marks which B Channel is in use for this connection.

Table 4-88 nISDNConnection resource descriptor

Field Name Encoding Variable Field Length In Bytes
bChanne1 S No 2 /

The bChanne1 field indicates the N-ISDN B channel this N-ISDN resource is using,

4.7.5.14 Q922Connections resuurce descriptor definition
The Q922Connections resource descriptor assumes that 4.922 is used as the link layer over the modem connection,
allowing more than one data link connection to be multiplexed over the connection this resource descriptor is associated
with.

Table 4-89 Q922Connections resource descriptor,
\

Field Name Encoding Variable Field Length In Bytes
6

dLCICount S No 2
for(i=O; icdLCICount; i++) (

dLC1 S No 2
associationTag S No 2

I

The dLCICount field gives the number of data link connections multiplexed over this PSTN connection

The dLC1 field is the Data Link Connection Identifier for this data link connection.

The associationTag field is the association tag of the connection resource for this dLC1.

4.7.5.15 SharedResource resource descriptor definition
This descriptor is used to indicate that two or more resources are contained within another resource.

Table 4-90 SharedResource Descriptor

Field Name
sharedResourceNum

Encoding
S

Variable
No

Field Length In Bytes
2

The sharedResourceNum field identifies an already existing resourceNum in the session. This descriptor is used to
specify that an already existing resource is going to be reused.

4.7.5.16 SharedRequestld resource descriptor definition
This descriptor is used to indicate that two or more resources are contained within another resource and is only used if
the Server does not know the resourceNum.(i.e. a case where the Server has requested a resource, the Network is
assigning resourceNums, and a ServerAddResourceConfirm message has not arrived).

72

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Table 4-91 sharedResourceRequestId Descriptor

Field Name
sharedResourceRequestId

Encoding
S

Variable
No

Field Length In Bytes
2

The sharedResourceRequestId field identifies a previously requested resource that has not been allocated yet. This
descriptor is used to specify that a already existing resource is going to be reused.

4.7.5.17 HeadEndList resource descriptor definition
This descriptor contains a list of head-end codes which indicates which head-ends a Continuous Feed Session is to be
connected. Table 4-92 defines the fields in the HeadEndList resource descriptor.

Table 4-92 HeadEndList resource descriptor

Field Name

headEndCount
for(i=O; IcheadEndCount; i++) {

headEndCode

Encoding

S

S

Variable

No

No

Field
Length In

Bytes
2

20
I

The headEndCount is the number of head-end codes included in this resource descriptor.

The headEndCode is an OS1 NSAP address which uniquely identifies a head-end throughout the Network.

4.7.5.18 AtmVcConnection resource descriptor definition
This descriptor describes an AtmVcConnection.

atmVpi
atmVci

Table 4-93 AtmVcConnection Descriptor
/

Field Name Encoding Variable Field Length
In Bytes

S No 2
S No 2

The atmVpi and atmVci parameters contain the VP1 and VCI values for the ATM connection.

73

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

4.7.5.19 SdbContinuousFeed resource descriptor definition
The SdbContinuousFeed resource descriptor enables a SDB Management Server to identify program feeds to SDB
Servers and obtain broadcastProgramIds.

Table 4-94 SdbContinuousFeed resource descriptor

Field Name

sdbId
programCount
for-(i=O; I<programCount; i++) (

associationTag
broadcastProgramId

\

Encoding

S

S

S

S

Variable

No
No

No
No

Field
Length In

Bytes
6
2

2
2

The sdbId is a network unique ID which identifies a SDB service. The procedure of how the network operator assigns
sdbId’s to SDB service providers is outside the scope of DSM-CC

The programcount is the number of programs available in the SdbContinuousFeed resource descriptor

The associationTag refers to the association tag of the corresponding MpegProgram descriptor.

The broadcastProgramId is a unique identifier for the program feed allocated by the network.

4.7.5.20 SdbAssociations resource descriptor definition
The SdbAssociations resource descriptor enables an SDB management server to set association tags for SDB control
and SDB program channels, and enables the Network to identify to the Client the connection resources for SDB control
and SDB program channels.

Table 4-95 SdbAssociations resource descriptor

Field Name Encoding

sdbControIAssociationTag S

sdbProgramAssociationTag S

Variable

No
No

Field
Length In

Bytes
2
2

sdbControIAssociationTag is the association tag of the connection resource for the control information (e.g.,
atmConnection, AtmSvcConnection).

The sdbProgramAssociationTag is the association tag of the connection resource for the program (e.g.,
atmConnection, AtmSvcConnection).

74

0 ISO/IEC ISO/IEC 13818=6:1998(E)

4.7.5.21 SdbEntitlement resource descriptor definition
The SDB service provider uses the SdbEntitlement descriptor to enable a client to access the SDB service.

Table 4-96 SdbEntitlement resource descriptor

Field Name

sdbId
excludeCount
for(i=O; i<excludeCount; i++) (

broadcastProgramId
1
includeCount
for(i=O; i4ncludeCount; i++) {

broadcastPrograniId
1

Encoding Variable

S No
S No

S No

S No

S No

Field
Length In

Bytes
6
2

2

2

2

The sdbId is a network unique ID which identifies a SDB service. The procedure of how the network operator assigns
sdbId’s is outside the scope of DSM-CC.

The excludeCount is the number of programs excluded from the set of broadcastProgramId’s belonging to the sdbId.

The includecount is the number of programs included from the set of broadcastProgramId’s belonging to the sdbId.

If both the excludeCount and includecount are null then all the broadcastProgramIds under the sdbId are included.

The broadcastProgramId is a unique identifier for the program feed allocated by the network. It is an error condition if
the specified broadcastProgramIds are outside the set belonging to the sdbId.

4.8 Client Initiated Command Sequences
The following Client initiated command sequences are defined in this subclause:

0 Session set-up command sequence.
0 Session release of a session command sequence.
0 Status request command sequence.

There are two types of sessions possible between the Client and a Server. The first type is a session where the Server
delivers a service to a Client using network resources dedicated to that service. If an interactive service is desired, each
Client session is allocated an upstream resource. A session may be requested by either the Client or the Server.

The second type of session is a Continuous Feed Session (CFS) which is set up by the Server. A CFS is a special case of
a Session which is not connected to any particular Client. Any number of Clients on the network may connect to a CFS
after it has been set up. Client sessions which connect to the CFS are allocated the same downstream resources thereby
sharing a single connection and MPEG program between all Clients. Actual network implementations may require some
segmentation. In addition to the resources which are shared, Clients which are connected to a continuous feed session
may also be allocated additional resources which are exclusive to that Client.

The Server may notify the Clients that a Continuous Feed Session has been set-up via the pass-thru messages described
in clause 12, User-to-User messages described in clause 5, the Data Carousel method defined in clause 7, or by a means
outside of the scope of this part of ISO/IEC 138 18. The Client connects to a CFS using the User-to-Network Session
Messages for session set-up. It passes the information about the CFS in the UserData clause of the set-up request.

75

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

4.8.1 Client Session Set-Up Command Sequence
Figure 4-6 illustrates the procedure for session establishment initiated by the Client.

Client Network Server

ClientSessionSetUpRequest
sessionld
clientld
serverld
UserData

ClientSessionProceedinglndication *-- _____ -- ----
sessionld
reason

ClientSessionSetUpConfirm
- sessionld

response
Resources()
UserData

ClientConnectRequest .-_-_-.-_-_-_-___-.-.-.-~-.-.-.~
sessionld

-B

UserData 5

3
loop(forwardCount, forwardserverld)
UserData

ServerAddResourceRequest (. _ _ . _ . . . _ . . - - _ _ _ _ . . . _ . _ _ _ _ _ _ _ _ . _ . _ _ . . _ _ _ _ _
sessionld
Resources())
UserData

ServerAddResourceConfirm ____--._..-_..______~.~.~~...----..---~.----------- --•
sessionld
response
Resources()
UserData

ServerSessionSetUpResponse

sessionld
7 response

nextserverld
Resources()
UserData

ServerConnectlndication -__.---~-.---___-___-.~.~.-~-.
sessionld

--•

UserData

ServerSessionSetUplndication
sessionld
clientld
serverld
forwardcount

4

6

IO

-----_ Indicates Command May Be
Sent Zero Or More Times.

---_-_-.-___ Indicates Optional Data Flow
..__.__~~~.__...____ Indicates Command May Be

Sent Zero or Only Once.

Figure 4-6 Scenario for Client Session Set-up message sequence

4.8.1 .I Client Initiates Session Set-Up Request
Step 1 (Client)

To begin establishing a new sessionthe Client shall send ClientSessionSetUpRequest to the Network and start timer.
The value of the transactionId shall‘be selected by the Client and shall be used to correlate replies from the Network to
this ClientSessionSetUpRequest message. If the Client is responsible for assigning the sessionId, the value of the
sessionId field shall be selected by the Client and shall contain the client’s deviceId plus a sessionNum which is unique
to the Client. If the Network is assigning the sessionId, then the Client shall set the value of the sessionId to 0. The value
of the serverId field shall identify the Server with which the Client is requesting session establishment. The UserData
field may be populated with additional data to be sent to the Server. Upon sending the message, the Client shall start
timer tMsg.

If timer tMsg expires before the ClientSessionSetUpConfirm, ClientSessionProceeding, or ClientResetIndication
message is received, flow shall shift to the “Network does not respond to ClientSessionSetUpRequest” scenario.

76

0 ISO/IEC ISO/IEC 13818=6:1998(E)

If a ClientSessionProceedingIndication message is received for this request, the client shall restart the tMsg timer and re-
enter the wait loop.

Step 2 (Network)

On receipt of ClientSessionSetUpRequest, the Network shall verify the message and determine if the serverId field
represents an entity known to the Network. If the message and parameters are valid and the Network can support a new
session, the Network shall send the ServerSessionSetUpIndication to the Server indicated by the serverId field and shall
start timer tMsg for the server state machine. If the sessionId was set to 0 by the Client, the value of the sessionId field
shall be selected by the Network. The sessionId shall be used to identify the session through the life of the session. The
value of the clientId field identifies the Client that requested the session and shall be identical to the clientId received in
the ClientSessionSetUpRequest. The UserData structure shall be identical to the values received in the
ClientSessionSetUpRequest. The Network shall pass this information transparently through to the Server.

If the value of the serverId field is invalid or if the network cannot support a new session, flow shall shift to the
“Network rejects ClientSessionSetUpRequest” scenario.

If timer tMsg expires before the ServerSessionSetUpResponse or ServerSessionSetUpResponse messages are received,
the Network shall send ClientSessionProceedingIndication to the Client. The reason field shall be set to
RsnNeTimerExpired. Timer tMsg shall then be restarted. The Network may implement policy to determine how many
times the tMsg timer may expire before the ServerSessionSetUpResponse or ServerContinuousFeedSessionResponse
messages are received before timing out and clearing the session. At this time, flow shall shift to the “Server does not
respond to ServerSessionSetUpIndication” scenario.

Step 3 (Network Optional)

The Network may send 0 or more ClientSessionProceedingIndication messages to the client while it is waiting for a
response from the Server. The purpose of these messages is to reset the tMsg timer on the Client to prevent the Client
from timing out.

Step 4 (Server)

On receipt of ServerSessionSetUpIndication, the Server may validate the message parameters. If the requested
parameters are acceptable, the Server may satisfy the session request by either establishing a new session for the
requesting Client or, by connecting the Client to an existing Continuous Feed Session.

If it is necessary to create an exclusive session to satisfy the set-up request, the Server may request Network allocated
resources for the new session by sending the ServerAddResourceRequest to the Network. If no Network allocated
resources are required for this session, flow shall skip to step 7.

If the request may be satisfied by connecting the client session to an existing Continuous Feed Session, the Server shall
request the ContinuousFeedSession resource from the Network which contains the sessionId from the continuous feed
session which is to be connected to the Client. The Server may also allocate or request additional resources which are
exclusive to the Client Session in addition to those already allocated to the Continuous Feed Session. The
ContinuousFeedSession resource is considered to be allocated by the Server shall be sent in the
ServerSessionSetUpResponse message. If additional Network allocated resources are required for the session, the server
shall send the ServerAddResourceRequest to the Network. If no additional Network allocated resources are required for
this session, flow shall skip to step 7.

Step 5 (Network Optional)

On receipt of ServerAddResourceRequest, the Network shall resolve the resource request in accordance with the
procedure described in subclause 4.7.2. Upon resolving and assigning all requested resources, the Network shall send a
ServerAddResourceConfirm message to the Server. This message shall contain the disposition of all resource requests
and the values assigned to the resources.

Step 6 (Server)

On receipt of ServerAddResourceConfirm, the Server shall send ServerSessionSetUpResponse to the Network which
contains the Server’s response to the session set-up request, any resources which were allocated by the Server but not
included in the ServerAddResourceRequest message, and UserData to be passed to the Client.

At this point, the Session Gateway at the Server shall consider the session established. If the Network requires that a
Session-In-Progress message be sent, the Server shall start timer tSIP.

77

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Step 7 (Network)

On receipt of ServerSessionSetUpResponse with the response field encoded as rspOK, the Network shall terminate the
tMsg timer for this session. If Server allocated resources are present, the Network shall check the validity of the resource
descriptors provided. Each shall relate to a resource with a resourceStatus of Assigned and shall not be a resource
descriptor that appeared in a previous ServerAddResourceRequest (i.e. the resources were allocated by the Server). If
the resources are not acceptable to the Network then the flow shall shift to the “Network rejects Server’s resource
allocation” scenario.

If a the cfSession resource descriptor is included, the Network shall attempt to connect the resources of the requested
continuous feed session to the Clients view of the session

If there are no resources in the resource list or the resources are acceptable to the Network then the Network shall send
ClientSessionSetUpConfirm to the Client. The value of the transactionId field shall be identical to the value received
from the Client in ClientSessionSetUpRequest. The value of the sessionId field shall be identical to the value received in
ServerResourceResponse. The value of the response field shall be rspOK. The value of the resourceCount field shall
indicate the total number of resources assigned to the Client view of the session. The resource descriptors shall be those
resources visible to the Client for this session. The values of the UserData shall be identical to those received in the
ServerResourceResponse message.

Step 8 (Client)

On receipt of ClientSessionSetUpConfirm, the Client shall terminate timer tMsg and determine if it is capable of using
the resources assigned to the session. If the Client can use all of the assigned resources, it shall determine if it has
UserData to be delivered to the Server. If the Client does not have UserData to be delivered to the Server, the session
shall be considered to be active. If the Client is required to send Session In Progress messages, it shall start timer tSIP.

If the Client cannot use one or more of the assigned resources, flow shall shift to the “Client Unable to Use Resources”
scenario.

If the Client has uuDataBytes to be delivered to the Server, flow shall shift to the “Client Has Final UserData” scenario.

Network does not respond to ClientSessionSetUpRequest

If timer tMsg expires before the ClientSessionSetUpConfirm message is received, the Client shall consider the session
set-up sequence to be terminated and the session request failed. If after the Client has terminated the Session Request
using the same transactionId, the ClientSessionSetUpConfirm message is received with that transactionId (or anytime a
ClientSessionSetUpConfirm is received with an unknown transactionId) the Client shall send a
ClientSessionReleaseRequest message to the Network with the sessionId field set to the value of the sessionId in the
ClientSessionSetUpConfirm message and the reason code field set to rsnClNoSession.

4.8.1.2 Network Rejects Client Session Request
Step 2 (Network):

On receipt of ClientSessionSetUpRequest, if the value of the clientId or serverId field is invalid or if the network cannot
support a new session, the Network shall send ClientSessionSetUpConfirm to the Client. The value of the transactionId
field shall be identical to the value received in ClientSessionSetUpRequest, and the value of the response field shall
indicate why session establishment is rejected. NO uuData shall be sent. The following response codes shall apply:

0 rspNoCalls - Indicates that the Network is unable to accept new sessions.

0 rspInvalidClientId - Indicates that the Network rejected the request due to an invalid clientId.

0 rspInvalidServerId - Indicates that the Network rejected the request due to an invalid serverId.

Step 8 (Client):

On receipt of ClientSessionSetupConfirm with a valid sessionRequestId, and a response code which indicates that the
session was rejected, the Client shall terminate session establishment.

4.8.1.3 Server Rejects Server Session Indication
Step 6 (Server):

78

0 ISO/IEC ISO/IEC 13818=6:1998(E)

If the Server is unable to accept the session request, it shall send ServerSessionSetUpResponse to the Network. The
value of the sessionId field shall be identical to the value received from the Network, the value of the reason field shall
indicate why the session establish request is rejected, and the value of the resourceCount field shall be set to 0 and there
shall be no resource descriptors. UserData may be included to be passed to the Client. The following response codes
shall apply:

a rspNoCalls- Indicates that the Server is unable to accept new sessions.

0 rspInvalidClientId- Indicates that the Server rejected the request due to an invalid clientId.

0 rspServiceUnavailable - Indicates that the Server could not be provide the requested service.

Step 7 (Network):

On receipt of ServerSessionSetUpResponse with a valid sessionId and a response field which indicates that the Server
rejected the session request, the Network shall terminate session establishment with the Server and send
ClientSessionSetUpConfirm to the Client. The value of the transactionId field shall be identical to the value in
ClientSessionSetUpRequest received from the Client, and the value of the reason field shall indicate why the session
establish request is rejected. The UserData received in the ServerSessionsetUpResponse shall be included in this
message.

Step 8 (Client):

On receipt of ClientSessionSetupConfirm with a valid transactionId and a response field which indicates that the session
request was rejected, the Client shall terminate the session establishment procedure.

4.8.1.4 Client Has Final UserData
Step 8 (Client):

If the Client has UserData to be delivered to the Server, it shall send ClientConnectRequest to the Network. The value
of the sessionId field shall be identical to the value received from the Network.

Step 9 (Network):

On receipt of ClientConnectRequest with a valid sessionId, the Network shall send ServerConnectIndication to the
Server. The values of the sessionId, and UserData()shall be identical to the corresponding values received from the
Client. After sending the message. There shall be no change of state for the session at the Network.

Step 10 (Server):

On receipt of ServerConnectIndication, the Server shall consider the session to be established end-to-end through the
network.

4.8.1.5 Client Initiates Early Release
Early release refers to the release procedure that is invoked prior to end-to-end establishment of the session (or the
receipt by the User of the first confirm message). Early Release makes use of the ClientSessionReleaseRequest and the
ServerSessionReleaseRequest messages. Because early release represents a session abort by either the Client or the
Server, it is customary that the procedure may make use of the transactionId and/or the sessionId as the association
reference on a link. In some cases (e.g., a session establishment request by either a Client or a Server in which the
sessionId is assigned by the source) both the transactionId and the sessionId are known and are available to identify the
association reference. If this is the case, the sessionId shall take precedence. If the sessionId is assigned by the Network,
the Eady Release messages shall contain the sessionId set to “0” and the transactionId shall be used to identify the
reference.

Step 1 (Client):

After transmitting a ClientSessionSetupRequest to the Network a Client may cancel the request prematurely, prior to the
receipt of the first confirm message from the Network, by transmitting a ClientSessionReleaseRequest message. The
value of the transactionId will be set equal to the value in the ClientSessionSetup message. The message will contain a
sessionId which value will be set to the value in the ClientSessionSetupRequest. The reason field shall indicate why the
session is being canceled. On sending the ClientSessionReleaseRequest message the Client starts timer tMsg.

79

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

On expiration of timer tMsg, the ClientSessionReleaseRequest message will be re-transmitted. If no response is received
after the second expiration period the Client shall release all resources and no further action will be taken.

Step 2 (Network):

On receipt of the ClientSessionReleaseRequest message the Network will do one of the following:

1. If the value of the sessionId corresponds to an existing session and if the Network has begun session establishment
to the Server, the Network shall release all resources allocated to the session and send a
ServerSessionReleaseIndication message to the Server. The value of the sessionId shall be identical to the sessionId
received from the Client. The value of the reason field shall indicate why the session is being released. If the
Network has not yet began session establishment to the Server, no indication shall be sent to the Server. After
sending the ServerSessionReleaseIndication, server starts timer tMsg. On expiration of timer tMsg, the
ServerSessionReleaseIndication message will be re-transmitted. If no response is received after the second
expiration period the Network shall release all resources and no further action will be taken toward the Server.

2. If the value of the sessionId is “0” the Network shall analyze the transactionId. If the value of the transactionId
corresponds to the value of the transactionId received in the ClientSessionSetupRequest to which the Network has
not yet responded, and if the Network had began session establishment to the Server, the Network shall release all
resources allocated to the session and send a ServerSessionReleaseIndication message to the Server. The value of
the sessionId shall be identical to the sessionId sent in the ServerSessionSetupIndication. The value of the reason
field shall indicate why the session is being released. If the Network had not yet began session establishment to the
Server, no indication will be sent to the Server. After sending the ServerSessionReleaseIndication, server starts
timer tMsg. On expiration of timer tMsg, the ServerSessionReleaseIndication message will be re-transmitted. If no
response is received after the second expiration period the Network shall release all resources and no further action
will be taken toward the Server.

The Network shall then send a ClientSessionReleaseConfirm message to the Client,

Step 3 (Client):

On receipt of the ClientSessionReleaseConfirm message timer tMsg will be stopped and the Client shall abandon the
session.

4.8.1.6 Server Does not respond to serverSessionSetUplndication
Step 7 (Network):

If the server does not respond before the tMsg timer expires, the Network shall terminate the session and send the
ClientSessionSetUpConfirm message to the client with the reason field set to RspSeNoResponse.

Step 8 (Client):

On receipt of ClientSessionSetupConfirm with a valid transactionId and a response field which indicates that the session
request was rejected, the Client shall terminate the session establishment procedure.

4.8.1.7 Network Rejects Server’s Resource AllocationStep 7 (Network):
If the server is unable to accept any of the resources for the session, it shall terminate the session and send the
ClientSessionSetUpConfirm message to the client with the reason field set to RspNeResourceFailed. The Network shall
also initiate a session release procedure to the server for this session.

Step 8 (Client):

On receipt of ClientSessionSetupConfirm with a valid transactionId and a response field which indicates that the session
request was rejected, the Client shall terminate the session establishment procedure.

4.8.1.8 Client Unable to Use Resources
Step 8 (Client):

If the Client is unable to use any of the resources assigned to the session, it shall terminate the session using the session
release procedure. The reason code shall be set to RsnClRejResource.

80

0 ISWIEC

4.8.2 Client Session Release Command Sequence
Figure 4-7 illustrates the normal procedure for session release initiated by the Client.

Client Network

ISO/IEC 13818=6:1998(E)

Server

CIientSessionReleaseReauest I
sessionld
reason
UserData

ServerSessionReteaseIndication
2

sessionld
reason
UserData

ServerSessionReleaseResponse

sessionld
response
UserData

CIientSessionReleaseConfirm
1

sessionld
response
UserData

’ 4

Figure 4-7 Scenario for Client initiated session release command sequence

4.8.2.1 Client Initiates Release Request
Step 1 (Client):

To start the procedure for releasing an existing session, the Client shall send ClientSessionReleaseRequest to the
Network. The value of the sessionId field shall correspond to an existing session, and the value of the reason field shall
indicate why the Client is releasing the session. Upon sending the ClientSessionReleaseRequest message, the Client
shall no longer use any of the resources assigned to the session.

Step 2 (Network):

On receipt of ClientSessionReleaseRequest, the Network shall verify that the value of the sessionId field corresponds to
an existing session which belongs to that Client. If the sessionId is valid and owned by the Client, the Network shall
send ServerSessionReleaseIndication to the Server. The value of the sessionId field shall be identical to the sessionId
received from the Client, and the value of the reason field shall indicate that the session is being released at the request
of the Client.

If the Network determines that the sessionId received in ClientSessionReleaseRequest is invalid or that the sessionId
does not belong to the Client, flow shall shift to the “Network Rejects Client Release Request” scenario.

Step 3 (Server):

On receipt of ServerSessionReleaseIndication, the Server shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Server shall first release all resources assigned to the session and then
send ServerSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Server shall consider the session to be terminated. If the session is
connected to a continuous feed session, the Server shall release only any additional resources which were allocated to
the session. The continuous feed session shall not be affected.

If the Server determines that the sessionId is invalid, flow shall shift to the “Server Rejects Server Release Indication”
scenario.

Step 4 (Network):

On receipt of ServerSessionReleaseResponse, the Network shall release all resources assigned to the session and send
ClientSessionReleaseConfirm to the Client. If the session is connected to a continuous feed session, the Network shall

81

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

release only any additional resources which were allocated to the session. The continuous feed session shall not be
affected.

Step 5 (Client):

On receipt of ClientSessionReleaseConfirm, the Client shall release all resources assigned to the session. At this point,
the Client shall consider the session to be terminated.

4.8.2.2 Network Rejects Client Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ClientSessionReleaseRequest is invalid, the
Network shall send ClientSessionReleaseConfirm to the Client. The value of the sessionId field shall be identical to the
value received in ClientSessionReleaseRequest, and the value of the reason parameter shall be set to indicate that the
sessionId is invalid. After sending ClientSessionReleaseRequest, the Network may take other actions such as initiating
an audit with the Client however no change in session state occurs at this time. The following response codes may be
used in the ClientSessionReleaseConfirm message.

0 rspNeNoSession - Indicates that a request was made for a non-existent sessionId.

0 rspNeNotOwner - Indicates that the requested sessionId was not owned by the user.

Step 3 (Client):

On receipt of ClientSessionReleaseConfirm, the Client shall terminate the release procedure. The Client may take other
actions such as initiating an audit with the Network or other diagnostics to determine the state of the session.

4.8.2.3 Server Rejects Server Release Indication
Step 3 (Server):

If the Server determines that the value of the sessionId field received in ServerSessionReleaseIndication is invalid, the
Server shall send ServerSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to
the value received in ServerSessionReleaseIndication, and the value of the reason field shall be set to
rsnInvalidSessionId to indicate that the sessionId is invalid. After sending ServerSessionReleaseResponse, the Server
may take other actions such as initiating an audit with the Network.

Step 4 (Network):

On receipt of ServerSessionReleaseResponse, the Network shall release all resources assigned to the session. The
Network shall then send ClientSessionReleaseConfirm to the Client. The value of the sessionId field shall be identical to
the value received in ServerSessionReleaseResponse because the Network previously validated it on receipt of
ClientSessionReleaseRequest. The value of the reason field shall be set to rsnOK to indicate that the session has been
released. After sending ClientSessionReleaseConfirm, the Network may initiate an audit with the Server.

Step 5 (Client):

On receipt of ClientSessionReleaseConfirm, the Client shall release all resources assigned to the session. At this point,
the Client shall consider the session to be terminated.

4.8.3 Client Initiated Status Command Sequence
Figure 4-8 illustrates the procedure used by the Client for issuing status request messages to the Network. Refer to Table
4-61 for different types of status messages

82

0 ISO/IEC ISO/IEC 13818=6:1998(E)

cfiw
clientI
-9
StZitUSTyp
SMUSCOUti,
loodst-nf-~)

aientStsrtusConfitm
34

StatusType
smJscouti
~oodst-nt,-usE3ataBytes)

1 2

Figure 4-8 Scenario for Client-Initiated Network Status command sequence

Step 1 (Client)

The Client initiates a session status message by issuing a ClientStatusRequest message.

Step 2 (Network)

The Network receives the ClientStatusRequest message. If the Network can answer it, it generates a
ClientStatusConfirm. If it wants to first get an answer from the Server, the Network issues a ServerStatusIndication
message and waits for the ServerStatusResponse before issuing the ClientStatusConfirm to the Client.

Step 3 (Client)

The Client receives the ClientStatusConfirm message with the information it requested. For interpretation of the
statusByte fields, which depend on the value of statusType, refer to Table 4-61.

4.9 Server Initiated Command Sequences
The following Server initiated command sequences are defined in this subclause:

0 Server Initiated Continuous feed session set-up command sequence.
0 Server Initiated Session resource re-provision command sequence.
0 Server Initiated Add resources to a session command sequence.
0 Server Initiated Session release command sequence.
0 Server Initiated Continuous feed session release command sequence4

4.9.1 Server Continuous Feed Session Set-Up Command Sequence
The Server may set-up a session which is not connected to a particular Client. This type of session is a Continuous Feed
Session (CFS). Any number of Clients may connect to a single CFS and share the downstream resources of that CFS.
Each Client session which is connected to a CFS may have a separate upstream bandwidth allocation.

A CFS is assigned a SessionId by either the Network or the Server that sets up the CFS. After a CFS is set up, any
number of Clients can connect to the session. When a Client is connected to a CFS, that connection is assigned an
individual sessionId which allows each Client connection to be tracked individually. Additional resources may be added
to the individual session which is connected to the CFS. These additional resources are exclusive to the Client which
owns the session.

Figure 4-9 describes the sequence of events that occur during a Server Continuous Feed Session set-up.

83

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Client Network Server

2

ServerContinuousFeedSessionRequest

sessionld
serverld
Resources()

ServerSessionProceedinglndication
. b

ServerContinuousFeedSessionConfirm

sessionld
response
Resources()

Figure 4-9 Scenario for Server initiated Continuous Feed Session Set-Up command sequence

4.9.1 .l Server Initiates Continuous Feed Session Set-Up
Step 1 (Server):

To begin establishing a new continuous feed session, the Server shall send SerwerContinuousFeedSessionRequest to the
Network. If the User is responsible for assigning the sessionId, the value of the sess.ionId field shall be selected by the
Server. If the Network is responsible for assigning the sessionId, this field shall be set to OI The value of the serve&!
field shall identify the Server which will deliver the CFS. The Server shall set the value of the resourcecount field to the.
number of resources required to initially establish the session. For each resource requested, the Server shall include a
resourceDescriptor in the request.

Step 2 (Network):

On receipt of the ServerContinuousFeedSessionRequest, if the Network is able to accept the new session, it shall attempt
to assign any requested resources. The Network shall issue a ServerContinuousFeedSessionConfirm message with the
response code set to indicate the status of the session. If the session request is rejected, the Network shall consider the
session terminated. If the session is accepted, the Network shall consider the session active.

Step 3 (Server):

On receipt of ServerContinuousFeedSessionConfirm with the response set to indicate that the request was accepted, the
Server shall iterate through the resource list and provision itself to use the assigned resources for the session. At this
point the Server shall consider the Continuous Feed Session to be active. If the Server cannot use any of the assigned
resources, it may terminate the session by using the normal session release procedures. If the response field indicates
that the session was rejected, the Server shall consider the session terminated.

4.9.2 Server Add Resource Command Sequence
After a session has been established, the Server may add additional resources to the session.

Figure 4-10 illustrates the normal procedure for adding new resources to an existing session.

84

0 ISO/IEC ISOIIEC 13818=6:1998(E)

Client Network Server

3

CIientAddResourceIndication
session Id
Resources()
UserData

ClientAddResourceResponse
sessionld
response
Resou rces()
UserData

c

ServerAddResourceRequest
sessionld

2 Resou rces()
UserData

ServerAddResourceConfirm
sessionld
response
Resources()
UserData

Figure 4-10 Scenario for Adding Resources to a Session command sequence

4.9.2.1 Server Initiates Add Resource Request
Step l(Server):

To start the procedure for adding resources to an existing session, the Server shall send ServerAddResourceRequest to
the Network. The value of the sessionId field shall indicate the session to which the resources are to be added. The value
of the resourceCount field shall indicate the number of resources to be added to the session. There shall be one resource
descriptor for each resource to be added to the session.

Step 2 (Network):

Upon receipt of the ServerAddResourceRequest, the network shall attempt to assign the requested resources. If the
network is able to complete the request, it shall send the ClientAddResourceIndication to the client. This message shall
contain the sessionId of the session to which the resources are being added and the client view of the resources.

If the Network is not able to complete the request, it shall send the ServerAddResourceConfirm message to the Server
with the response field set to indicate that the request failed. The Network shall consider the add resource request to be
terminated at this point.

Step 3 (Client):

Upon receipt of the ClientAddResourceIndication message, the Client shall begin using the resources which are
allocated for the session. The Client shall send a ClientAddResourceResponse message to the Network with the response
field set to indicate if the add resource request succeeded. If the request succeeded, the Client shall begin using the
resources immediately. If the request failed, the Client shall consider the add resource procedure to be terminated.

Step 4 (Network):

On receipt of ClientAddResourceResponse message, the Network shall send the ServerAddResourceConfirm message to
the Server. If the response field indicates that the Client was unable to use the resources, the Network shall release the
resources and consider the add resource procedure terminated. If the Client was able to use the resources, the Network
shall consider the add resource procedure completed and the new resources to be active.

Step 7 (Server):

On receipt of ServerAddResourceConfirm, if the response indicates that the add resource procedure was successful, the
Server shall consider the additional resources to be committed to the session. If the response indicates that the add
resource procedure failed, the Server shall consider the procedure terminated and shall not use any of the requested
resources.

85

ISOIIEC 13818=6:1998(E) 0 ISO/IEC

4.9.3 Server Session Delete Resource Command Sequence
Figure 4-l 1 illustrates the normal procedure for deleting resources from an existing session.

Client Network Server

4
ClientDeleteResourceIndication

I
sessionld
reason
resourceCount
loop(resourceCount, resourceNum)
UserData

ClientDeleteResourceResponse
3-

sessionld
response
UserData

ServerDeleteResourceReauest
I

sessionld
2 reason

resourceCount
loop(resourceCount, resourceNum)
UserData

ServerDeIeteResourceConfirm

sessionld
response
UserData

Figure 4-11 Scenario for Deleting Resources from a Session command sequence

Step 1 (Server):

To begin the procedure for deleting resources from a session, the Server shall stop using the resources that it intends to
delete and send ServerDeleteResourceRequest to the Network. The sessionId shall identify the session from which the
resources are to be deleted. The value of the reason field shall indicate why the Server is deleting the resources from the
session. The value of the resourceCount field shall indicate the number of resourceNum fields present in the message.

Step 2 (Network):

On receipt of ServerDeleteResourceRequest, the Network shall verify that the session exists and is associated with the
Server. The Network shall also verify that all of the resourceIds are valid for the session. If these conditions are met, the
Network shall deactivate the resources and send the ClientDeleteResourceIndication message to the Client. The reason
field shall indicate that the Server has requested that the resources be deleted from the session. The value of the
resourceCount field shall indicate the number of resourceNum fields present in the remainder of the message. If the
resource deletion procedure does not require any resources to be deleted from the Client, the resourceCount field shall
be set to 0 and no resourceNum fields shall be included in the message. The Network shall send only the Client view
resourceNum fields in this message.

If the sessionId is invalid or not associated with the Server or if any of the resourceIds are invalid or not connected to
the session, the Network shall send the ServerDeleteResourceConfirm message to the Server indicating the reason that
the request was denied. At this point, the Network shall consider the delete resource procedure terminated.

Step 3 (Client):

On receipt of ClientDeleteResourceIndication, the Client shall verify that the session exists. The Client shall also verify
that all of the resourceIds are valid for the session. The Client shall send ClientDeleteResourceResponse to the Network.
At this point, the Client shall consider the resource deletion procedure completed and shall not use the deleted resources.

If the sessionId is invalid or one or more of the indicated resourceIds is invalid, the Client shall send the
ClientDeleteResourceResponse message to the Network with the response code set to indicate this. At this point, the
Client shall consider the delete resource procedure to be terminated.

Step 4 (Network):

On receipt of ClientDeleteResourceResponse, the Network shall send ServerDeleteResourceConfirm to the Server. At
this point the Network shall consider the resource deletion completed and may release the deleted resources.

Step 5 (Server):

On receipt of ServerDeleteResourceConfirm, the Server shall consider the resource deletion procedure completed.

86

0 ISO/IEC

4.9.4 Server Session Release Command Sequence
Figure 4-12 illustrates the normal procedure for session release initiated by the Server.

ISO/IEC 13818=6:1998(E)

Client Network Server

ClientSessionReleaselndication

sessionld
reason
UserData

ClientSessionReleaseResponse
sessionld
response
UserData

D

ServerSessionReleaseConfirm
4 sessionld 1

response
UserData

ServerSessionReleaseRequest

sessionld
reason
UserData

Figure 4-12 Scenario for Server initiated session release command sequence

1

4.9.4.1 Server Initiates Release Request
Step 1 (Server):

To start the procedure for releasing an existing session, a Server shall stop using all resources related to the session send
ServerSessionReleaseRequest to the Network. The value of the sessionId field shall correspond to an existing session,
and the value of the reason field shall indicate why the Server is releasing the session.

Step 2 (Network):

On receipt of ServerSessionReleaseRequest, the Network shall verify that the value of the sessionId field corresponds to
an existing session and the session belongs to the Server. If the sessionId is valid and owned by the Server, the Network
shall send ClientSessionReleaseIndication to the Client. The value of the sessionId field shall be identical to the
sessionId received from the Server, and the value of the reason field shall indicate that the session is being released at
the request of the Server.

If the Network determines that the sessionId received in ServerSessionReleaseRequest is invalid or that the Server does
not own the session, flow shall shift to the “Network Rejects ServerSessionReleaseRequest” scenario.

Step 3 (Client):

On receipt of ClientSessionReleaseIndication, the Client shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Client shall first release all resources assigned to the session and then
send ClientSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Client shall consider the session to be terminated.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientSessionReleaseIndication” scenario.

Step 4 (Network):

On receipt of ClientSessionReleaseResponse, the Network shall release all resources assigned to the session and send
ServerSessionReleaseConfirm to the Server. The values of the sessionId field shall be identical to the values received in
ClientSessionReleaseResponse. At this point, the Network shall consider the session to be terminated.

Step 5 (Server):

87

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

On receipt of ServerSessionReleaseConfirm, the Server shall release all resources assigned to the session. At this point,
the Server shall consider the session to be terminated and shall release all session resources.

4.9.4.2 Network Rejects Server Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ServerSessionReleaseRequest is invalid or
that the Server is not the owner of the session, the Network shall send ServerSessionReleaseConfirm to the Server. The
value of the sessionId field shall be identical to the value received in ServerSessionReleaseRequest, and the value of the
response parameter shall indicate that the sessionId is invalid or not owned by the Server. At this point the session
release procedure is terminated. After sending ServerSessionReleaseConfirm, the Network may take other actions such
as initiating an audit with the Server.

Step 3 (Server):

On receipt of ServerSessionReleaseConfirm, the Server shall terminate the session release procedure. The Server may
take other actions such as initiating an audit with the Network or initiating internal diagnostics.

4.9.4.3 Client Rejects Client Release Indication
Step 3 (Client):

If the Client determines that the value of the sessionId field received in ClientSessionReleaseIndication is invalid, the
Client shall send ServerSessionReleaseConfirm to the Network. The value of the sessionId field shall be identical to the
value received in ClientSessionReleaseResponse, and the value of the reason field shall indicate that the sessionId is
invalid. After sending ServerSessionReleaseConfirm, the Client may take other actions such as initiating an audit with
the Network.

Step 4 (Network):

On receipt of ClientSessionReleaseResponse which indicates that the session is invalid, the Network shall release
resources assigned to the session. The Network shall send ServerSessionReleaseConfirm to the Server. The value of the
sessionId field shall be identical to the value received in ClientSessionReleaseResponse since the Network previously
validated it on receipt of ServerSessionReleaseRequest. The value of the reason field shall indicate that a procedure
error has occurred with the Client. At this point, the Network shall consider the release procedure as complete and
release all resources associated with the session. After sending ServerSessionReleaseConfirm, the Network may initiate
an audit with the Client.

Step 5 (Server):

On receipt of ServerSessionReleaseConfirm, the Server shall consider the release procedure as completed and shall
release all resources assigned to the session.

4.9.5 Server Continuous Feed Session Release Command Sequence
After a continuous feed session has been established, it may be terminated using the Server Release sequence. A Session
Release command sequence for a continuous feed session may be initiated only by the Server.

88

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Figure 4-13 describes the sequence of events that occur during a Server initiated release of a continuous feed session.
When the continuous feed session is torn down, any sessions which are connected to the continuous feed session shall
first be torn down by the Network.

Client Net\

CIientSessionReleaselndication*
4

sessionld
reason
UserData

ClientSessionReleaseResponse*
sessionld
response
UserData

work Server

ServerSessionReleaseRequest
sessionld
reason
UserData

2
ServerSessionReleaseConfirm
sessionld
response
UserData

* - Indicates that the Network repeats this procedure for each session connected to the CFS.
Figure 4-13 Scenario for Server initiated CFS Release command sequence

4.951 Server Initiates Continuous Feed Session Release Request
Step 1 (Server):

To start the procedure for releasing a Continuous Feed Session, a Server shall send ServerSessionReleaseRequest to the
Network. The value of the sessionId field shall correspond to an existing continuous feed session, and the value of the
reason field shall indicate why the Server is releasing the session.

Step 2 (Network):

On receipt of ServerSessionReleaseRequest, the Network shall verify that the value of the sessionId field corresponds to
an existing session and the session belongs to the Server. If the sessionId is valid and owned by the Server, the Network
shall send ClientSessionReleaseIndication for each Session which is connected to the continuous feed session. The value
of the sessionId field shall be the sessionId of the session which is connected to the continuous feed session, and the
value of the reason field shall be set to RsnClSessionRelease to indicate that the session is being released because the
session to which the session is connected has been released by the Server. The Network shall not wait for the
ClientSessionReleaseResponse message to be received from each Clients before confirming the CFS release request to
the server. After sending all of the ClientSessionReleaseIndication messages, the Network shall release all resources
assigned to the continuous feed session and send ServerSessionReleaseConfirm to the Server. The value of the sessionId
shall be the sessionId of the continuous feed session. At this point, the Network shall consider the continuous feed
session to be terminated.

If the Network determines that the sessionId received in ServerSessionReleaseRequest is invalid or that the Server does
not own the session, flow shall shift to the “Network Rejects ServerSessionReleaseRequest” scenario.

Step 3 (Client):

On receipt of ClientSessionReleaseIndication, the Client shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Client shall first release all resources assigned to the session and then
send ClientSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Client shall consider the session to be terminated.

If the Client determines that the sessionId is invalid, flow shall shift to the “Client Rejects
ClientSessionReleaseIndication” scenario.

Step 4 (Server):

On receipt of ServerSessionReleaseConfirm, the Server shall release all resources assigned to the session. At this point,
the Server shall consider the continuous feed session to be terminated. The Server shall also consider all sessions which

89

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

were connected to the continuous feed session to be terminated and shall release all resources allocated for those
sessions.

Step 5 (Network):1

On receipt of each ClientSessionReleaseResponse, the Network shall release all Client interface resources assigned to
the session. At this point, the Network shall consider the Client session to be terminated. If the Network does not receive
a ClientSessionRelease Response message for one or more of the Client sessions before tMsg expires, it shall release the
resources for the session and consider the session to be terminated. The Network may initiate an audit with the Client to
determine its status.

4.9.5.2 Network Rejects Server Release Request
Step 2 (Network):

If the Network determines that the value of the sessionId field received in ServerSessionReleaseRequest is invalid or
that the Server is not the owner of the session, the Network shall send ServerSessionReleaseConfirm to the Server. The
value of the sessionId field shall be identical to the value received in ServerSessionReleaseRequest, and the value of the
reason parameter shall indicate that the sessionId is invalid or not owned by the Server. At this point the session release
procedure is terminated. After sending ServerSessionReleaseConfirm, the Network may take other actions such as
initiating an audit with the Server.

Step 3 (Server):

On receipt of ServerSessionReleaseConfirm the Server shall terminate the session release procedure. The Server may
take other actions such as initiating an audit with the Network.

4.9.5.3 Client Rejects Client Release Indication
Step 3 (Client):

If the Client determines that the value of the sessionId field received in ClientSessionReleaseIndication is invalid, the
Client shall send ClientSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the
value received in ClientSessionReleaseIndication, and the value of the response field shall be set to RspClNoSession. At
this point, the Client shall consider the release procedure terminated. After sending ClientSessionReleaseResponse, the
Client may take other actions such as initiating an audit with the Network.

Step 4 (Network):

On receipt of ClientSessionReleaseResponse which indicates that the session is invalid, the Network shall release all
resources assigned to the session. At this point, the Network may consider the release procedure as complete. The
Network may initiate an audit with the Client.

4.9.6 Server Status Command Sequence
Figure 4-14 below illustrates the procedure used by the Server for issuing different status request messages. Refer to
Table 4-61 for different types of status messages.

90

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Client Network Server

2

ServerStatusRequest
serverld,
reason,
statusType
statuscount,
loop(statusCount, StatusDataBytes)

ServerStatusConfirm I
response,
statusType
statuscount
loop(statusCount, StatusDataBytes)

Figure J-14 Scenario for Server initiated Network Status Command Sequence

Step 1 (Server)

The Server initiates a session status message by issuing a ServerStatusRequest message. The statusType field indicates
the type of status which is being requested. The statuscount and StatusDataBytes field shall contain any additional
information required to complete the status request.

Step 2 (Network)

The Network receives the ServerStatusRequest message. If the Network is able to provide the requested status, it
generates a ServerStatusConfirm. If it must first request a status from the Client, the Network issues a
ClientStatusIndication message and waits for the ClientStatusResponse before issuing the ServerStatusConfirm to the
Server.

Step 3 (Server)

The Server receives the ServerStatusConfirm message with the information it requested. For interpretation of the
statusByte fields, which depend on the value of statusType, refer to Table 4-61.

4.9.7 Server Session Forward Command Sequence
Figure 4- 15 describes the Session Forwarding scenario:

91

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Client SRM Server A Server B

ClientSessionSetupRequest
sessionld clientld
serverld = A
UserData 2

4

ClientSessionSetupConfirm
sessionld serverld
response resource descriptors
UserData

ServerSessionSetUplndication
sessionld clientld
serverld = A forwardCount = 0
loop(fotwardCount = 0, fotwardServerld)
UserData

ServerSessionSetUpResponse
I
sessionld response = forward
nextserverld = B UserData

ServerSessionSetUplndication
sessionld clientld
serverld = B forwardCount = 1
loop(forwardCount = 1, forwardServerld = A)
UserData

ServerSessionSetUpResponse
sessionld response = OK
nextserverld = 0 UserData

6

3

B

5

Figure 4-15 Scenario for Session Forward Command Sequence

4.9.7.1 Client Initiates Session Set-Up
Step 1 (Client):

The Client sends the standard ClientSessionSetupRequest to the SRM as described in the Client initiated Session Set-Up
Command Sequence. The serverId field is set to Server A.

Step 2(Network):

The SRM receives the ClientSessionSetupRequest message from the Client, performs the necessary actions and notifies
Server A of the incoming session by sending a ServerSessionSetUpIndication message as described in the Client
initiated Session Set-Up Command Sequence. Since this is the initial request, the forward count is set to 0 and no
forwardServerIds are sent.

Step 3(Server A):

Upon receipt of the ServerSessionSetUpIndication from the SRM, Server A may determine that it is necessary to
forward this session. If the forward count received in the message does not exceed the maxForwardCount established by
the Network in U-N Configuration or other means, the Server may proceed with the forward. The Server shall establish
no session context, make no connections, allocate no resources, or start any applications on behalf of this session. The
Server shall make the decision to forward based on its state (overload, time of day, etc.), information contained within
the ServerSessionSetUpIndication (clientId, UserData(), etc.), or other policy implemented at the Server.

To forward this session the Server sends a ServerSessionSetUpResponse to the SRM with the response field set to
rspForward. The nextServerId shall be set to the userId of Server B to indicate that this is the Server to which the
session should be forwarded.

Step 4(Network):

The SRM detects the session forward based on the response code of rspForward. If the forward can not be completed
by the SRM (Server B is invalid, maxForwardCount exceeded, etc.), flow shall shift to “Network Rejects Forward”

92

0 ISO/IEC ISO/IEC 13818=6:1998(E)

scenario. If the requested forward is accepted, the SRM shall send a ServerSessionSetUpIndication to Server B with the
serverId set to Server B, the forwardcount is incremented to 1 to indicate the number of times that the session has been
forwarded and the forwardServerId list shall contain the ID of Server A.

Step 5 (Server B):

Upon receipt of the ServerSessionSetUpIndication by Server B, sends the ServerSessionResponse to the SRM as
described in the Client initiated Session Set-Up Command Sequence.

Step 6 (Network):

Upon receipt of the ServerSessionResponse by the SRM, the Network processes the set-up as described in the Client
initiated Session Set-Up Command Sequence.

Step 7 (Client):

Upon receipt of the ClientSessionSetUpConfirm, the Client shall processes the set-up as described in the Client initiated
Session Set-Up Command Sequence.

4.9.7.2 Network Rejects Forward
Step 5 (Network):

If the forward requested in the ServerSessionSetupResponse can not be processed, the SRM shall terminate the session
by sending a ClientSessionSetupConfirm with the response field set to rspNeForwardFailed to indicate the failure. The
Network shall also terminate the session at the Server by issuing a release. At this point, the Network shall consider the
session terminated.

4.9.8 Server Session Transfer Command Sequence
A Server may request that a session be transferred to another session gateway. Figure 4- 16 describes the Session
Transfer scenario. Note: the User-to-User clause of this part of ISO/IEC 138 18 does not presently support the session
transfer scenario.

93

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

6-

9-

2

sessionld
ol-d=A
--

dimlId
rm&emeid=B

7

aient~

sessionid

1
sessitid -d=B
bas&enAd=C

sessionld
stcSmtld=A
sessions

dientid
-d=C

!3em&&onMe~
+8

sessiotld

Figure 4-16 Scenario for Session Transfer Command Sequence

4.9.8.1 Server A Initiates Session Transfer
Step 1 (Server A):

This command sequence is initiated when Server A decides it is necessary to transfer control of this session to Server B.
Server A sends a ServerSessionTransferRequest message to the SRM to request the transfer. The sessionId field shall
indicate the session that is being transferred, the destServerId field shall indicate the Server that the session is being
transferred to, the baseServerId field shall indicate the base serverId (this is the Server that the session shall be
transferred to when Server B has finished with the session.)

Step 2 (Network):

Upon receipt of the ServerSessionTransferRequest. if the transfer can not be completed by the SRM (i.e. Server B is
invalid), flow shall shift to “Network Rejects Transfer” scenario. If the Network can accept the transfer, the SRM sends
a ServerSessionTransferIndication message to Server B to indicate the transfer request. The sessionId field shall contain
the sessionId that is being transferred, the clientId field shall identify the Client which the session is active on, the
srcServerId field shall identify the Server that the session is active on, the baseServerId field shall identify the Server to
which the session belongs. The SessionResources() structure contains any resources which are allocated to the session.
Step 3 (Server B):

Upon receipt of the ServerSessionTransferRequest, Server B shall validate the transfer parameters. If Server B rejects
the transfer request, flow will shift to “Server B Rejects the Transfer Request” scenario. If Server B accepts the transfer
it then determines the resources required to support the session. Server B shall use the ServerAddResourceRequest

94

0 ISO/IEC ISOLIEC 13818=6:1998(E)

message to request the addition of resources. If the resources can not be allocated, the flow shifts to “Server B Unable to
Allocate Resources for Transfer” scenario.

Step 4 (Server B):

After all necessary resources for the session have been allocated, Server B sends a ServerSessionTransferResponse to
the SRM. The sessionId field shall identify the session that is being transferred and the response field shall be set to
rspOK to indicate that Server B has successfully transferred the session.
Step 5 (Network):

Upon receipt of the ServerSessionTransferResponse, the SRM sends a ClientSessionTransferIndication to the Client.
The sessionId shall identify the session that is being transferred, the clientId identifies the Client, the oldServerId field
indicates the Server which the session is being transferred from, the newServerId field indicates the Server which the
session is being transferred to, the SessionResources structure shall contain the client view of the session after the
session is transferred.
Step 6 (Client):

Upon receipt of the ClientSessionTransferIndication, if the Client can accept the transfer, it shall release any resources
no longer indicated as belonging to the session and begin using any new resources for the session. If the Client can not
accept the transfer, flow shall shift to “Client Rejects Transfer” scenario.

Step 7 (Network):

Upon receiving the ClientSessionTransferResponse, the Network shall release all resources which are allocated to
Server A. The SRM then sends a ServerSessionTransferConfirm message to Server A to confirm that the session has
been transferred.
Step 8 (Server A):

Server A receives the ServerSessionTransferConfirm. At this point, Server A is no longer involved in the session and
should release all resources allocated for this session.

Step 9 (Client):

The client shall also send the ClientConnectRequest message to the Network.

Step 10 (Network):

Upon receiving the ClientConnectRequest, the Network shall send a ServerConnectIndication message to Server B to
confirm that the session has been transferred.
Step 11 (Server B):

Server B receives the ServerConnectIndication message. This indicates that the transfer has been accepted by the
Network and the Client.

4.9.8.2 Network Rejects Transfer Request
Step 2 (Network):

If the transfer requested in the ServerSessionTransferRequest can not be processed, the SRM shall send the
ServerSessionTransferConfirm with the response field set to rspNeTransferFailed to indicate that the transfer was
rejected.

4.9.8.3 Server B Rejects the Transfer Request
Step 3 (Server B):

If Server B can not accept this transfer (client not accepted, overload, etc.), Server B rejects the transfer by sending the
ServerSessionTransferResponse with the response code set to “rspSeTransferReject”.

Step 4 (Network):

Upon receipt of the ServerSessionTransferResponse from Server B, the Network shall send a
ServerSessionTransferConfirm to Server A with the response code set to “rspSeTransferReject”.

Step 5 (Server A):

95

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Upon receipt of the ServerSessionTransferConfirm, the Server shall consider the transfer to have failed and shall resume
processing of the session.

4.9.8.4 Server B Unable to Allocate Resources for Transfer
Step 3 (Server B):

If Server B is unable to get the resources to accept this transfer, it shall reject the transfer by sending a
ServerSessionTransferResponse with the response code set to “rspSeTransferNoResource”. This response indicates to
Server A that it may need to delete its resources before it can successfully transfer the session.

Step 4 (Network):

Upon the receipt of the ServerSessionTransferResponse from Server B, the Network shall send a
ServerSessionTransferConfirm to Server A with the response code set to “rspSeTransferNoResources”.

Step 5 (Server A):

Upon receipt of the ServerSessionTransferConfirm, Server A shall consider the transfer failed. The Server may release
its resources for the session and attempt to transfer the session again.

4.9.8.5 Client Rejects Transfer
Step 6 (Client):

If for any reason the Client can not accept the transfer, the Client will respond with a ClientSessionTransferResponse
with the response field set to “rspC1TransferReject”.

Step 7 (Network):

Upon receipt of the ClientSessionTransferResponse message, the SRM will clear the session on Server B using the
Client Session Clear command sequence and send a ServerSessionTransferConfirm to Server A with the response code
set to “rspSeTransferNoResource”.

Step 8 (Server A):

Upon receipt of the ServerSessionTransferConfirm message, Server A shall consider the transfer failed.

4.9.9 Transferred Session Release
There are two cases for releasing a session that has been transferred.

a SRM is selecting sessionIds
0 Server is selecting sessionIds

4.9.9.1 SRM is Selecting sessionlds
The Session Release procedures for a transferred session are the same as a non-transferred session. The SRM owns all
of the sessionIds and guarantees uniqueness.

4.9.9.2 Server is Selecting sessionld
If the Server is selecting the sessionId, the sessionId contains the deviceId of the original server (Server A). Server A
must be informed when the session terminates so that it knows that the sessionId is no longer in use. When a transferred
session is released, (either by the Client or Server) a ServerSessionReleaseIndication will be sent to both the original
server and the current Server. Figure 4- 17 describes the Client initiated session release and Figure 4- 18 describes the
Server initiated session release. No message fields are shown because they are the same as described in the Session
Release command sequences.

96

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Client SRM Server A Server B

ClientSessionReleaseRequest

ServerSessionReleaselndication
2 -

ServerSessionReleaseIndication
3 +

ServerSessionReleaseResponse
4

ServerSessionReleaseResponse
4

ClientSessionReleaseConfirm
I - 6

4

5

Figure 4-17 Scenario for Client initiated Transferred Session Release Command Sequence

Client SRM Server A Server B

ServerSessionReleaseRequest
4

ClientSessionReleaselndication
2 ’ +

ServerSessionReleaseIndication
3 b

ClientReleaseResponse
4 +

ServerSessionReleaseResponse
4 5

CIientSessionReleaseConfirm
6 -

Figure 4-18 Scenario for Server initiated Transferred Session Release Command Sequence

4.10 Network Initiated Command Sequences
The following Network initiated command sequences are defined in this subclause:

0 Session release command sequence.
0 Continuous feed session release command sequence.
0 Client status request command sequence.
0 Server status request command sequence.

97

ISOLIEC 13818=6:1998(E) 0 ISOIIEC

4.10.1 Network Initiated Session Release Command Sequence
Figure 4-19 illustrates the normal procedure for session release initiated by the Network.

client

I

b-
,

I
I

sessiodd
& 2

ClientMmw~

sessidd

z

1

serversessimfpel~ndication

sessionld

4

Figure 4-19 Scenario for Network initiated session release command sequence

4.10.1 .I Network Initiates Session Release
Step 1 (Network):

To start the procedure for releasing an existing session, the Network shall send ClientSessionReleaseIndication to the
Client and send ServerSessionReleaseIndication to the Server. The value of the sessionId field shall correspond to the
existing session that is to be released, and the value of the reason field shall indicate why the Network is releasing the
session.

Step 2 (Client):

On receipt of ClientSessionReleaseIndication, the Client shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Client shall first release all resources assigned to the session and then
send ClientSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Client shall consider the session to be terminated and may release any
resources allocated to the session.

Step 3 (Server):

On receipt of ServerSessionReleaseIndication, the Server shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Server shall first release all resources assigned to the session and then
send ServerSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Server shall consider the session to be terminated and may release any
resources allocated to the session.

Step 3 (Network):

On receipt of ClientSessionReleaseResponse, the Network shall release all Client interface resources assigned to the
session.

On receipt of ServerSessionReleaseResponse, the Network shall releases all Server interface resources assigned to the
session.

After both the ClientSessionReleaseResponse and ServerSessionReleaseResponse have been received, the Network shall
consider the session to be terminated.

410.2 Network Initiated Continuous Feed Session Release Command Sequence
The Network may initiate a continuous feed session release sequence using the Server Disconnect Indication message
and the Client Disconnect Indication message.

98

0 ISOIIEC ISO/IEC 1381$-6:1998(E)

Figure 4-20 describes the sequence of events that occur during a Network initiated continuous feed session release
sequence.

Client

ClientSessimWeaselicatim*

sessionJd
reason

1

ServerSessionWeaselaselicatim
2 B

session-id

ClientSessimwm*
3

session-id

session-id
4

* Indicates that this nxssage stquence is repeated for each session that is connected to the continuous feed session

Figure 4-20 Scenario for Network initiated CFS release command sequence

4.10.2.1 Network Initiates Continuous Feed Session Release
Step 1 (Network):

To start the procedure for releasing a continuous feed session, the Network shall send ClientSessionReleaseIndication to
each Client which is connected to the continuous feed session and send ServerSessionReleaseIndication to the Server.
The value of the sessionId field shall correspond to the existing session that is to be released in the case of the Client and
the continuous feed sessionId in the case of the Server. The value of the reason field shall indicate why the Network is
releasing the session.

Step 2 (Client):

On receipt of ClientSessionReleaseIndication, the Client shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Client shall first release all resources assigned to the session and then
send ClientSessionReleaseResponse to the Network. The value of the sessionId field shall be identical to the value
received from the Network. At this point, the Client shall consider the session to be terminated.

Step 3 (Server):

On receipt of ServerSessionReleaseIndication, the Server shall verify that the value of the sessionId field corresponds to
an existing session. If the sessionId is valid, the Server shall first release all resources assigned to the continuous feed
session. The Server shall also release all resources for any sessions which are connected to the continuous feed session.
The Server then sends ServerSessionReleaseResponse to the Network. The value of the sessionId field shall be identical
to the value received from the Network. At this point, the Server shall consider the session to be terminated and any
sessions connected to the continuous feed session to be terminated.

Step 3 (Network):

On receipt of ClientSessionReleaseResponse, the Network shall release all Client interface resources assigned to the
session The Network shall consider the connected session to be terminated.

On receipt of ServerSessionReleaseResponse, the Network shall releases all Server interface resources assigned to the
session. The Network shall consider the continuous feed session to be terminated.

99

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

4.10.3 Network Initiated Client Status Command Sequence
Figure 4-21 illustrates the procedure used by the Network for requesting the status of a Client. The particular type of
status requested is determined by the statusType field. Possible status types are defined in Table 4-61.

I ClimWuslndicatim
\
=,
StZltUSTjlp
statuscount,
loop(statuscount, statusmaBytes)

ClientStdtusResponse
2

response,
!&tUSTyp
statuscount
loop(statuscount, StatusDatasytes)

Figure 4-21 Scenario for Network Initiated Client Status command sequence

4.10.3.1 Network Initiates Client Status command sequence
Step 1 (Network):

The network initiates a session audit by issuing a ClientStatusIndication message. The Network sets statusType field to
the desired status type. The reason field shall indicate the reason that the status is being requested. The statuscount and
StatusDataBytes fields shall be set to include any additional data which is required to complete the status request.

Step 2 (Client):

The Client receives the ClientStatusIndication message and sends a ClientStatusResponse to the Network. The response
field shall indicate if the Client accepted the status request. If the Client accepts the request, the statusType field shall be
set to the statusType received from the Network. The statuscount and StatusDataBytes fields shall contain the status data
for the requested status type. If the Client rejects the request, the statuscount shall be set to 0 and no StatusDataBytes
shall be sent.

Step 3 (Network):

The Network receives the ClientStatusResponse message which terminates the sequence.

100

0 ISOIIEC

4.10.4 Network Initiated Server Status Command Sequence

ISO/IEC 13818=6:1998(E)

Figure 4-22 illustrates the procedure used by the Network for requesting a status from a Server. The particular type of
status requested is determined by the statusType field. Possible status types are defined in Table 4-61.

Client Network server

Serv~uslndication

4.10.4.1 Network Initiates Server Status command sequence

=,
StatusType
statuscount,
loop(statuscount, statusDataBytes)

response,
statusType
StatUscoUti

loop(status(=ount, stat-)

Figure 4-22 Scenario for Network Initiated Server Status command sequence

2

Step 1 (Network):

The network initiates a session audit by issuing a ServerStatusIndication message. The Network sets statusType field to
the desired status type. The reason field shall indicate the reason that the status is being requested. The statuscount and
StatusDataBytes fields shall be set to include any additional data which is required to complete the status request.

Step 2 (Server):

The Server receives the ServerStatusIndication message and sends a ServerStatusResponse to the Network. The
response field shall indicate if the Server accepted the status request. If the Server accepts the request, the statusType
field shall be set to the statusType received from the Network. The statuscount and StatusDataBytes fields shall contain
the status data for the requested status type. If the Server rejects the request, the statuscount shall be set to 0 and no
StatusDataBytes shall be sent.

Step 3 (Network):

The Network receives the ServerStatusResponse message which terminates the sequence.

4.11 Reset Procedures
The Reset procedure may be triggered from the Client, Server, or Network and shall be used for system recovery in
instances where the state of the sessions are unknown. With this procedure it is possible to initiate a reset for one or
more sessions simultaneously. In order to convey the nature of the reset condition, the Reset messages indicate the type
of Reset as well as the particular reason for the condition. The inclusion of the userId in a reset message indicates that all
sessions associated with that User are to be reset. The reason for the reset shall be indicated by reason data field.

Some example cases where the use of the Reset procedure is indicated are:

0 Signaling anomalies detected by the DSM-CC signaling system. One such manifestation might be due to
misalignment detected as a result of the session status procedures.

0 Memory mutilation detected by the management system, e.g., losing of the association information between a
sessionId and session resources.

0 Start-up and restart of a Client, Server or SRM with the DSM-CC signaling system. The invocation of (re)start
condition should reflect a major fault recovery (start-up) process. It should only be used in extraordinary situations
by a maintenance activation process.

101

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

4.11 .I Client Initiated Reset Command Sequence
Figure 4-23 illustrates the procedure used by a Client for Reset.

Client

1
CJientResetFpequest
dientld

clientFpeseK=onfitm
34

dientld
2

sewer

Figure 4-23 Scenario for Client initiated Reset message sequence

4.11 .I .I Client Initiates Reset command sequence
Step 1 (Client):

Following one of the conditions noted above, the Client attempts to re-synchronize the interface by transmitting a
ClientResetRequest message to the Network. The message will contain the clientId parameter set to the value of the
Client. All resources will be placed in the “idle” state and timer tMsg is set upon sending the ClientResetRequest.

No further messages will be sent while timer tMsg is running. With the exception of the ClientResetConfirm all
messages received will be ignored.

On expiration of timer tMsg, the ClientResetRequest message will be re-transmitted. If no response is received after the
second expired period the Reset procedure shall be terminated.

Step 2 (Network):

On receipt of the ClientResetRequest message the network shall clear all sessions for that client with “active” sessionIds.
All timers shall be reset and all resources shall be released. Upon successful execution, an ClientResetConfirm will be
sent.

If appropriate, the Network will attempt to re-synchronize the server by initiating the Reset procedure on the interface
towards the server.

Step 3 (Client):

On receipt of the ClientResetConfirm message timer tMsg shall be stopped.

4.11.2 Server Initiated Reset Command Sequence
Figure 4-24 illustrates the procedure used by a Server for Reset.

CIient

-m-J-
%metid

~confim
2

serumid
b 3

Figure 4-24 Scenario for a Server Initiated Reset message sequence

102

0 ISO/IEC ISO/IEC 1381%6:1998(E)

4.11.2.1 Server Initiates Reset command sequence
Step 1 (Server):

Following one of the conditions noted above, the Server attempts to re-synchronize the interface by transmitting a
ServerResetRequest message to the Network. The message will contain the serverId parameter set to the value of the
Server. All resources will be placed in the “idle” state and timer tMsg is set upon sending the ServerResetRequest.

No further messages will be sent while timer tMsg is running. With the exception of the ServerResetConfirm all
messages received will be ignored.

On expiration of timer tMsg, the ServerResetRequest message will be re-transmitted. If no response is received after the
second expired period the Reset procedure shall be terminated.

Step 2 (Network):

On receipt of the ServerResetRequest message the network shall clear all sessions for that Server with “active”
sessionIds. All timers shall be reset and all resources shall be released. Upon successful execution, an
ServerResetConfirm will be sent.

If appropriate, the Network will attempt to re-synchronize the clients by initiating the Reset procedure on the interface
towards the clients.

Step 3 (Server):

On receipt of the ServerResetConfirm message timer tMsg shall be stopped.

4.11.3 Network Initiated Reset Command Sequence
Figure 4-25 illustrates the procedure used by the Network for Reset; for simplicity only the interaction with the server is
shown. For a Network Initiated Reset to the Client, the ClientResetIndication and ClientResetResponse messages are
used.

Client

34

serverid
2

Figure 4-25 Scenario for Network Initiated Reset sequence message

4.11.3.1 Network Initiates Reset command sequence
Step 1 (Network):

Following one of the conditions noted above, the Network attempts to re-synchronize the interface by transmitting a
ServerResetIndication message to the Server. The message will contain the clientId parameter set to the value of the
Server. All resources will be placed in the “idle” state and timer tMsg is set upon sending the ServerResetResponse.

No further messages will be sent while timer tMsg is running. With the exception of the ServerResetResponse all
messages received will be ignored.

On expiration of timer tMsg, the ServerResetIndication message will be re-transmitted. If no response is received after
the second expired period the Reset procedure shall be terminated.

Step 2 (Server):

On receipt of the ServerResetIndication message the Server shall clear all sessions for that SRM with “active”
sessionIds. All timers shall be reset and all resources shall be released. Upon successful execution, a
ServerResetResponse message will be sent.

103

PSO/IEC 13818=6:1998(E) 0 ISO/IEC

If appropriate, the Network will attempt to re-synchronize the clients by initiating the Reset procedure on the interface
towards the clients.

Step 3 (Server):

On receipt of the ServerResetConfirm message timer tMsg shall be stopped.

104

0 ISOIIEC ISO/IEC 13818=6:1998(E)

5. User-to-User Interfaces

5.1 Introduction
This clause of ISO/IEC 138 18-6 specifies a generic set of multimedia interfaces, called User-to-User interfaces. Each
interface defines a set of operations that can be invoked on a service object. The operations offer function calls in a
choice of programming languages, and Client/Service Remote Procedure Calls @PC) in a choice of network protocol
profiles. With a DSM-CC User-to-User Library, both application portability and network interoperability can be
achieved. The User-to-User interfaces represent modular, basic building blocks that can be used to enable a range of
capabilities from minimal, low-cost Consumer’ Clients, that navigate and request multimedia data, to high-powered
‘Producer’ Clients, that configure and load the multimedia Service Domain.

5.1 .I Contents
This clause is organized as follows:

0 The User-to-User System Environment. From a User-to-User perspective, this subclause explains system entities,
objects, interfaces, object references and Clients, in the context of the DSM-CC system environment.

0 Overview of the Interface Definition Language (IDL). Although CORBA specifies the complete IDL, this subclause
covers the basic IDL vocabulary needed for an understanding of DSM-CC User-to-User.

0 Common Definitions. This subclause specifies common types and constants that are used by the DSM-CC User-to-
User interfaces.

0 Application Portability Interfaces (API). The intended audience for this subclause is the application software
programmer. This subclause is organized as two partitions. The first is the minimum compliant Core interface set<
The second is the Extended interface set. Each interface is further partitioned to have a consumer Client subset.

0 Service Inter-operability Interfaces (SII). The intended audience for this subclause is the network software
programmer. This subclause defines structures and encodings needed for interoperability between Client and
Service entities over a network. It is also organized as two partitions, Core and Extended.

0 Application Boot Process. This subclause integrates the Application Portability Interfaces, User-to-Network Session
protocol, Download protocol, and Service Inter-operability Interfaces into a working system model. It presents
phases of application startup, and specifies the pre-conditions for each phase.

5.1.2 Intended Usage
The DSM-CC User-to-User interfaces enable a wide-range of multimedia applications to run in heterogeneous
networked environments. For example, applications that use DSM-CC as a foundation include:

0 Movies On Demand
0 Movie Listing
0 TV Program Guide
0 Tele-Shopping
0 Video-Conferencing
0 Near Movies On Demand
0 News on Demand
0 Karaoke On Demand
0 Games
0 Tele-Medicine
0 Distance Learning
and others

DSM-CC has developed relationships with other industry standards. The standards that either use or are compatible with
DSM-CC User-to-User include:

105

0 ISO/IEC ISODEC 13818=6:1998(E)

e DAVIC. Digital Audio Visual Council
l DVB. Digital Video Broadcasting
0 MHEG. Multimedia Hypermedia Experts Group
0 ITU-T Study Group 8, T. 120 and T. 130 Video Conferencing
0 CORBA. Common Object Request Broker
e TINA-C. Telecommunications Information Network Architecture
l UNO. Universal Networked Objects
0 ONC. Open Networked Computing
0 DCE, Distributed Computing Environment
0 Languages C, C++, SQL
and others

The above uses and environments have inspired the development of the DSM-CC International Standard. As a result, the
protocols offer a generic, unified and extensible set of functionalities. Many innovations are included which offer
performance, size, scalability and security advantages. Here are some of the key characteristics of DSM-CC User-to-
User:

DSM-CC User-to-User specifies consistent, unified interfaces for commonly-used multimedia object types, with
methods for creation, navigation, access and control.

The User-to-User APIs enable applications to be designed that can be used in both interactive and broadcast
carousel environments.

The User-to-User interfaces leverage the power of inheritance, enabling developers to build on simple, generic
libraries while adding application-specific functionalities.

User-to-User defines programming interfaces that present function calls that are common to all Clients(given a
language selection), regardless of hardware and operating system. To enable interoperability over the network,
User-to-User specifies protocol profiles that establish common on-the-wire encodings and protocols between
Clients and Services.

Certain User-to-User operations enable efficient operation over networks that may have a long latency between
Client and Service, limited Client storage and limited network request path bandwidth.

The User-to-User interfaces enable Client application interfaces to consist of simple stubs, that may be downloaded
by the DSM-CC download mechanism. The stub is a surrogate for the remote service. It presents the interface of the
service, but just marshals a message which is sent to the service object. The minimal Client need not be a name
Service, perform authentication or authorization, or choose which instance of Service or asset to connect to. These
functions will typically be performed by service brokers and asset brokers on the Server side of the network.

A minimal consumer Client set of interfaces supports the requirements of a TV set-top device, where there is
typically limited memory and no disk.

While the interfaces are simplified to accomplish the minimal Client, a range of privileges (Access Roles) and
extended interfaces support Clients with more capabilities and resources, such as peer Clients or authoring tool
Clients.

The Stream objects offer control of MPEG-2 and other continuous media streams. The normal play time concept is
introduced, to insure accurate, contiguous and predictable timestamps for synchronized audio, video and stream
event data. The stream operations enable consistent behavior, accurate to a frame, regardless of the network latency
between Client and Server.

Directory objects enable producer Clients to establish and load logical path hierarchies with multimedia objects and
Services, and enable consumer Clients to navigate these paths, and access these objects and Services.

Composite objects enable the opening of several child objects as a result of resolving a single name. Composite

objects also simplify the versioning relationships between objects by enabling the association of compatible

versions to a Composite name.

Security applies to the entry into a Service Domain (Directory hierarchy) and to invocation of operations. Security
features include:

106

0 ISO/IEC ISO/IEC 13818=6:1998(E)

* Authentication of the principal end user on a per request basis.

* Authorization of the principal end user to perform the requested operation based on Access Role.

* Password or encryption access challenge/response control is supported on a per request basis(including
entry into Service Domains)

* All secure flag to trigger secure transmission for all messages to/from an object.

0 The Remote Procedure call configuration interface allows for either synchronous or asynchronous (synchronous
deferred) operation. Synchronous deferred operation supports pipelining of requests, where multiple parallel
requests can be outstanding at a given time.

0 Sorts and filters can be performed with a common syntax for both Directory and Database browsing. Query results
can be pre-fetched using a windowing mechanism.

5.2 The User-to-User System Environment
The DSM-CC System Environment can be visualized as a distributed network of Users of varying capabilities. The
Users may be connected by a DSM-CC network as defined in clause 4, User-to-Network Session Messages, or by
private network (without the User-to-Network protocol).

The User entities are listed under physical and logical categories as follows:

52.1 U-U System Hardware User Entities
0 Hardware Servers. These platforms are configured with MPEG-2 storage and delivery capability. Such Servers

include a heterogeneous variety of storage and processor systems. The Server has operating system software that
supports the operation of Services and applications, and isolates these from the underlying hardware devices and
network protocols.

0 Hardware Clients These devices run applications and provide the underlying capability of decoding and
displaying MPEG-2 streams. Hardware Clients include a heterogeneous variety of set-top boxes, PCs, etc. The
hardware Client has operating system software that supports the operation of applications that run on it and isolates
these from underlying hardware devices and network protocols.

l Other Platforms. A heterogeneous variety of hardware/OS/Network platforms may act as Clients or Servers, or
both, depending upon the application, independent of MPEG-2 streaming capability.

52.2 U-U System Logical Entities
l Service Object Implementation. A Service Object Implementation is a logical entity in the system that supports

the syntax and semantics of an interface, meaning it can receive requests on that interface. The interface declares
operations, and may inherit other interfaces. The Service Object Implementation is also referred to as a Service.

0 Client. An application program or process becomes a Client when it initiates a request (invokes operations) to an
Object Implementation. It is also referred to as a Client Application.

0 Application. An application is a named entity that supports a functional theme, represented by a Client Application
and one or more Service Object Implementations. One of the Service Object Implementations is designated the
Primary Service for the application, and assumes the application’s logical path name.

l Object Reference. An object reference is a local handle through which a Client Application makes requests to a
remote Object Implementation.

0 Client-side DSM-CC Library Stubs. These functional elements mediate between the Client Application and an
RPC protocol, providing a simplified function call interface to the application, while encoding data for RPC
requests, and decoding data for RPC replies.

0 Server-side DSM-CC Library Stubs. These functional elements mediate between an RPC protocol and the
Service Object Implementation, providing a programmin, 0 interface to the application, while decoding data from
RPC requests, and encoding data for RPC replies. Server-side Library Stubs are also known as Skeletons.

107

WOIIEC 13818=6:1998(E) 0 ISOIIEC

e Server-side Service Gateway. This Service Object Implementation acts as the entry point into a domain of
Services, and is the root of its name space.

0 Client-Side Local Object. This Object Implementation offers local functionality or simplified function call
interface to more complex lower-layer network protocols. Local objects are also known as Pseudo Objects.

The system logical entities are replaceable functional elements that have standard interfaces between them. This
standard defines the interfaces between these functional elements, as illustrated below.

Service Object Implementations

Local Objects

Physical Entities

Figure 5-l User-to-User System Environment

The hardware and software entities are logical components; they may exist on a single machine that supports all of the
components, or they may be distributed across a set of special purpose machines. For example, requests for an
individual media stream may be distributed across several machines in order to balance resource requirements even
though a Client sees a single stream reference.

The Service Gateway presents to the Client a graph of service names and information, arranged as a hierarchy of
Directories and Services. There may be one or more applications indicated by the graph. There is one top entry Service
for each application, represented by the name of the application.

Service Object Implementations

Figure 5-2 Logical Entity Relationships

108

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The DSM-CC User-to-User Interfaces are designed as generic interface types that support access to multimedia Services
and multimedia data. They are well-known basic building blocks for constructing more powerful object interfaces.
DSM-CC supports single and multiple-inheritance, enabling new object interface definitions to include and build on the
DSM-CC User-to-User interfaces.

In DSM-CC, the Name Service for objects is called a Directory. The Directory is a listing of names and corresponding
objects. The operations of the Directory are given Access Roles, thus enabling certain Clients to create and populate a
Directory hierarchy, while restricting other Clients to browsing and opening (resolving) a name to achieve the ability to
communicate with an Object Implementation. A DSM-CC Directory Service can bind any kind of object, including
application Services, Files, MPEG-2 Streams, Directories, and others. A Service may support (inherit) the Directory
interface, thereby offering a directory hierarchy of objects. The hierarchy extends from a top node through a graph of
sub-Directories, each serving to scope its own name space. All path names are therefore unique. A given object may be
represented by more than one path name.

Figure 5-3 Multimedia Object Directory Hierarchy

52.3 Application and Service Interfaces
The Application Portability Interface is the interface between an application and the greater Client Operating System,
which includes the DSM-CC Library, the processor operating system and the communications transport stack. The goal
of the DSM-CC User-to-User Library is to provide Client applications a portable means of accessing Service objects
(e.g. Directory, Stream and File). For most of the DSM-CC interfaces, operations translate directly l-l to Remote
Procedure Calls, using a predictable, well-defined message assembly and data encoding rules. However, in some cases
the interfaces supplied to the application by the DSM-CC Library system do not have a l-l mapping with the remote
operations supported by Services. In other cases, the Object Implementation is completely local (i.e., there is no Remote
Procedure Call).

In all cases, the DSM-CC Library must provide layered functionality, such as RPC message assembly, network lower
layer protocols, or local Object Implementation. Therefore, the standard defines two interfaces for a Service available to
layers of the Client; the interface seen by the application and the interface supported by the Server, as shown in Figure
5-4.

109

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Application

f Broadcast ’
Capture

Service .-----.-..-..I---...-.--.---..-.-.-- _.__.__.._._._._-....----.---.--..-----
Inter-operability Interface

WI)

(Network 4
1 Data Encoding of SII ---------.-.-.-------..------.-..------...

to/ from
Remote Object Implementation

Figure 5-4 Models for Application and Service Interfaces

Figure 5-4 also illustrates four models for DSM-CC object access:

0 Model A: The Client interfaces with a Local (Pseudo) Object. The Client makes requests across the Application
Portability interface to invoke an operation that does not result in any network message sequence. These interfaces
are specified under the heading Application Portability (Local Library) Syntax.

0 Model B: The Client interfaces with a Local Object Implementation, which was received through a Network
Broadcast. DSM-CC defines an Object Carousel for the broadcast delivery of objects.

0 Model C: The Client interfaces with a Local Object implementation, which translates to a lower layer network
message set, called the Service Inter-operability Interface. The operations are invoked on an object reference, which
is local structure that acts as a proxy for the remote Service Object Implementation. The messages of the lower
message set are l-for- 1 syntactically identical to the operations that are implemented at the remote Service. The
local object interface specified under the heading Application Portability (Local Library) Syntax. The remote
interface is specified under the heading Service Inter-operability Syntax.

0 Model D: The Client interfaces directly through the Service Inter-operability Interface to the remote Service Object
Implementation. In this case the Application Portability and Service Inter-operability Interfaces are one and the
same, in addition to being l-for-l identical to the operations that are implemented at the remote Service. The layer
between the SII and the Data Encoding is an RPC Stub that shall add a header with DSM-CC required parameters in
the request and reply. The API presents the object reference as a pointer to a type with unknown structure, while the
RPC Stub with SII interface defines the object reference structure for holding connection-related information. These
interfaces are specified under the heading Application Portability / Service Inter-operability Syntax.

5.2.4 Categorization of Client Library Interface Sets
DSM-CC Library sets are defined in order to facilitate inter-operation. These are grouped as Consumer and Producer
Clients of increasing capabilities. Core interfaces are defined as a foundation for minimal Clients. Extended interfaces
are defined to facilitate portability and inter-operability.

5.2.4.1 Consumer Client
The Consumer Client will typically support a limited set of DSM-CC operations. Through download, it will add support
for any additional operations needed to run an application. It may also store a basic set of operations on a more
permanent basis. The profile of a Client’s DSM-CC User-to-User primitives at any given time is summarized not only
by the interface name, but by the privileges (Access Role) given the Client End-User. The lowest Access Role that can
be granted is that of READER. A READER cannot write to or update an object at the Server, it can only, navigate, open
access to, and request delivery of objects and their data. The Consumer Client is defined as a READER with limited

110

0 ISO/IEC ISO/IEC 13818=6:1998(E)

capabilities for saving application state, i.e., the ability to write files. IIome set-top devices are usually classified as
Consumer Clients.

5.2.4.2 Producer Client
A Producer Client, on the other hand, is granted OWNER privileges. In addition to the READER privileges, the
OWNER can perform the create, put, write, bind, destroy functions, which enable loading of content to the Service, and
ultimate removal from the Service. One kind of information provider is the author. The author, using one of many
available multimedia authoring tools, will at times act in the capacity of loading content to the Service, and at other
times will act as a consumer in the capacity of viewing and testing the application.

5.2.4.3 Client Library Profiles
The following list establishes an initial list of DSM-CC Library Profiles.

Core Consumer. This is the minimum-compliant Client. It supports READER operations for attaching/detaching
to/from a Service Domain, navigating Directory hierarchies, resolving names to object references, controlling MPEG-2
audio-video Streams, and reading and writing Files.

Core Producer. This Client supports all operations of the DSM-CC User-to-User Core interfaces.

Extended Consumer. This Client supports READER operations of an extended DSM-CC Library, plus the ability to
write to a Database.

Extended Producer. This Client supports the complete DSM-CC Library.

111

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.2.5 Core Interfaces
The Core interfaces represent the most fundamental DSM-CC User-to-User Interfaces. These interfaces serve as a basis
for Core Client configurations.

@ Base Interface.
* This interface provides the commonly used operations close0 and destroy().

0 Access Interface.
* This interface provides commonly used attributes for size, history (version and date), lock status and

permissions.

@ Stream Interface.
3 This interface enables a Client to interactively control MPEG continuous media streams. It inherits Base and

Access interfaces.

l File Interface.
3 This interface enables a Client to read and write opaque data (File contents) of an object. It inherits Base and

Access interfaces.

l Directory Interface.
q This interface provides a CORBA name Service interface plus operations to access objects and object data

through depth and breadth-first path traversal. It additionally defines Access Roles for each of the inherited
name Service operations. It inherits the Access interface.

l BindingIterator Interface.
q This interface is defined by CORBA and is used for iteration through Directory lists.

0 Session Interface.
* This interface enables a Client to attach to a Service Domain.

l ServiceGateway Interface.
* This interface inherits Directory and Session Interfaces.

l First Interface.
* This interface provides function calls for an application to obtain root ServiceGateway and first Service. It is a

Pseudo Object interface.

112

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.2.5.1 Core Client Application Portability Library . .

level: Core
Consumer

interface: API
Base close0

Access -getLoW)
-set-Lock0

Stream Base Consumer operations
Access Consumer operations
resume0
pause0
status0
reset0
play0
jump0
-get-Info0
-setJnfo()*

File Base Consumer operations
Access Consumer operations
read0
-get-Content0
-set_Content()
wri te()

BindingIterator next-one0
next-n0
destroy0

Directory Access Consumer operations
list0
resolve0
open0
close0
get0

Session attach0
detach0

ServiceGateway Directory Consumer operations
Session operations

Core
Producer
API
close0
destroy0
-get_Size()
-get-Hist()
-set-Hist()
-geLLocW
-set-Lock0
-get-Perms()
-set-Perms()
Base operations
Access operations
resume0
pause0
status0
reset0
play0
jump0
-get-Info0
-set-Info0
Base operations
Access operations
read0
-get-Content0
-set_Content()
-get-ContentSize
write0
next-one0
next-n0
destroy0
Access operations
list0
resolve0
open0
close0
get0
bind0
bind-context0
rebind0
rebind-context0
unbind0
new-context0
bind-new-context0
destroy0
put0
attach0
detach0
Directory operations
Session operations

113

ISOIIEC 13818=6:1998(E) 0 ISO/IEC

level: Core
Consumer

Core
Producer

First root0
service0

API
root0
service0

* Although Stream -set-Info0 is generated from IDL, its use by Consumer Client is not authorized, i.e., shall be
blocked by Access control.

114

0 ISOIIEC

5.2.5.2 Core Client Service Inter-operabili
level:

interface:
Base

Access

Stream

File

BindingIterator

Directory

Core
Consumer
STT
close0

-geLLoW
-set-Lock0

Base Consumer operations
Access Consumer operations
resume0
pause0
status0
reset0
play0
jump0
-get-Info0
-set-Info()*
Base Consumer operations
Access Consumer operations
read0
-get_Content()
-set_Content()
write0

next-one0
next-no
destroy0
Access Consumer operations
list0
resolve0
open0
close0
get0

ISO/IEC 13818=6:1998(E)

r Library
Core
Producer
SII
close0
destroy0
-get_Size()
-get-Hist()
-set-Hist()
-get-Lock0
-set-Lock0
-get-Perms()
-set-Perms()
Base operations
Access operations
resume0
pauw
status0
reset0
play0
jump0
-get_Info()
-setJnfo()
Base operations
Access operations
read0
-get_Content()
-set-Content0
-get_ContentSize()
write0
next-one0
next-no
destroy0
Access operations
list0
resolve0
open()
close0
get0
bind0
bind-context0
rebind0
rebind-context0
unbind0
new-context0
bind-new-context0
destroy0
put0

* Although Stream -setJnfo() is generated from IDL, its use by Consumer Client is not authorized, i.e., shall be
blocked by Access control.

115

ISO/IEC 1381$-6:1998(E) 0 ISO/IEC

5.2.6 Extended Interfaces
The Extended Interfaces establish public, standard operations for commonly used functionality. These interfaces may be
used individually, i.e. only the interface Stubs required by an application need be present in the Client.

l Event Interface.
3 This interface provides operations by which a Client can subscribe/unsubscribe to events, to be sent as Stream

Event Descriptors in the MPEG stream.

l Download Interface.
a This interface provides a function call interface for the state machine and message encodings in clause 7, U-N

Download. It is used to cause the transfer of Client interface stubs and Client application from a Download
Service.

l Composite Interface.
* With this interface, versioned objects can be associated as a set, and opened with a single Directory open0

invocation.

l View Interface.
a The interface enables a Client to sort and filter objects by their attributes using standard SQL statements.

l State Interface.
* This interface enables a Client to suspend and resume application state.

l Interfaces Interface.
) The interface provides methods for publishing and verifying new interfaces, in order to insure consistent and

complete interface definitions in a DSM-CC environment.

l Security Interface.
* The interface provides a method to associate the passing of authentication parameters with Session attach(),

Directory open(), Directory resolve(), Directory get(), or other operations requiring authorization. It is a
Pseudo Object interface.

l Config Interface.
3 This interface provides an API by which RPC can be configured for either synchronous or asynchronous

operation. It is a Pseudo Object interface.

l LifeCycle Interface.
3 This interface is used by implementations for creation of objects, to insure unique object references in a DSM-

CC environment. It is a Pseudo Object interface.

l Kind Interface.
q This interface provides operations to determine which interfaces are supported by an object. It is a Pseudo

Object interface.

116

0 ISOIIEC ISO/IEC 13818=6:1998(E)

5.2.6.1 Extended Client Application Portability Library
level: Extended

Consumer
interface:
Core interfaces
(11) a

Download

Event

Composite

API
Core
Consumer
API operations
info0
alloc()
start0
cancel0
subscribe0
unsubscribeo
notify0
-get-EventList
-set-EventList()*
list-subs0

View query0
read0
execute0

State
- get-Style0
suspend0

I resume0
Interfaces

Security
Config

authenticate0
wait0
inquire0
-get-DeferredSync
-set-DeferredSync

LifeCycle
Kind

- get-ActiveRequests()

Extended
Producer
API
Core
Producer
API operations
info0
alloc()
start0
cancel0
subscribe0
unsubscribeo
notify0
-get-EventList
-set-EventList
list-subs0
bind-subs0
unbind-subs0
query 0
read0
execute0
- get-Style0
suspend0
resume0
define0
check0
show0
undefine()
authenticate0
wait0
inquire0
-get-DeferredSync
-set-DeferredSync
- get-ActiveRequests()
create0
is-a0
has-a0

* Although Event -set-EventList is generated from IDL, its use by Consumer Client is not authorized, i.e., shall be
blocked by Access control.

117

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

5.2.6.2 Extended Client Service-interoperability Library
level: Extended Extended

Consumer Producer
interface: SII SII
Core interfaces Core Core
(11) a Consumer Producer

SII operations . SII operations
SessionUU attach0 attach0

detach0 detach0
ServiceGatewayUU ServiceGateway AccessRoles** ServiceGateway AccessRoles**

Directory Consumer operations Directory operations
Sessions1 attach0 attach0

detach0 detach0
ServiceGatewayS ServiceGateway AccessRoles** ServiceGateway AccessRoles**

Directory Consumer operations Directory operations
Sessions1 operations Sessions1 operations

DownloadSI info0 info0
proceed0 proceed0
cancel0 cancel0

install0
deinstall()

Event subscribe0 subscribe0
unsubscribeo unsubscribeo
-get-EventList -get-EventList
-set-EventList()* -set-EventList

Composite list-subs0 list-subs0
bind-subs0
unbind-subs0

View query0 query0
read0 read0
execute0 execute0
- get-Style0 - get-Style0

State suspend0 suspend0
resume0 resume0

Interfaces define0
check0
show0
undefine()

* Although Event -set-EventList is generated from IDL, its use by Consumer Client is not authorized, i.e., shall be
blocked by Access control.

** The ServiceGateway redefines AccessRoles for Producer operations inherited from Directory.

5.3 Overview of the Interface Definition Language(lDL)
The DSM-CC User-to-User interfaces are defined in Object Management Group (OMG) Interface Definition Language
(IDL). The complete IDL syntax, grammar, language mappings and related topics are contained in “The Common
Object Request Broker: Architecture and Specification,” Revision 2.0, July 1995, from the Object Management Group.
This specification is commonly referred to as CORBA 2.0. The OMG IDL is also standardized in ISO/IEC 14750.

IDL is a language for specifying interfaces. It is not a programming language, and therefore does not provide any
procedural syntax. It is object-oriented, supporting the concepts of encapsulation and inheritance. It defines basic types
such as char, short, long, and constructed types such as sequence (which is used to specify variable-length arrays). The
scoping is much like ANSI C++. In IDL, a module contains interfaces, which in turn contain operations. (in ANSI C++,
a namespace contains classes, which in turn contain methods).

118

0 ISO/IEC ISO/IEC 13818-6:1998(E)

nodule module-name {
types
. . .
interface inter$ace-name {

types
attributes
operations

1 ;
otherjnte$aces
. . .

Figure 5-5 IDL File Format

Interfaces can be inherited with the syntax:

mocMe module-name {
interface interface-name :

inherited-interjke-name,
other-inherited interj2ace_name(

. . .
1 . 9

1 ;

Figure 5-6 Inheriting Interfaces with IDL

The inheritance feature of IDL enables new interfaces to be rapidly developed from basic ‘building block’ interfaces. All
operations of the inherited interface are automatically included in the new interface. For example, the DSM-CC
ServiceGateway interface inherits Directory and Session interfaces with the following IDL:

module DSM (
interface ServiceGateway
1 . 9

1 . 7

Directory, Session {

IDL is used to define interfaces in a 1 zeneric way, independent of language and network protocol. CORBA 2.0 provides
rules which map the IDL to C, C++ and Smalltalk languages. Given an IDL specification, the rules of the language
mapping shall yield the declarations for constants, type definitions for all data types and function call prototypes for all
operations. For example, the type Struck in IDL is identical in syntax to the C language s true t. OMG may define
other language mappings in the future, which shall be considered normative as well.

In addition to the language mapping, rules for data encoding must be defined for each of the common IDL types. A data
encoding is a flat sequence of octets that can be transferred between Client and object implementation using an inter-
process control or network transport mechanism. Where the language mapping offers structure with accessible members,
the data encoding is a contiguous, unparsed buffer. CORBA 2.0 provides a data encoding called Common Data
Representation (CDR). DSM-CC Informative Annex C provides a summary of IDL to CDR, and in addition provides
IDL to External Data Representation (XDR), the data encoding used by Open Networked Computing (ONC).

119

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

CORBA 2.0 also specifies a structure called an Interoperable Object Reference (IOR), which at a minimum contains a
an object type id, a Protocol Profile Identifier, and an encapsulation of connection information. The Protocol Profile
Identifier indicates the RPC, the data encoding and the structure of the encapsulation. The information in the IOR is
used for all operation invocations on the Client/Service connection. DSM-CC has registered a range of Protocol Profile
Identifiers with OMG, and defines several Protocol Profiles(identifier and associated encapsulation) for use in DSM-CC
environments,

q., .I. . \\<,. ., t y. pzygx$-i L>TcjI

w w I I

Networked Object Protocol Networked Object Protocol

Object Implementation

Skeleton
encoder

I
decoder

A

I r * * I I

I
Networked Object Protocol I Networked Object Protocol

I

Request

Figure 5-7 IDL to Entity Relationship

An IDL compiler is used to generate the Client Stub and a corresponding Server Stub, also known as the Skeleton. The
upper interface of the Stub and Skeleton, as shown in Figure 5-7, presents the language mapping interface to the
programmer. The lower interface presents the data encoding to the Networked Object Protocol. In the case of a full
CORBA system, this is the Object Request Broker (ORB). In other systems, it may simply be an RPC request/reply
mechanism.

5.3.1 Operations
In IDL, operation parameters are specified to be either input (in), output (out), or both input and output (inout). In an
underlying RPC implementation, input parameters are placed in the RPC request, and output parameters are returned in
the RPC reply.

For example, the DSM-CC Event subscribe0 operation is defined as follows:

module DSM {
exception INV-EVENT-NAME ExceptUser;
interface Event (

void subscribe (in string aEventName, out u-short eventId)
raises (INV-EVENT - NAME);

1 . .
> . 9

The exception INV EVENT NAME is declared using the exception declaration. The exception declaration is like a C - -
language strut t declaration. In addition to having an exception structure defined by the DSM Common macro
ExceptUser, it will have a string id, e.g., “ex~DSMJNVJ3VENT~NAME”. All operations can return any of the
standard CORBA System exceptions. The raises declaration identifies any additional user exceptions the operation can
return.

120

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The subscribe0 operation is in the Event interface. It returns void. It has an string input argument that identifies an
Event, and an unsigned short output argument that is a token associated with the Event. If the input argument is not
valid, The Event subscribe0 operation will return the INV-EVENT-NAME exception. Note: the Event interface is fully
defined later in this clause.

5.3.2 Attributes
Within an interface, the attribute declaration can be used to define an identifier of a certain data type with a pair of
implicit operations, one to set the value of the attribute, and the other to retrieve the value of the attribute. The readonly
attribute declaration can be used to define an attribute that can only be retrieved by a Client.

For example, the Event interface declares an EventList attribute as an array of strings, as follows:

module DSM (
exception INV-EVENT-NAME ExceptUser;
interface Event (

typedef sequence<string> EventList-T;
attribute Event-List-T EventList;

> . .
> . 9

5.3.3 Language Mapping
At the programing level, the C language mapping for the above Event subscribe0 IDL is:

void DSM-Event-subscribe
(DSM Event object, CORBA-Environment * ev, -

CORBA string aEventName, DSM u short * eventId) - --

Two arguments are inserted in the C mapping. The first is an input argument pointing to the object that will receive the
request. This pointer represents a structure that normally contains addressing or local context information. The second is
an output argument that will hold the exception, if there is one.

The EventList attribute produces two operations in the C mapping:

DSM-Event-EventList-T DSM-Event-get_EventList
(DSM Event object, CORBA-Environment * ev); -

void DSM-Event-set_EventList
(DSM Event object, CORBA-Environment * ev -

SM Event EventList T * EventList); - - -

A C++ language mapping produces a name space DSM and within it, an Event class. In the Event class will be the
methods for the operations and attributes defined in the IDL.

Note: In cases where the mapping of basic types in DSM-CC disagrees with that of OMG, the OMG mapping shall take
precedent.

5.3.4 Encoding
Over the network, the above Event subscribe0 becomes two messages, the request and reply of the Remote Procedure
Call (RPC). A Protocol Profile (identified by a profileId in the IOR) is determined at the time the Client first obtains the
IOR. This Protocol Profile establishes the data encoding to be used. For example, the UN0 RPC uses Common Data
Representation (CDR) encoding. For each IDL type, the encoding specifies the octet sequence to be carried over the
network. DSM-CC Protocol Profiles are defined later in the Service Inter-operability subclause.

The RPC protocol defines message headers that provide a common transaction id for the request/reply pair, an operation
id, etc. UN0 defines the RPC and data encoding on the Inter-operability interface for a UN0 RPC stack. ONC defines
the RPC and data encoding on the inter-operability interface for an ONC RPC stack. Appendix G defines the UN0

121

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

messages in IDL. Annex C defines UN0 and ONC RPC on-the-wire message header mappings. The default for DSM-
CC, unless otherwise specified by the Protocol Profile, is UNO/CDR.

The in arguments of the operation are placed in the request message body by the Client, in the order that they were
specified in the IDL. In the case of Event subscribe(), this consists of one argument, a string. While at the programming
interface, the string consisted of a pointer to a char(an array of char, null-terminated), a CDR encoding shall place a 4
byte length followed by the char array (null-terminated) in the byte stream.

The Out arguments of the operation are placed in the reply message body by the object implementation responding to the
request, again in the order that they were specified in the IDL. In this case, the reply message body consists of 2 bytes
containing the eventId.

5.3.5 Typographical Conventions
In general, the DSM-CC User-to-User IDL syntax is placed within borders, to separate it from ordinary text.

The type styles shown below are used in this clause to distinguish programming statements from ordinary text and to
distinguish among OMG IDL specifications, DSM-CC IDL specifications and language mappings. However, these
conventions are not used in tables or subclause headings, where no distinction is necessary, nor are the type styles used
in text where their density would be distracting.

Helvetica OMG IDL, CORBA language and syntax elements.

Times New Roman DSM-CC User-to-User IDL, within a text border.

Times New Roman (bold) DSM-CC User-to-User language and syntax elements in sentence text.

Courier C language language and syntax elements.

5.3.6 Syntactical Conventions
The Core and Extended interfaces are scoped in module DSM. At the DSM level of scoping, Common DSM-CC data
type definitions will be shared by Application and Service Inter-operability interfaces.

A Service Inter-operability Interface shall have the suffix SI, if it differs syntactically from the corresponding
Application Portability Interface. The U-N Session Inter-operability Interface shall have the suffix UU.

#ifdef DSM GENERAL shall enclose Producer Client operations. IDL Compilers can therefore generate efficient
Consumer Client Stubs as the default case (DSM GENERAL not defined). With DSM GENERAL defined, IDL
Compilers shall generate complete interface Stubs

-

#ifdef DSM PSEUDO shall enclose local operations where they need to be separated from client/service operations. -

#ifdef DSM-CONSUMER enables compilation of producer-only operations (without consumer operations).

The terms TRUE and FALSE shall indicate boolean 1 and 0, respectively.

5.4 Common Definitions

5.4.1 Basic Types
The following IDL specifies basic types. The basic type definitions of the language mapping may require modification
to satisfy the requirements of the host processor and Operating System. For example, one system may define a long as a
32 bit quantity, whereas another may define it as a 64 bit quantity. OMG IDL defines the following ranges for integer
data types:

I22

0 ISO/IEC

short -215 . . 215

ISO/IEC 1381$-6:1998(E)

unsigned short

long

unsigned long

longlong

unsigned longlong

0 . . 216

-23’ . . 231

0 . . 232

-263 . . 263

0 . . 264

module DSM (
// machine-independent basic types
II
typedef short s-short;
typedef unsigned short u-short;
typedef long s-long;
typedef unsigned long u-long;
I/

// 16 bit signed integer
// 16 bit unsigned integer

/I 32 bit signed integer
/I 32 bit unsigned integer

// note: this longlong is present to satisfy present OMG compilers
// that do not support CORBA 2.0 extensions
// If the IDL compiler cannot handle unsigned long long, treat it as an array
/I of 2 unsigned long where big-endian has MSB in octet 0 and LSB in octet 7
II and little-endian has MSB in octet 7 and LSB in octet 0
/I
// typedef s-long s_longlong[2] ; II 64 bit signed integer
// typedef u-long u-longlong[21; I/ 64 bit unsigned integer
/I
// else, if the IDL compiler supports CORBA 2.0 extensions
// use the following two statements
II
typedef long long s-longlong; // 64 bit signed integer
typedef unsigned long long u-longlong; I/ 64 bit unsigned integer

1 . 7

5.4.2 Entity Identification
These types are used to hold information describing logical entities of the system.

The object reference(ObjRef) is defined as type CORBA Object. The Client Application has an opaque notion of object
references, and is insulated from the representation of them (i.e., cannot determine any information in their structure).
The Client merely receives the object reference in response to a resolve or open operation, and then invokes other
operations using the object reference. It has no need to interpret or parse the object reference. The Client Library Stub
shall define the Object structure and can use it to hold network addressing information or local state.

An Opaque type is defined for holding a sequence of octets. Opaque values are used read and write File contents, to
hold suspended application state information (UserContext), to hold the identification of the End-User (Principal), and
for other values where the structure of the data does not need to be statically specified.

Version is used for identification of Object Implementation variations, and for compatibility verification.

ServiceLocation is used to contain parameters needed to attach to a Service Domain. ServiceDomain is in NSAP
address format. For an interactive Session, it is the globally unique Server network address. For a Broadcast Carousel, it
is the unique identifier of the Carousel. pathName provides the logical path in the network system namespace.
initialcontext provides application state enabling the resumption of an application at a given point.

123

ISO/IEC l3818=6:1998(E) 0 ISOIIEC

module DSM {
II entity identification
II
II ObjRef is received by the Client in the reply to a resolve
II Following that, operations can be invoked against it
II
typedef Object ObjRef; II implemented as void * for C mapping
typedef sequencecObjRef> ObjRefs;
typedef sequence<octet> opaque;
typedef opaque UserContext; /I context for application state
typedef opaque Principal; II system-wide identification of end user
struct Version (char aMajor; char aMinor;};
typedef sequence<octet, 20> ServiceDomain; II ServerId NSAP
struct ServiceLocation (

ServiceDomain aServiceDomain;
CosNaming: :Name pathName; II path name to resolve
UserContext initialcontext; II starting user context

I . 3
1 . 9

5.4.3 Interface Identification
DSM-CC identifies interfaces by two means, enumeration and string values. The IFKind is an unsigned long used to
identify an interface. For the situation where the interface inherits other interfaces, the IntfCode is defined. The IntfCode
identifies the numeric and string value of the most derived interface, and lists the IFKinds for the inherited interfaces.
The IntfCode provides a repository identifier to uniquely scope the source of the interface definition. For object
identification in CORBA mechanisms, string ids are used in the form “<Module>::<Interface>“. For instantiable objects,
3-character string alias values are reserved, in order to reduce the size of Interoperable Object References.

124

0 ISOIIEC ISO/IEC 13818-6:1998(E)

module DSM (
II interface identification
II
typedef u-long IFKind;
typedef sequencecIFKind> IFKindList;
struct IntfCode (

u-long anIFKind;// standard DSM-CC IFkind enumeration
string kind; /I DSM-CC format, “<Module>: :<Interface>” or alias
string repositoryId; /I id of repository where defined
IFKindList includes; /I IFKinds of inherited interfaces

II The following are Service Tags registered with OMG for identifying interfaces
II The reserved range for ISO/IEC WGll in OMG is 0~49534FOO - 0~49534F7F
II DSM interface IFKinds
II
const u-long ik-null = 1230196480; II = Ox49534FOO
const u-long ik_Base - - 1230196481; II = Ox49534FOl
const u-long ikeAccess - - 1230196482; II = Ox49534F02
const u-long ik-Stream = 1230196483; II = Ox49534F03
const u-long ik-File - - 1230196484; II = Ox49534F04
const u-long ik-BindingIterator - - 1230196485; II = Ox49534F05
const u-long ik-NamingContext - -1230196486;//=0x49534F06
const u-long ik-Directory - - 1230196487; II = Ox49534F07
const u-long ik-Session = 1230196488; II = Ox49534F08
const u-long ik-ServiceGateway - - 1230196489; II = Ox49534F09
const u-long ik-First = 1230196490; II = Ox49534FOA
const u-long ik_Download = 1230196491; II = Ox49534FOB
const u-long ik-Event - - 1230196492; II = Ox49534FOC
const u-long ik_Composite - - 1230196493; II = Ox49534FOD
const u-long ikJiew - - 1230196494; II = Ox49534FOE
const u-long ik-State - - 1230196495; II = Ox49534FOF
const u-long ik_Interfaces = 1230196496; II = Ox49534FlO
const u-long ik-Security - - 1230196497; II = Ox49534Fll
const u-long ik-Config = 1230196498; II = Ox49534F12
const u-long ik-Lifecycle = 1230196499; II = Ox49534F13
const u-long ik_Kind = 1230196500; II = Ox49534F14
const u-long ik_SessionUU = 1230196501; II = Ox49534F15
const u-long ik_SessionSI = 1230196502; II = Ox49534F16
const u long ik DownloadSI
II - -

= 1230196503; II = Ox49534F17

II aliases for string names
II
const string alias-Directory = “dir”;
const string alias_BindingIterator = “bit”;
const string alias-stream = “str”;
const string alias-File = “fil”;
const string alias-Session = “ses”;
const string alias_ServiceGateway = “srg";
const string alias-Interfaces = “inf’;
const string alias-View = “viw”;
const string alias-Download = “dnl”;
const string alias-Event = “evt”;

125

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.4.4 Access Roles for Operations
An Access Role shall be associated with every DSM-CC operation, and with get and set operations individually on each
attribute. An End-User Client (e.g., human) of a Service Domain shall also be given one or more Access Roles. In order
for an operation request to be accepted, the Access Role of the End-User Client must satisfy the Access Role
requirements of the operation. DSM-CC defines the following Access Roles:

0 READER. A READER has read-only access to an object.

0 WRITER. A WRITER can write to or update the state of an object. A WRITER also has READER privileges.

0 BROKER. A BROKER can authorize access by a Client to an object. A BROKER also has WRITER privileges.

0 OWNER. An OWNER can create and destroy objects. An OWNER also has BROKER privileges.

0 MANAGER. A MANAGER has full system administration authority. A MANAGER also has OWNER privileges.

If not specified, the Access Role (ACR) for interface operations and attribute get operations shall default to READER. If
not specified, the Access Role (ACR) for attribute put (set) operations shall default to WRITER.

A Service Domain may define additional Access Roles for further identification of an End-User Client’s capabilities.

Module DSM {
// Access Roles for operations
II
typedef char AccessRole;
const AccessRole READER = ‘R’;
const AccessRole WRITER = ‘W’;
const AccessRole BROKER = ‘B’;
const AccessRole OWNER = ‘0’;
const AccessRole MANAGER = ‘M’;

1 . 9

5.4.4.1 Syntax for Access Control
The following rules enable the implementation of access control for DSM-CC:

Each operation must have an associated invocation privilege OWNER, MANAGER, BROKER, WRITER or READER.
This is defined by means of the Access Control Role (ACR) definition form:

const char coperation name>ACR = <access role>;

For example, Stream resume has the following Access Control Role definition:

module DSM {
interface Stream (

const char resume ACR = READER; -

Each attribute shall have separate Access Control Role for both get and put operations against it. If the CORBA set -
operation is used, the DSM put invocation privilege applies. If the CORBA -get operation is used, the DSM get
invocation privilege applies This is defined by means of the Access Control Role (ACR) definition form:

const char <attribute name>-put_ACR = <access role>;
const char <attribute name>-get_ACR = <access role>;

126

0 ISO/IEC ISO/IEC 13818=6:1998(E)

For example, the Stream Info attribute has the following Access Control Role definitions:

module DSM {
interface Stream (

const AccessRole Info-get_ACR = READER;
const AccessRole Info-put - ACR = OWNER;

> . 9
1 . 7

5.4.5 Exceptions
An exception is an indication that an operation request was not performed successfully. The DSM-CC U-U operations
are considered to be atomic. If an exception is received, all output parameters of the operation are invalid. An exception
may be accompanied by additional, exception-specific information. Exception declarations permit the declaration of
struct-like data structures which may be returned to indicate that an exception condition has occurred during the
performance of a request.

The standard OMG System exceptions are used by DSM-CC. These exception identifiers may be returned as a result of
any operation invocation, regardless of the interface specification. Standard System exceptions are not listed in raises
expressions. The OMG IDL reference standard has a complete description of how exceptions are handled, plus code
examples of C mappings. For example, the CORBA COMM-FAILURE exception has the string id
“CORBA::COMM FAILURE”. -

Each standard exception also includes a completion status which takes one of the values { COMPLETED - YES, -
COMPLETED - NO, COMPLETED - MAYBE}. These have the following meanings:

COMPLETED YES - The object implementation has completed processing prior to the exception
being raised.

COMPLETED NO - The object implementation was never initiated prior to the exception being
raised.

COMPLETED MAYBE - The status of the implementation completion is indeterminate.

The following are the standard CORBA System exceptions:

127

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

module CORBA {
#define ex body {u-long minor; completion status completed;}
enum completion - status {COMPLETED YES, COMPLETED

COMPLETED-MAYBE}; -
NO,

enum exception-type {NO-EXCEPTION, USER-EXCEPTION, SYSTEM-EXCEPTION};
exception UNKNOWN
exception BAD PARAM
exception NO MEMORY
exception IMP LIMIT
exception COMM FAILURE
exception INV OBJREF
exception NO-PERMISSION
exception INTERNAL
exception MARSHALL
exception INITIALIZE
exception NO IMPLEMENT
exception BAD TYPECODE
exception BAD-OPERATION
exception No RESOURCES
exception PERSIST STORE
exception BAD INV-ORDER
exception TRANSIENT
exception FREE MEM
exception INV IDENT
exception INV-FLAG
exception INTO REPOS
exception BAD CONTEXT
exception OBJADAPTER
exception DATA CONVERSION -

) . J

ex-body;
ex-body;
ex-body;
ex body;
exIbody ;
ex-body;
ex-body;
ex-body;
ex-body;
ex-body;
ex-body;
ex-body;
ex-body;
ex body;
ex:body;
ex body;
ex-body ;
ex-body ;
ex-body ;
ex-body ;
ex-body ;
ex-body ;
ex-body ;
ex-body ; -

//the unknown exception
//an invalid parameter was passed
//dynamic memory allocation failure
//violated implementation limit
//communication failure
//invalid object reference
//no permission for attempted op
//ORB internal error
//error marshalling param/result
//ORB initialization failure
//operation implementation unavailable
//bad typecode
//invalid operation
//insufficient resources for request
//persistent storage failure
//routine invocations out of order
//transient failure - reissue request
//cannot free memory
//invalid identifier syntax
//invalid flag was specified
//error accessing interface repository
//error processing context object
//failure detected by object adapter
//data conversion error

The following are the DSM-CC User-to-User exceptions:

1. The ALREADY BOUND exception indicates a Name is already in use. The Client should pick another Name. It is -
identical in syntax to the CORBA CosNaming AlreadyBound exception.

2. The BAD COMPAT INFO exception is returned in response to a request to initiate a Download sequence. - -
Certain operations will always carry a DownloadInfoRequest, which provides a CompatibilityDescriptor and
Download negotiation parameters to the Service. The CompatibilityDescriptor describes the Client’s current
hardware and software configuration. BAD-COMPAT INFO is an indication of an unrecognized
CompatibilityDescriptor. This feature is described in clause 6 of this part of ISO/IEC 138 18.

3. The BAD MODULE ID exception indicates a module identifier value does not exist in the present configuration. - -

4. The BAD MODULE INFO exception indicates an incorrect Download install configuration. - -

5. The BAD SCALE exception indicates an incorrect Scale value. -

6. The BAD START exception indicates the Stream start time does not exist. -

7. The BAD STOP exception indicates the Stream Stop value does not exist. -

8. The BLOCK-SIZE exception indicates the requested block size is unacceptable to the Server.

9. The BUF-SIZE exception indicates the requested buffer size is unacceptable to the Server.

10. The CANNOT-PROCEED exception indicates a Directory did not have permission to resolve a node in a logical
path. It is identical in syntax to the CORBA CosNaming CannotProceed exception.

11. The ILLEGAL SYNTAX exception indicates an input string parameter contained incorrect syntax for IDL or -
SQL, or other expected language.

128

0 ISOIIEC ISO/IEC 13818-6:1998(E)

12. The INV CURSOR exception indicates a cursor is out of range of the query results. -

13. The INV - EVENT-ID exception indicates an Event token is not recognized.

14. The INV EVENT NAME exception indicates the Event name does not exist for this Service. - -

15. The INV KIND exception indicates an interface kind is not recognized. -

16. The INV NAME exception indicates a path name is incorrectly formatted. It is identical in syntax to the CORBA
CosNaing InvalidName exception.

17. The INV OFFSET exception indicates the offset is outside the range of File contents. -

18. The INV SIZE exception indicates the size exceeds server or network limits. -

19. The MPEG DELIVERY exception indicates the Server was unable to deliver a multimedia object over an MPEG -
stream.

20. The NO AUTH exception indicates the End-User has not provided the correct authentication in the request. -

2 1. The NO - QUERY exception indicates a query has not yet been performed.

22. The NO REF TYPE exception indicates the referenced object or data type does not exist in this context. - -

23. The NO RESUME exception indicates that previous application saved state cannot be recovered. -

24. The NO SUSPEND exception indicates the object cannot save application state. -

25. The NOT DEFINED exception indicates a prerequisite data type or interface has not been defined. -

26. The NOT FOUND exception indicates a logical path name does not exist, that an intermediate node is not a
Directory,-& that it could not resolve the object. It is identical in syntax to the CORBA CosNaming NotFound
exception.

27. The OPEN LIMIT exception indicates the number of active object references is the maximum allowed. -

28. The PREV DEFINED exception indicates a data type or interface has already been defined. -

29. The READ LOCKED exception indicates reads are temporarily prevented for an object. -

30. The TIMEOUT exception indicates the maximum time for a transaction has been exceeded.

3 1. The UNK USER exception indicates the Principal End-User is unknown to the Service Domain. -

32. The WRITE LOCKED exception indicates writes are temporarily prevented for an object. -

33. The SERVICE XFR exception indicates a resolve operation was unsuccessful, and provides an alternate Service
Domain location where the requested Service can be resolved.

129

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

module DSM (
// User-to-User common exceptions
II
#define ExceptUser (u-long minor; u - long completed;}
II
exception ALREADY-BOUND (}; // new Name conflicts with existing Name
exception BAD-COMPAT-INFO ExceptUser; // incorrect CompatibilityDescriptor
exception BAD-MODULE-ID ExceptUser; // Module Id out of range
exception BAD-MODULE-INFO ExceptUser; // Incorrect CompatibilityDescriptor
exception BAD-SCALE ExceptUser; //invalid scale
exception BAD-START ExceptUser; //stream does not contain this NPT
exception BAD-STOP ExceptUser; //invalid StopNPT, can never be reached
exception BLOCK-SIZE ExceptUser; // block size out of range
exception BUFSIZE ExceptUser; // buffer size out of range
exception CANNOT PROCEED (

CosNaming::Nan&gContext cxt;
/I unable to resolve node in path

CosNaming::Name rest of - - name;
1 . ?
exception ILLEGAL-SYNTAX (string aMessage; } ; // unrecognized syntax
exception INV-CURSOR ExceptUser; //cursor out of bounds
exception INV-EVENT-ID ExceptUser; II invalid event id
exception INV-EVENT-NAME ExceptUser; // invalid event name
exception INV-KIND (string aMessage; } ; //type previously defined
exception INV-NAME (}; // incorrect name format
exception INV-OFFSET ExceptUser; // offset exceeds file size -1 for read
exception INV-SIZE ExceptUser; //size exceeds network limits
exception MPEG-DELIVERY ExceptUser; //error delivering MPEG stream
exception NO-AUTH(f/not allowed to open without authentication

u-long minor;
u-long completed;
opaque authData;

I . 9
exception NO-QUERY ExceptUser; // a query has not been performed yet
exception NOJZEF-TYPE (string aMessage; } ; //missing type definition
exception NO-SUSPEND ExceptUser; // unable to suspend state
exception NO-RESUME ExceptUser; // unable to resume a previous session
exception NOT-DEFINED (string aMessage; } ; //type previously defined
enum NotFoundReason (missing-node, not-context, not-object } ;
exception NOT-FOUND (// node in path not found

NotFoundReason why;
CosNaming: :Name rest of - - name;

exception OPEN-LIMIT ExceptUser; // too many resources are open
exception PREV-DEFINED (string aMessage; } ; // type previously defined
exception READ-LOCKED ExceptUser; // reads prevented
exception TIMEOUT ExceptUser; // transaction timed out
exception UNKJSER ExceptUser; // Principal unrecognized
exception WRITE-LOCKED ExceptUser; // writes prevented
exception SERVICE-XFR (ServiceLocation transfer;} ; // resolve failed, alternate location given

1 . 7

5.4.6 Stream and Event Synchronization
Application time and scale values are defined to enable monitoring of continuous media streams. AppNPT indicates
absolute time value, and Scale indicates rate and direction(forward or reverse). These are used in the DSM-CC Stream
and Event interfaces. For a further description, see the Stream interface subclause.

130

0 ISOIIEC ISO/IEC 13818-6:1998(E)

module DSM (
If stream and event synchronization
If
struct AppNPT (s-long aseconds; u - long aMicroSeconds;); If Normal Play Time
struct Scale (s-short aNumerator; u-short aDenominator; } ; //+FF,-Rewind, Rate

> . 9

5.5 Application Portability Interfaces(API)
DSM-CC specifies interfaces as either abstract or instantiable. An abstract interface is never used to define a complete
object. Instead it provides operations that are designed be inherited. An instantiable interface defines the interface of the
complete, realizable Object Implementation. The instantiable interface can inherit one or more abstract or instantiable
interfaces.

The Service Domain must implement all Core interfaces completely in order to be DSM-CC compliant. Extended
interfaces are optional. If the Server implements an interface, it must implement all of the declarations, type definitions,
attributes, access types, operations and exceptions of the interface. The minimal Client (Core Consumer) need only
implement the specified Core READER plus File write0 operations. A Client can choose to support selected operation
groups by Access Role. For example, a Client could elect to support only the READER group of an interface, meaning
only those operations in the interface with READER Access Role.

5.5.1 Core Interfaces
The Core DSM-CC User interfaces are the minimum set that must be supported by a DSM-CC compliant
ServiceGateway Domain. They include the abstract interfaces Base, Access, NamingContext, and the instantiable
interfaces Stream, File, Directory, Session and ServiceGateway.

131

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Abstract Interfaces

operations:
close [R]

attributes:
Size list [R] rebind-context [W] root

destroy[O] Hist
Lock
Perms

resolve [R] unbind [W] service
bind [W] new-context [0]
bind-context [W] bind-new-context [0]
rebind [W] destroy [O]

Instantiable Interfaces

i
Stream

inherits:
Access
Base
attributes:
Info
operations:
resume [R]
pause CR1
status [R]
reset [R]
play CR1
juq [RI

i
File

inherits:
Access
Base
attributes:
ContentSize
operations:
read [R]

. r..7-l

(-xzq
inherits:
Access
NamingContext
operations:
open [RI
close [R]
get [RI
put WI

operations:
next-one [R]
next-n [R]
destroy [R]

[S)
inherits:
Directory
Session

R ::= Reader
W ::= Writer 1 R
B ::= Broker 1 W 1 R
0 ::= Owner 1 B I W 1 R
M ::= Manager IO I B I W I R

[Sesihn)
operations:
attach [R]
detach [R]

Figure 5-8 DSM Core Abstract and Instantiable Interfaces

5.5.1 .l Base
The Base interface provides common operations for deletion of DSM-CC object references and objects.

A Client (READER) may have obtained an object reference for an object, invoked some operations against it, and now
has no more use for that object. The Base close0 operation indicates the requesting Client no longer needs transient
Client/Service connection-related resources associated with the object and shall not make any further requests.

When a Client (OWNER) wishes to delete the persistent data associated with an object, it may invoke the Base
destroy0 to destroy it, thus enabling the Object Implementation and related Services to free all state and storage
resources associated with it. Following destroy(), the object shall cease to exist for all Clients.

5.5.1.1.1 Summary of Base Primitives
The following primitives are used by the interfaces of all objects.

close Close a reference to an object. (READER)

destroy Destroy an object instance. (OWNER)

132

0 ISOIIEC ISO/IEC 13818=6:1998(E)

5.51 .1.2

DSM Base close

DSM Base close

Close a reference to an object. (READER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Base {

const AccessRole close ACR = READER;
- void close 0;

1 . 9
I . 7

Semantics

Base cl@) is used by the Client to indicate that access to the object is no longer required. This is primarily a resource
issue and is not specifically required; however, the total number of references allowed is limited, and well behaved
Clients shall close whenever reasonable. If OPEN-LIMIT has been received when attempting to open an object
reference, the Client shall need to close one or more other active references in order to free resources, before retrying
the open.

Close means delete the object reference and therefore the Client’s ability to communicate with the object.

If a parent Composite object is closed, its Child objects are closed as a result of the operation (See Composite interface
description in the Extended Interfaces subclause).

Privileges Required:
READER

5.51 .1.3 DSM Base destroy
t

DSM Base destroy Destroy an object instance.

Application Portability / Service Inter-operability Syntax

module DSM {
interface Base (

#ifdef DSM GENERAL
cons;AccessRole destroy - ACR = OWNER;
void destroy 0;

#endif
> . 9

> . 9

Semantics

Base destroy0 is used by the Client to delete a persistent Object Implementation. After this occurs, its reference will no
longer be valid, and storage resources used for it will be freed.

Privileges Required:
OWNER

5.5.1.2 Access
The Access interface provides common description and access control attributes. These include size, version, date, lock
and permissions attributes.

133

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Principal End-User Clients are authorized to invoke operations through the following mechanisms:

0 Capability Verification: A verification that the End-User has an Access Role (Capability) that matches or exceeds
the Access Control Role of the operation.

1. An Access Control Role is defined for each operation e.g., OWNER, MANAGER, BROKER, WRITER
or READER.

2. The Principal End-User is the object OWNER, or a member of an authorized READER, WRITER,
BROKER or MANAGER group in the Object Implementation’s Service Domain.

0 Authentication: Resolving an object or invoking selected operations may require a password/ PIN or encrypted key
exchange. Access for all operations on an object can be setup to require secure transmissions of all messages
to/from that object.

Authorization for access to Primary Services is performed by the Service Gateway or Directory of Services.

Authorization for access to an application’s objects is performed by the Service or Directory in which the objects are
bound..

An allsecure parameter can be set on an object which requires secure transmission for all messages to/from the object. It
is expected that the lower layers of network protocol will perform this function via encryption or scrambling.

5.5.1.2.1 Setting Permissions
When an object is created the OWNER is associated with it. The OWNER may alter privileges by setting the
permissions (Perms) attribute on an object to allow access by designated MANAGER, BROKER, WRITER or
READER groups. Permissions are set by using Directory put0 (where path specification is <object-name>, Perms).

A Client may be in more than one group. An object can be accessed by the OWNER and by more than one group in
each of MANAGER, BROKER, WRITER or READER AccessRoles. Groups identifiers are scoped within arbitrary
Domain boundaries, e.g., within the ServiceGateway, within a Directory, etc. The Client PrincipalId shall map to a set of
groups in which that Client is a member. Corresponding authentication databases will vary with the implementation, and
are not specified in this standard.

The Perms attribute shall identify groups that can access an object or invoke its operations. An object shall limit access
to the Client who has the specified group or individual identification. Each method of that object shall further restrict
invocation by allowing access by role and group. For example, if a method requires WRITER privileges, the Client must
be in one of the WRITER groups specified in that object’s Perms attribute. To open or resolve a target object, the Client
must be in one of the READER groups specified in that object’s Perms attribute.

The OWNER may set permissions to associate a password with an object, or to associate encrypt key data with an
object. When a request to open such an object is given, an exception is returned. If encryption is required, the exception
contains an encrypt key challenge. In order to continue, the End-User must send an authenticate containing the correct
response to the encrypt key. If a password is required, the End-User must send an authenticate containing the correct
password. The authenticate must be carried in the ServiceContextList of the repeated open, in order to be granted
access.

The OWNER may set an allsecure flag in an object’s Perms attribute, indicating that all messages to/from the object
must be secure, e.g., encrypted or scrambled. From resolve time through close, the Service shall effect secure
transmission through appropriate lower network layer messaging.

134

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.1.2.2 Access Definitions
Application Portability / Service Inter-operability Syntax

module DSM (
struct DateTime { // tm from ANSI C std. See Kernighan & Ritchie, 2nd edition, p. 255

s-long tm-set; // seconds after midnight, O-61
s-long tm-min; // minutes after the hour, O-59
s-long tm-hour; // hours since midnight, O-23
s-long tm-mday; // day of the month, l-3 1
s-long tm-mon; // months since January, 0- 11
s-long tm-year; // years since 1900
s-long tm-wday; // days since Sunday, O-6
s-long tm-yday; // days since Jan LO-365
s-long tm-isdst; } ; // Daylight Savings Time flag

interface Access (
#ifdef DSM GENERAL

I/ size
const AccessRole Size - get - ACR = READER;
readonly attribute u-longlong Size; // size of all attributes in octets;

#endif
// history
struct Hist T { -

Version aversion; // object version
DateTime aDateTime; } ; // time created or last updated, GMT

#ifdef DSM GENERAL
cons;AccessRole Hist get ACR = READER;
const AccessRole Hist-put-ACR = BROKER; - -
attribute Hist-T Hist; // version and time of persistent object

#endif
f/ lock status
struct Lock T {boolean readlock; boolean writelock;};
const AccessRole Lock get ACR = READER;
const AccessRole Lock-put-ACR = WRITER; - -
attribute Lock-T Lock;

N permissions
struct Perms T { -

// the next 4 are binary masks of binary flags signifying
// groups that can access the object
u-short managerperm;
u-short brokerperm;
u-longlong writerperm;
u-longlong readerperm;
opaque owner; //owner identifier = Principal
string aPassword; //PIN
opaque authData; //system-specific
// instruct lower layers to implement a secure connection for this object
boolean allsecure;} ; // all methods parameters encrypted

#ifdef DSM GENERAL
cons;AccessRole Perms-get_ACR = OWNER;
const AccessRole Perms-put_ACR = OWNER;
attribute Perms-T Perms;

#endif
1 . 9

1 . 9

135

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

5.5.1.3 Stream
Stream primitives are used to emulate VCR-like controls for manipulating MPEG continuous media streams. Streams
differ from other datatypes in that, while in play mode, the rate of the stream delivery will be governed by an MPEG
network flow control mechanism. Streams include datatypes such as video and audio, as defined by ISOfIEC 138 18.

Stream pause0 and Stream resume0 behave much like their VCR counterparts. However, each primitive that initiates
play mode includes a scale parameter which controls forward or reverse operation. Position is indicated in Normal Play
Time (NPT), which indicates the stream absolute position relative to the beginning of the stream. Application NPT
(AppNPT) is used for the application request interface and is specified in seconds and microseconds. MPEG Transport
NPT is used to carry Normal Play Time in DSM-CC MPEG Stream descriptors. Transport NPT is specified in MPEG
PTS 33 bit format. Stream play0 enables play from a start NPT position until a stop NPT position is reached. Stream
jump0 provides capability to jump when a stop NPT position is reached to any start NPT position in the stream.

A stream is first requested using one of the resolve operations. It returns an object reference for the stream, to be used
with subsequent stream commands. Streams open in 0 mode, representative of Pause with AppNPT value 0,O. In case
an internal error occurs (e.g.: a disk failure) the stream goes back to 0 mode. More than one stream can be opened at a
time.

Successful execution of Stream commands require that the Service execute them in the exact sequence that the Client
has requested them. For example, Directory open0 and Stream resume0 can be sent in quick succession from the
Client if play mode is desired immediately after the completion of the open. In this case, the operations could not be
executed out of order, since at the Service, the results of one will feed as an input to the second.

At any given time, the Server will be in one of the following play modes for a given video delivery:

Open Application NPT is 0,O. The Server is not transporting the stream.

Pause The Server is not transporting the media stream

Search Transport The Server is searching for start NPT. When at start NPT, it will transport
the media stream.

Transport The Server is transporting the media stream and will pause at end of stream.

Transport Pause The Server is transporting the media stream and will pause at stop NPT.

Search Transport Pause The Server is searching for start NPT. When at start NPT, it will transport
the media stream until stop NPT.

Pause Search Transport The Server is transporting the media stream. It will transport the media
stream until stop NPT, then will search to start NPT and transport the media
stream.

End of Stream Server NPT is at the maximum NPT of the stream. The Server is not
transporting the stream.

Pre Search Transport This is an exceptional status. The Server is stopping the sending of the media
stream. Once it has stopped, it transitions to Search Transport

Pre Search Transport Pause This is an exceptional status. The Server is stopping the sending of the media
stream. Once it has stopped, it transitions to Search Transport Pause

Stream status0 is used to inquire as to the current AppNPT, Scale and Mode of an open stream.

136

0 ISOfIEC ISO/IEC 1381$-6:1998(E)

5.5.1.3.1 Stream Definitions, Exceptions
module DSM (

interface Stream : Base, Access {
// stream modes
typedef u-long Mode;
const Mode OPEN M = 0;
const Mode PAUSE M = 1;
const Mode TRANSPORT M = 2;
const Mode TRANSPORT-PAUSE M = 3;
const Mode SEARCH TRANSPORT M = 4;
const Mode SEARCH-TRANSPORT-PAUSE M = 5;
const Mode PAUSE &EARCH TRANSPORT-M = 6;
const Mode END OF STREA$M = 7; -
const Mode PRE %EkKH TRANSPORT M = 8;
const Mode PRE-SEARCH-TRANSPORT-PAUSE - - - M = 9; -
struct Stat {

AppNPT rposition;
Scale rScale;
Mode aMode; } ;

struct Info-T (
stringc255> aDescription;
AppNPT duration;
boolean audio;
boolean video;
boolean data;} ;

const AccessRole Info get ACR = READER;
const AccessRole Info-put-ACR = OWNER; - -
attribute Info-T Info;

1 . 7
> . 9

Note: Info is not intended to be an attribute database, but rather to be a minimum set of stream identification and
characteristics. Pertinent title information includes title and runtime length.

5.5.1.3.2 Normal Play Time Temporal Positioning
In order to support random positioning and a variety of play rates the Media stream primitives make use of a temporal
addressing scheme called Normal Play Time (NPT). Intuitively NPT is the clock the viewer associates with a program.
It is often digitally displayed on a VCR. NPT advances normally when in normal play mode (scale = l/l), advances at a
faster rate when in fast scan forward (high positive scale ratio), decrements when in scan reverse (high negative scale
ratio) and is fixed in pause mode. NPT is roughly equivalent to SMPTE time codes. Application NPT is defined as two
values representing seconds and microseconds.

To understand DSM-CC’s NPT model one must separate the application’s perspective of NPT from the underlying
mechanism used to coordinate NPT between the Client and Server.

From the application’s perspective NPT is a clock that is maintained in the Client operating system. It is used to request
position relative to a specific program (i.e. “where are we?“) or to control the position of the stream (i.e. “jump to this
position”). Consider the following example: as a reference time assume that real time starts at 0 and progresses in
seconds. Note that RPC-latency is assumed to be 0. Suppose that the application makes the following calls:

1. At 0 seconds Stream open is called. It is followed by Stream resume requesting that the stream begin
playing at normal play rate with AppNPT start time 30.

2. At 10 seconds Stream pause is called. At this point AppNPT will be 40.

3. At 16 seconds Stream resume is called requesting that the stream continue playing at AppNPT = 80 at ten
times normal speed.

137

ISO/IEC 1381&6:1998(E) 0 ISOfIEC

4. At 26 seconds Base close is called. At this point AppNPT will be 180.

The coordination of NPT between the Server and the Client is independent of the API usage of AppNPT. There are two
possible methods for maintaining NPT in the Client. The first method is to use NPT descriptors as described in the
Normal Play Time subclause. The other method is to explicitly query the Server for AppNPT information. Due to
latency considerations the second method may be less accurate.

5.5.1.3.2.1 Application NPT Values
The following restrictions apply to AppNPT values:

0 The beginning of the Stream corresponds to 0 aseconds, 0 aMicroSeconds.

0 AppNPT values ascend from the beginning of stream to end of stream.

0 AppNPT pause now and resume now value is indicated by negative infinity (0x80000000) aseconds. These
represent the Server view of what “now” means, i.e. when the Server receives a pause or resume AppNPT specified
as 0x80000000 aSeconds, it will pause or resume at the earliest possible time. This is the only negative value
allowed.

0 AppNPT is the addition of aseconds and aMicroSeconds.

0 aMicroSeconds shall be less than 1000000.

5.5.1.3.3 Summary of Stream Primitives

Inherited from Base:

close, destroy

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Defined in Stream:

attributes: Info

DSM Stream pause Stop sending stream when NPT position is reached. (READER)

DSM Stream resume Start sending stream at NPT position within stream. (READER)

DSM Stream status Obtain status of a stream. (READER)

DSM Stream reset Reset the stream state machine. (READER)

DSM Stream jump When stream reaches stop NPT, resume at start NPT. (READER)

DSM Stream play Play stream from start NPT until stop NPT. (READER)

138

0 ISOfIEC ISO/IEC 1381$-6:1998(E)

REALTIME 0 10 16 26

open0 I
resume0

pause0 resume0
(10/l)

close0

The above drawing illustrates an example of Stream primitives usage. In this example, time is shown in seconds for ease
of explanation. The latency between Client and Server is not shown (it could be considerable). In response to a viewer
input, Directory open0 followed by Stream resume0 commands are sent to start playing the video at normal play rate
(scale l/l), with AppNPT start time 30 seconds into the stream. 10 seconds later the viewer presses the VCR pause
button, causing a Stream pause0 command to be given. At this time and during the pause the video AppNPT remains
at a point 40 seconds from the start of the stream. 6 seconds later, the viewer initiates fast forward with AppNPT start
time 80 seconds into the stream, causing a Stream resume0 command to be sent with scale = 10/l. Finally, the viewer
quits, causing Base close() to be sent.

5.5.1.3.4 Stream State Machine
The stream interface provides operations to control the delivery of a media stream, through pause, resume, etc.
commands. The Server is represented as a stream object that provides this interface and can transport MPEG over the
network. Upon receipt of a command, it will modify its state machine, and perform the indicated function. Since each
command is atomic, if any of the supplied parameters is incorrect the whole command is ignored.

The stream temporal status is comprised of current NPT, start NPT, stop NPT, mode and viewing rate (scale).

Note that the DSM-CC Library provides the Client stream status with the status0 function. The status value which the
remote stream object returns allows the set-top device to instrument the transport delay. One application of the
measurement is to configure transport buffers.

The time value which the Client provides with the resume(rStart) is the stream position at which to begin transport.
The scale value describes both the direction (reverse is just a negative value) and the rate (normal Play is just a positive
value of 1.0). The time value which the Client provides with the pause(rStop) is the stream position at which to suspend
the transport. (There are transport mechanisms which require some message traffic to sustain the connection. It is
implementation dependent, and not Client visible, how the source of the media stream stimulates the connection for such
a transport solution. The obvious technique is to transmit the data stream, with its status fields.)

Since the Client can cascade methods, the sequence resume(rStart) plus pause(rStop) essentially equates to
play(rStart, rStop). Also the sequence pause(rStop) plus resume(rStart) essentially equates to jump(rStop, rstart).
However, an exception to this general rule exists, in the case a play(rStart, rStop) is received from the Server while the
state machine is in either T, TP or PST mode: this exception aims to accomodate the requirement of having
play(rStart, rStop) actually meaning play from rStart to rStop. There is no corresponding exception for the jump0
command. Moreover it is worth noting that as all methods are atomic, the sequence of a correct resume0 plus an
incorrect pause0 would affect the state machine according to the resume(), while the single play0 would not.
Similarily, the sequence of a correct pause0 plus an incorrect resume0 would affect the state machine according to the
pause(), while the single jump0 would not.

5.5.1.3.4.1 State Machine
The interface controls a state machine. The state machine, shown below with the main transitions, comprises the ten
states of a) Open b) Pause c) Transport d) Transport Pause e) Search Transport f) Search Transport Pause g) Pause
Search Transport h) End of Stream i) Pre Search Transport and 1) Pre Search Transport Pause.

The open causes the state to transition to the Open state. Open state is equivalent to Pause state at AppNPT 0.0. The
default values are a) rStart=0x00000000.0x00000000, b) rStop=OxEFFFFFFF.OxM, and c) Scale= 1,l.

139

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

If the state machine receives a pause(rStop) while a stop NPT is still set (that is: has not been reached yet), the
pause(rStop) replaces the previous stop NPT. If the state machine receives resume(rStart) while a start NPT is still set
(that is: has not been reached yet), the resume(rStart) replaces the previous start NPT. If the state machine receives a
resume(rStart) while in T mode, or a resume(rStart=now) while in TP or PST modes, it stops sending the media
stream, sets the start NPT, and clears the stop NPT. If the state machine receives a play(rStart, rStop) while in T, TP
or PST mode, it stops sending the media stream and sets the start and stop NPTs.

The figure below shows the stream profile which corresponds to each state.

Pause

SearchTransport

SearchTransportPause

PauseSearchTransport

rS tart

l-
rStart

rStop

rS top

rS tart

Figure 5-9 rStart and rStop State

0 Open There is one phase. Application NPT is 0,O. The Server is not
transporting the stream.

P Pause There is one phase. The Server is not transporting the media
stream

ST Search Transport There are two phases with one time value to describe the
transition. The Server is searching for start NPT. When at start
NPT, it will transport the media stream. Since there is no rStop,
the Server will continue to advance the stream and pause at End
of Stream.

T Transport The Server is transporting the media stream. and will pause at
End of Stream.

TP Transport Pause The Server is transporting the media stream and will pause at stop
NPT.

STP Search Transport Pause There are three phases with two time values to describe the
transitions. The Server is searching for start NPT. When at start
NPT, it will transport the media stream until stop NPT. The
common sequence which causes the state transition is either
play(rStart, rStop) or resume(rStart) plus pause(rStop).

PST Pause Search Transport There are three phases with two time values to describe the
transitions. The Server is transporting the media stream. It will
transport the media stream until stop NPT, then will search to
start NPT and transport the media stream. The common sequence
which causes the state transition is either jump(rStop, rStart) or
pause(rStop) plus resume(rStart).

EOS End of Stream Server NPT is at the maximum NPT of the stream. The Server is
not transporting the stream.

140

0 ISO/IEC ISO/IEC 13818-6:1998(E)

PreST Pre Search Transport This is an exceptional status. The Server is stopping sending the
media stream. Once it has stopped, it transitions to Search
Transport

PreSTP Pre Search Transport Pause This is an exceptional status. The Server is stopping sending the
media stream. Once it has stopped, it transitions to Search
Transport Pause

The semantics of Stream reset0 are to return to the Open state, which is a variation of the Pause state. The
EndofStream is also a variation of the Pause state, where Application NPT is equal to the maximum NPT of the stream.

For Open and End of Stream states, the normal state transitions for Pause apply.

End of Stream Stream Mode descriptor shall be sent to the Client in the MPEG stream.

5.5.1.3.4.2 Basic State Machine
The interface below realizes the Basic State Machine with just the Stream resume0 and pause0 methods. For
readibility reasons, the figure does not include the 0 nor EOS modes, as they behave exactly as the P mode, nor the
reset0 method, as it is trivial and causes the state machine to return to the 0 mode. It also does not include the PreST
mode, PreSTP mode, the resume(rStart) method occurring in T mode, nor the resume(rStart=now) method occurring
in TP or PST modes, as they are better explained in the subsequent paragraph. The interface does not include
play(rStart, rStop) because the function is almost identical to the sequence resume(rStart) plus pause(rStop): the
exception to this general rule is highlighted in the subsequent paragraph. The interface does not include jump(rStop,
rStart) because the function is identical to sequence pause(rStop) plus resume(rStart).

The Basic State Machine is shown below.

resume (T) / *m ,

resume

NPT==startNFT

resume (T)

v pause (T) v resume (T)

Figure 5-10 State Machine Transitions

141

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

The table below shows the transitions which the resume0 and pause0 method cause.

Previous State

ST
T

AA
P

resume0

ST
Pre.CT

A VA
ST

I
A I * xv-*

TP I PC-l-1

pause0

STP
TP
TP
P

I STP
PST

PreST

ST
PST’
PreST
PreST

STP

1 PreSTP

TP
PreSTP
PreSTP

Note 1: if the rStart parameter in resume0 equals ‘now’, then the transition is to PreST.

The table below shows the transitions which the startNPT condition and the stopNPT condition cause.

Previous State
0

ST
T

TP
P

STP

AppNPT = startNPT

T -

TP

AppNPT = stopNPT

P

PST I I ST

If the state was SearchTransport, the machine transitions to Transport when the stream position reaches the startNPT. If
the state was SearchTransportPause, the machine transitions to TransportPause when the stream position reaches the
startNPT. If the state was TransportPause, the machine transitions to Pause when the stream position reaches the
stopNPT. If the state was PauseSearchTransport, the machine transitions to SearchTransport when the stream position
reaches the stopNPT.

Transition due to startNPT or stopNPT cannot occur in PreSearchTransport or PreSearchTransportPause, as they are
just defined as temporary modes entered by the State Machine while stopping sending the stream.

5.5.1.3.4.3 Complete state machine
There is an exceptional case where play(rStart, rStop) is not equivalent to the sequence resume(rStart) plus
pause(rStop): this happens when a play(rStart, rStop) is received while the Server is sending the media stream. The
sequence resume(rStart) plus pause(rStop) would in essence cancel the previously set stop NPT and start NPT, and
only set the stop NPT to rStop. This would cause the Server to continue playing up to rStop.

The above behavior does not correspond to the definition of the play0 operation, thus a different transition needs to be
defined. As the expected behavior is to cease sending the media stream, jump to rStart and send the media stream up to
rStop, a new exceptional mode is defined to accomodate a transient condition. Upon receiving play(rStart, rStop)
while in T, TP or PST mode, the state machine transitions to PreSTP and sets the start and stop NPTs: as soon as the
Server ceases sending the stream, the state machine transitions to STP. This transition is expected to occur almost
immediately.

If the state machine receives a pause(rStop) before leaving the PreSTP mode, it updates the stop NPT and remains in
the PreSTP mode. If the state machine receives a resume(rStart) before leaving the PreSTP mode, it updates the start
NPT, cancels the stop NPT and transitions to PreST. Then, as soon as the Server ceases sending the stream, the state
machine transitions to ST. This transition is expected to occour almost immediately.

If the state machine receives a resume(rStart) before leaving the PreST mode, it updates the start NPT and remains in
the PreST mode. If the state machine receives a pause(rStop) before leaving the PreST mode, it sets the stop NPT and
transitions to PreSTP mode.

142

0 ISOfIEC ISO/IEC 13818=6:1998(E)

The PreST mode is also entered when a resume(rStart) is received while in T mode, or a resume(rStart=now) is
received while in TP or PST mode, as the expected behavior of the Server is to cease sending the stream at the earliest
possible time, and then resume from rStart.

5.5.1.3.5 DSM Stream pause

DSM Stream pause Stop sending stream when AppNPT position is reached.

Application Portability / Service Inter-operability Syntax

module DSM (
interface Stream : Base, Access (

const AccessRole pause ACR = READER;
void pause (in AppNPTiStop)

raises (MPEG DELIVERY, BAD-STOP); -

Semantics

A Client calls Stream pause()to cause the video Server to stop sending the stream when it reaches AppNPT rStop.

If a Stream pause0 is invoked while the state machine is in T mode, the state machine will immediately transition to
TP mode.

If a Stream pause0 is invoked while the state machine is in TP mode, the state machine will remain in TP mode, but
the rStop value will be updated.

If a Stream pause0 is invoked while the state machine is in STP or ST mode, the state machine will immediately
transition to STP mode.

If a Stream pause0 is invoked while the state machine is in PST mode (i.e., a resume is queued at rstart), the state
machine will transition to TP mode, indicating MPEG Stream delivery will cease when rStop is reached, and no resume
will occur.

The actual presentation of video frames (freeze frame versus blanked or alternative display) is considered
implementation-specific and is therefore not specified.

If the stream is in forward transport mode, either an rStop of negative infinity or an rStop less than the current
AppNPT will indicate pause immediately if there are no other commands in the stream state machine queue. If the
stream is in reverse transport mode, either an rStop of negative infinity or an rStop greater than the current AppNPT
will indicate pause immediately if there are no other commands in the stream state machine queue. An rStop which
exceeds the Stream duration will result in a BAD-STOP exception.

Privileges Required
READER

143

ISO/IEC 1381&6:1998(E) 0 ISO/IEC

Parameters

type/variable
APPN-PT
rStop

direction
input

description
AppNPT position at which the pause will occur.

5.5.1.3.6 DSM Stream resume

DSM Stream resume Start sending stream at AppNPT position.

Application Portability / Service Inter-operability Syntax

module DSM {
interface Stream : Base, Access {

const AccessRole resume ACR = READER;
void resume (in AppNPTrStart, in Scale rscale)

raises (MPEG-DELIVERY, BAD-START, BAD-SCALE);
1 . 7

1 . 9

Semantics

A Client calls Stream resume0 to cause the video Server to resume sending the stream at rStart at a rate and direction
as specified by rScale.

If a Stream resume0 is invoked while the state machine is in ST, P, or STP mode, the state machine will immediately
transition to ST mode. The Server will then commence sending the stream from the position rStart (with scale rScale)
at the earliest possible time. When the Server begins to send the MPEG stream the state machine will transition to T
mode.

If a Stream resume0 is invoked while the state machine is in T mode, or a Stream resume(rStart=now) is invoked
while the state machine is in TP or PST mode, the state machine shall immediately transition to PreST mode. At the
earliest possible time the Server will stop sending the stream and transition to ST; then, at the earliest possible time, the
Server will commence sending the stream from the position rStart (with scale rScale) and transition to T mode.

If a Stream resume(rStart+now) is invoked while the state machine is in PST mode, the state machine will update
rStart and its associated rScale, and remain in PST mode. If a Stream resume(rStart#now) is invoked while the state
machine is in TP mode, the state machine will transition to PST mode and set rStart and its associated r&ale. Both of
these indicate that when the state machine will reach rStop, the state machine will transition to ST and then T mode as
described above, and MPEG stream delivery will commence from the new &tart (with scale r&ale).

rScale is composed of a numerator and a denominator. An rScale of l/l indicates normal play at the normal forward
viewing rate. It is recommended for efficiency that either the numerator or denominator have a value of 1. The ratio of
numerator to denominator corresponds to the rate with respect to normal viewing rate. For example, a ratio of 2/l
indicates 2 times the normal viewing rate, and a ratio of l/2 indicates one-half the normal viewing rate. The Server will
respond with best effort, that is at the closest rate to the requested rate that it can deliver. The rScale reply will indicate
the actual rate delivered. A positive numerator indicates forward direction. A negative numerator indicates reverse
direction, with the exception of negative infinity which indicates resume now. An rStart which equals or exceeds the
Stream duration will result in a BAD START exception. -

An rScale of O/O is indeterminate and will result in a BAD-SCALE exception. An rScale of O/n (where n is not 0)
indicates that the NPT is not changing.

Privileges Required
READER

144

0 ISOIIEC ISO/IEC 13818-6:1998(E)

Parameters

type/variable
APPWT
rStart

direction
input

description
AppNPT position at which to resume.

Scale
rScale

input The scale at which to resume. A numerator /
denominator indicating rate and direction. A negative
numerator indicates reverse direction, whereas a
positive numerator indicates forward direction. l/l
indicates normal play speed.

5.5.1.3.7 DSM Stream status

1 DSM Stream status Obtain status of a stream.

Application Portability / Service Inter-operability Syntax

module DSM {
interface Stream : Base, Access {

const AccessRole status ACR = READER;
void status (in Stat rAp;Status, out Stat rActStatus)

raises (MPEG - DELIVERY);
I . 9

I . 9

Semantics

Stream status0 is used to request status of a stream in progress. It returns the current AppNPT position, scale and
mode of the stream. The application’s estimation of current position may be specified in the call request. The reply will
contain the actual position.

Privileges Required
READER

Parameters
type/variable
Stat

direction
input

description
Expected stream status, AppNPT, Scale and Mode

rAppStatus

Stat
rActStatus

output Actual stream status, AppNPT, Scale and Mode,

145

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.5.1.3.8 DSM Stream reset

1 DSM Stream reset Reset the stream state machine. (READER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Stream : Base, Access{

const AccessRole reset ACR = READER; -
void reset 0;

1 . 9
I . 9

Semantics

Stream reset0 is used to reset the Stream state machine to the 0 state (Pause, rStart = 0 0, rstop = OxEFFF OxFFFF).

Privileges Required
READER

5.5.1.3.9

DSM Stream jump

DSM Stream jump

When stream reaches stop AppNPT, resume at start AppNPT.

Application Portability / Service Inter-operability Syntax

module DSM {
interface Stream : Base, Access{

const AccessRole jump - ACR = READER;
void jump (

in AppNFT rStart,
in AppNPT rStop,
in Scale rScale)
raises (MPEG DELIVERY, BAD-START, BAD-STOP, BAD - - SCALE);

Semantics

Stream jump(rStart, rStop) behaves exactly as if Stream pause(rStop) then Stream resume(rStart) have been called
in quick succession. However Stream jump0 is a single method, thus if an incorrect rStart or rScale parameter is
given, the rStop is ignored too and the state machine is not affected at all. There are no other exceptions to the
equivalence between Stream jump(rStart, rStop) and the sequence Stream pause(rStop) plus Stream
resume(rStart).

Privileges Required
READER

146

0 ISO/IEC ISOAEC 13818=6:1998(E)

Parameters

type/variable direction description
APPWT input AppNFI’ position to resume from as a result of the
rStart jump.

APPMT
rStop

input AppNPT position at which the jump will occur.

Scale
rScale

input A numerator / denominator indicating rate and
direction. A negative numerator indicates reverse
direction, whereas a positive numerator indicates
forward direction. l/l indicates normal play speed.

5.5.1.3.10 DSM Stream play

DSM Stream play Play stream from start AppNPT until stop AppNPT.

Application Portability / Service Inter-operability Syntax

module DSM (
interface Stream : Base, Access{

const AccessRole play - ACR = READER;
void play (

in AppNPT rStart,
in AppNPT rStop,
in Scale rScale)
raises (MPEG-DELIVERY, BAD-START, BAD-STOP, BAD-SCALE);

Semantics

Stream play(rStart, rStop) behaves almost exactly as if Stream resume(rStart) then Stream pause(rStop) have been
called in quick succession. However Stream play0 is a single method, thus if an incorrect rStop parameter is given, the
rStart and the rScale are ignored too and the state machine is not affected at all. In addition, if Stream play(rStart,
rStop) is invoked while the state machine is in TP or PST mode, it behaves differently from the sequence Stream
resume(rStart) plus Stream pause(rStop), as described already.

Privileges Required
READER

147

ISOLIEC 13818=6:1998(E) 0 ISO/IEC

Parameters

type/variable
APPMT
rStart

direction description
input AppNPT position at which to resume play.

APPMT
rStop

input AppNPT position at which to stop play and change
mode to Pause.

Scale
rScale

input A numerator / denominator indicating rate and
direction. A negative numerator indicates reverse
direction, whereas a positive numerator indicates
forward direction. l/l indicates normal play speed.

551.4 File
This subclause describes the interface for two operations that read and write files. When combined with the other Core
DSM interfaces such as Directory, Base, and Access, a minimal file system interface is realized. When combined with
Extended DSM interfaces such as Lifecycle and View, a more complete file system interface can be realized. The IDL
permits the Server Object Implementation to map to any of a variety of heterogeneous object and file systems.

5.5.1.4.1 File Definitions, Exceptions

module DSM {
interface File : Base, Access {

const AccessRole Content get ACR = READER;
const AccessRole Content-put-ACR - - = WRITER;
attribute opaque Content; // file content

#ifdef DSM GENERAL
cons;AccessRole ContentSize - get - ACR = READER;
readonly attribute u-longlong ContentSize; // file content size in octets

#endif
1 . 7

1 . 7

The ContentSize is implicitly updated at any time that the Contents of the File are updated. Contents of the File can be
updated with File write(), File -set-Content0 to the File object, or Directory-put (of the Content attribute) to the
parent Directory object. A Directory-get (of the Content attribute) at the parent Directory object is equivalent to
opening and reading an entire file. Directory-get0 and Directory-put0 are described later in this clause.

148

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.1.4.2 Summary of File Primitives

Inherited from Base:

close, destroy

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Defined in File:

DSM File read Random access read from a file. (READER)

DSM File write Random access write to a file. (WRITER)

5.5.1.4.3 DSM File read
I

DSM File read Random access read from a file. (READER)

Application Portability / Service Inter-operability Syntax

module DSM (
interface File : Base, Access (

const AccessRole read ACR = READER; -
void read (

in u-longlong aOffset,
in u-long aSize,
in boolean aReliable,
out opaque rData)
raises (INV - OFFSET, INV-SIZE, READ-LOCKED.);

Semantics

File read0 provides random access to opened files, using a File reference obtained from a previous resolve operation.
aOffset is the absolute offset into the File Content attribute (from 0). Because aOffset and aSize are explicit parameters,
seeks can be accomplished assuming the application maintains the current byte position in the file.

aSize specifies the amount of buffer the Client has allocated for the read. It can exceed the File (ContentSize - aoffset),
in order to specify a read to End-of-File. INKOFFSET shall be returned if aOffset is greater than File (ContentSize -
1). INV SIZE shall be returned for asize that exceeds the capacity of Server, Network Resources or Client as derived -
from Compatibility Information.

In the case where the network imposes a long round-trip latency, efficient operation of multimedia object access requires
that the underlying RPC and network protocol stack support overlapped, synchronous deferred transactions. The
application will need to pre-fetch files in an attempt to stay ahead of the anticipated user actions. The RPC must assure
that the Server executes the operations for a Client in the same order that the Client has invoked them.

The underlying RPC stack will retry to re-fetch lost or erroneous data if aReliable is TRUE. If aReliable is FALSE, the
operation will not be retried in the event of time-out or error. This is useful in the case where media, e.g. short audio or
image, is presented in fast-paced normal play application time, in which case it is more important for the presentation to
move forward on schedule than to stall while an object is being re-fetched.

149

ISO/IEC 138P8-6:1998(E) 0 ISOIIEC

Privileges Required
READER

Parameters
type/variable
u-longlong
aOffset

direction
input

description
64 bit value indicating starting byte position within the
file.

u-long
aSize

input Number of bytes to read

boolean
aReliable

input If aReliable = FALSE, Client indicates that the RPC
reply need not be reliable, e.g., for use with multimedia
data for transient presentations.

opaque
rData

output Pointer to data returned by the File read.

5.5.1.4.4

DSM File write

DSM File write

Random access write to a file. (WRITER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface File : Base, Access (

const AccessRole write ACR = WRITER; -
void write (

in u-longlong aOffset,
in u-long aSize,
in opaque rData)
raises (INV - OFFSET, INV-SIZE, WRITE-LOCKED);

Semantics

File write0 provides a mechanism to write data to a file starting at a designated offset. aOffset is the absolute offset
into the File Content attribute (from 0). WRITER privileges are required. The File write0 uses the File reference
obtained from a previous resolve operation. Appends may be performed by using the size of the file as aoffset. Size is
an exported attribute of the Access Interface and may be obtained through a Directory get0 operation. Appends may be
performed by using the ContentSize attribute of the File as aoffset. INV OFFSET shall be returned if aOffset is -
greater than ContentSize. INV SIZE shall be returned for aSize that exceeds the capacity of Server, Network -
Resources or Client as derived from Compatibility Information.

Privileges Required
WRITER

150

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Parameters
type/variable
u-longlong

direction description
input 64 bit value indicating starting byte position within the

aOffset file.

u-long
aSize

input Number of bytes to writea

opaque
rData

input Pointer to data to be written.

5.5.1.5 Directory
The Directory interface provides a general name space for binding names to Services or data. A ServiceGateway
implements the directory interface, and as such provides the primary mechanism for accessing other Services or
applications.

Directory defines four kinds of operations:

0 Binding a name to an object reference or data value
0 Resolving a name to the bound object reference or data value
0 Removing a name’s binding
0 Listing the bindings

The Directory interface inherits the attributes defined by the Access interfaces to allow permission definitions for
directories as well as individual Services and data.

For the basic operations involving object references, Directory inherits from the NamingContext interface defined in the
CORBA Object Services Naming module (CosNaming). Using the OMG NamingContext interface allows a CORBA
environment to readily support DSM-CC, while not requiring a DSM-CC implementation to use a CORBA system.

Directory does not inherit from Base because both Base and NamingContext define destroy operations. The current IDL
specification requires that operation names, including inherited operations, be unique and case-insensitive. Thus,
Base::destroy would collide with the NamingContext::destroy. Because it cannot inherit from Base, Directory defines its
own Directory close0 operation.

For completeness, the NamingContext operations are presented below; however, the CORBA Naming specification is
the reference definition of operations that a directory must support. In some cases, DSM-CC defines equivalent syntax
that supports DSM-CC extensions that are compatible with CosNaming. For example, the macro DSM-GENERAL is
used to enable compilation of the Core Consumer Client.

The CORBA Naming specification includes the definitions for names and bindings below. The DSM module defines
equivalent types either by referencing the CosNaming definitions with a typedef or by having a complete definition of
the type. A name component consists of two strings that must be unique within a specific context. A name is a sequence
of components that can describe a path through a set of contexts.

When an object is bound to a Directory using Directory bind0 or Directory bind-context(), an objects id, kind and
BindingType become known to the Directory. The BindingType is either a object or a name context, depending upon
which of the two functions was called. In DSM-CC, the id is expected to be the simple string name of the object, and the
kind is the interface type of the object, in the form “<module>::cinterface>” or specified interface alias. The application
can see the id, kind and BindingType as a result of the Directory list0 operation.

A Directory resolve0 or Directory open(..DEPTH..) with multiple NameComponents results in a cascade of single
resolves, when following the path depth-wise. Each node in the path before the last one shall be a Directory and will
propagate the resolve to the rest of the path. The last node in the path may or may not be a Directory.

151

ISOfIEC 13818=6:1998(E) 0 ISOIIEC

5.5.1.5.1 Directory Definitions, Exceptions
Interface names are constructed from NameComponents. The NameComponent has two parameters, an id and a kind.
The id is an arbitrary string selected by the application. In the DSM-CC environment, the kind is required to be a string
constructed of module name and interface, in the form “<module>::cinterface>“, or a DSM-CC interface alias. For
example, DSM-CC Directory uses “DSM::Directory” or the alias “dir” for the NameComponent kind value.

The CORBA Naming Service is used as a basis for directory functions. CosNaming definitions are shown below:

module CosNaming{
typedef string Istring;
struct NameComponent {

lstring id;
lstring kind;

1
.

typedef sequence<NameComponent> Name;
// note: BindingType equates to the CORBA enum definition
N while allowing extension for DSM-CC implementations
typedef unsigned long BindingType;
const BindingType nobject = 0;
const BindingType ncontext = 1;
struct Binding {

Name binding name;
BindingType binding-type;

1
.

typedef sequence <Binding> BindingList;

NamingContext defines operations for naming object references but not general data, so Directory adds similar
operations for binding names to data values (type “any” in IDL). The structure for these values is determined by their
type. In addition to naming data values, the directory interface extends the NamingContext interface with operations to
bind or resolve a list of names in a single call. These operations allow a compact call to access a number of objects. The
semantics of these operations are always identical to performing a sequence of the individual calls. To bind or resolve a
single name, the sequence length can be set to 1.

The list of NameComponents specified in a single Directory open0 is specified by a aPathType and rPathSpec.

The aPathType indicates the format of the spec, which may be a linear path of objects (DEPTH traversal) or child
objects at a given level of hierarchy (BREADTH traversal).

The rPathSpec is a sequence of Step structures, each of which contains a name component and a process flag. If the
process flag in a Step structure is TRUE, the Step name is to be resolved, otherwise the name is simply used to traverse
further along the path. If the operation using rPathSpec returns object references, these will be contained in a separate
resolved references output parameter. If the operation using rPathSpec returns data values, these will be contained in a
separate resolved values output parameter. The definition of these types is as follows:

module DSM (
// two types of path traversal, depth and breadth match traditional methods
typedef char PathType; // DEPTH or BREADTH
const PathType DEPTH = ‘D’;
const PathType BREADTH = ‘B’;
struct Step (

CosNaming: :NameComponent name;
boolean process;

1 .
tipedef sequencecStep> PathSpec;
typedef sequencecany> PathValues;

1 . 9

152

0 ISO/IEC ISOAEC 13818=6:1998(E)

Directory operations return several types of exceptions, specified below. These exceptions are defined by the
CosNaming module, and therefore must be either available as part of the DSM-CC environment or defined explicitly by
a DSM-CC implementation.

module CosNaming {
interface NamingContext {

enum NotFoundReason { missing - node, not-context, not-object };

exception NotFound {
NotFoundReason why;
Name rest of - - name;

1
.

exception CannotProceed {
NamingContext cxt;
Name rest of - - name;

1 .

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

1
. 3

The NotFound and CannotProceed exceptions return the unresolved part of the requested name. For example, if a
bind operation on the path (A,B,C) raises Not Found with the rest of name as (B,C) then the context named by A could - -
not resolve the B name component. The meaning of the InvalidName, AlreadyBound, and NotEmpty exceptions is
straightforward. The CannotProceed exception means that the resolving context did not have permission to do a
resolve. In the example above, a CannotProceed exception means that the A context does not have permission to
perform a resolve on the B context. In this case, the caller may wish to attempt to perform the resolve directly, as the
caller might have permission even though the A context did not.

DSM::NOT FOUND is equivalent to CosNaming::NamingContext NotFound. DSM::CANNOT PROCEED is - -
equivalent to CosNaming::NamingContext CannotProceed. DSM::INV-NAME is equivalent to
CosNaming::NamingContext InvalidName. These exceptions are used in multiple DSM-CC interfaces, and are
defined in the Common Definitions subclause.

153

ISO/IEC 1381$-6:1998(E) 0 ISO/IEC

5.5.1.5.2 Summary of Directory Primitives

Inherited from Access:

attributes: Size, Hist, Lock, Perms

Inherited from NamingContext:

DSM Directory list

DSM Directory resolve

DSM Directory bind

DSM Directory bind context -

DSM Directory rebind

DSM Directory rebind context -

DSM Directory unbind

DSM Directory new context -

DSM Directory bind new context - -

DSM Directory destroy

Defined in Directory:

DSM Directory open

DSM Directory close

DSM Directory get

DSM Directory put

Return a list of all the bindings to object references in the context.
(READER)

Given a name, return an object reference for a Service Object
Implementation instance. (READER)

Bind an object reference to a name. (WRITER)

Bind a naming context to a name. (WRITER)

Bind an object reference to a name, overwriting any previous
binding. (WRITER)

Bind a context to a name, overwriting any previous binding.
(WRITER)

Remove a binding for a name. (WRITER)

Create a new naming context. (OWNER)

Create a new naming context and bind it to the given name.
(OWNER)

Destroy the naming context. (OWNER)

Resolve the objects associated with names in the given path
(READER).

Close a reference to a Directory. (READER)

Return the attribute values bound to a PathSpec. (READER)

Bind attribute values to a PathSpec, overwriting any previous
bindings. (WRITER)

154

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Directory defines AccessRoles of the inherited Nan-ingCor@xt operations as follows:

module DSM
interface Directory : Access, CosNaming: :NamingContext (

const AccessRole list_ACR = READER;
const AccessRole resolve ACR = READER;
const AccessRole bind A?R = WRITER;
const AccessRole bind-context ACR = WRITER;
const AccessRole rebind ACRZ WRITER;
const AccessRole rebind-context ACR = WRITER;
const AccessRole unbind ACR =-WRITER;
const AccessRole new &text ACR = OWNER
const AccessRole bind-new context - ACR = OWNER;
const AccessRole destroy kR = OWNER -

1 ;
1 . 9

5.5.1.5.3

DSM Directory list

DSM Directory list

Return a list of all the bindings to object references in the context.
(READER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming: :NamingContext.

module CosNaming {
interface NamingContext {

void list (in unsigned long how-many,
out BindingList bl, out Bindinglterator bi);

1 . 9
1 . j

Semantics

The list operation returns a list of bindings in the Directory. The count parameter indicates how many bindings to return
immediately; the remaining bindings can be retrieved from the returned iterator. The iterator interface simply has two
operations defined as follows:

module CosNaming {
interface Bindinglterator {

boolean next-one (out Binding b);
boolean next-n (in unsigned long how-many,

out BindingList bl);
void destroy 0;

1 . 9
1
.)

module DSM {
typedef CosNaming::BindingIterator BindingIterator;

1 . 9

The BindingIterator next - one0 and next-no operations return more bindings from the context, if there are any. Both
operations return false if there were no additional bindings. The BindingIterator destroy0 operation discards any
Server-side storage associated with the iterator and makes the iterator no longer valid to access.

Privileges Required:
READER

155

ISO/IEC 138184:1998(E) 0 ISOIIEC

Parameters
type/variable
unsigned long
count
B indingList
bindings

direction
input

output

description
The maximum number of bindings to return.

A sequence containing up to count bindings.

BindingIterator
itr

output An iterator for retrieving additional bindings.

5.5.1.5.4 DSM Directory resolve

DSM Directory resolve Given a name, return an object reference for a Service Object
Implementation instance. (READER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

1
. 9

>
. 9

Semantics

The Directory resolve0 operation returns an object reference that is an Object Implementation instance of the name
binding. If no name is bound, then the NotFound exception is raised.

Privileges Required:
READER

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

Object output The object reference that is bound to the name.

5.5.1.5.5

DSM Directory bind

DSM Directory bind

Bind an object reference to a name. (WRITER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

156

0 ISOIIEC ISO/IEC 13818=6:1998(E)

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voidbind (in Name n, in Object obj)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
#endif

)
. 9

1
. Y

Semantics

The Directory bind0 operation associates an object reference with a name. This operation raises the AlreadyBound
exception if the name is bound to another object or data value in this context. The name specifies one or more name
components that indicate intermediate contexts through which to search. If any of the components is not bound, then the
NotFound exception is raised. If an intermediate context is found that refuses permission to the outer context then a
CannotProceed exception is raised.

Privileges Required:
WRITER

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

Object
obj

input The object reference that is bound to the name.

5.5.1.5.6 DSM Directory bind context -

DSM Directory
bind context -

Bind a naming context to a name. (WRITER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voidbind-context (in Name n, in NamingContext nc)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
#endif

>
. II

>
. 9

Semantics

The Directory bind - context0 operation associates a naming context with a name. This operation raises the
AlreadyBound exception if the name is bound to another object or data value in this context.

This operation is distinct from the Directory bind0 operation to allow the option of binding a context into a name space
where it will not implicitly resolve components of a path. This approach also simplifies the resolution process, as a
context knows exactly which contexts to search inside it rather than needing to narrow every bound object to see if it is a
context.

Privileges Required:

157

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

WRITER

Parameters
type/variable
Name
n

direction
input -

description
A name that describes a path through one or more
directories, starting with this one.

NamingContext
nc

input The naming context that is bound to the name.

5.5.1.5.7 rebind

rebind Bind an object reference to a name, overwriting any previous binding.
(WRITER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voidiebind (in Name n, in Object obj)

raises (NotFound, CannotProceed, InvalidName);
#endif

1
. 9

1 . 9

Semantics

The Directory rebind0 operation associates an object reference with a name in a directory. Unlike the Directory
bind0 operation, this operation will replace the binding for a name if it was previously-bound.

Privileges Required:
WRITER

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

Object
obj

input The object reference that is bound to the name.

5.5.1.5.8 DSM Directory rebind context -
,

DSM Directory rebind context - Bind a naming context to a name. (WRITER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

158

0 ISO/IEC ISO/IEC 13818=6:P998(E)

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voidiebind-context (in Name n, in NamingContext nc)

raises (NotFound, CannotProceed, InvalidName);
#endif

)
. 9

1
. 9

Semantics

The Directory rebind context0 operation associates a naming context with a name. Unlike the Directory
bind - context0 operation, this operation will replace the binding for a name if it was previously-bound.

Privileges Required:
WRITER

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

NamingContext
nc

input The naming context that is bound to the name.

5.5.1.5.9 DSM Directory unbind

DSM Directory unbind Remove a binding for a name. (WRITER)
A

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voidunbind (in Name n)

raises (NotFound, CannotProceed, InvalidName);
#endif

1
. 9

1
. 3

Semantics

The Directory unbind0 operation removes the binding associated with the given name from the directory.

Privileges Required:
WRITER

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

159

ISO/IEC 13818=6:1998(E)

5.5.1.5.10 DSM Directory new context -

0 ISOIIEC

DSM Directory
new-context

Create a new naming context. (OWNER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
NamingContext new-context();

#endif
1
. 9

1 . 3

Semantics

The Directory new - context0 operation returns a newly-created NamingContext.

Privileges Required:
OWNER
Parameters
type/variable direction description
NamingContext output The newly-created naming context.

5.5.1.5.11 DSM Directory bind new context - -

DSM Directory
bind new context - -

Create a new naming context and bind it to the given name.
(OWNER)

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
NamingContext bind new-context(in Name n)

raises (AlreadyBound, NotFound, CannotProceed, InvalidName);
#endif

1
. II

1
. 9

Semantics

The Directory bind new - - context0 operation creates a new context and associates it with the given name.

Privileges Required:
OWNER

160

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Parameters
type/variable
Name
n

direction
input

description
A name that describes a path through one or more
directories, starting with this one.

NamingContext output The newly-created naming context.

5.5.1.5.12 DSM Directory destroy

DSM Directory destroy Destroy the naming context. (OWNER)

1 II

Application Portability / Service Inter-operability Syntax

note: Directory inherits from CosNaming::NamingContext.

module CosNaming {
interface NamingContext {

#ifdef DSM GENERAL
voiddestroy ()

raises (NotEmpty);
#endif

1
. II

>
. 1

Semantics

The Directory destroy0 operation destroys the Directory object. It does not destroy the objects that were bound to it.

Privileges Required:
OWNER

5.5.1.5.13 DSM Directory open

DSM Directory open Find the objects associated with the names in the given path (READER).

Application Portability / Service Inter-operability Syntax

module DSM (
interface Directory : Access, CosNaming: :NamingContext {

const AccessRole open_ACR = READER;
void open(

in PathType aPathType,
in PathSpec rPathSpec,
out ObjRefs resolvedRefs)
raises(OPEN-LIMIT, NO-AUTH, UNK USER, SERVICE XFR,

NOT-FOUND, CANNOT-PROCEED, INV-NAMlE);

Semantics

The Directory open0 operation provides a path traversal with a resolve of object references from names at specified
nodes in the path. The aPathType and rPathSpec parameters define the specific set of names and values that are
resolved. The result is sequence of object references that corresponds to the Steps of the input rPathSpec that have

161

ISO/IEC 1381&6:1998(E) 0 ISOfIEC

process flag set. Therefore, note that the length of rPathSpec does not necessarily correspond to the length of the
returned object references.

This operation looks up each path element sequentially, but not atomically (other directory operations may occur
between the lookups of elements). If the a particular resolve fails, then the entire operation raises the appropriate
exception.

Directory open0 can be used to open multiple objects at one time. Directory open0 can also traverse the name graph
in either breath-first or depth-first fashion. Directory resolve(), on the other hand, opens a single object at the end of a
depth-first path.

Directory open0 and Directory resolve0 are similar, but not equivalent. Directory resolve() shall return a single
object reference which is at the end of a sequence of NameComponents. Directory open0 can be used to obtain more
than one object reference, either by depth-first path traversal or breadth-first path traversal. Directory open0 can be
used to resolve a single object, but there is more overhead in the message. Directory open0 is useful where the Client
needs to resolve a number of objects at one time (typically at a startup or transition points). The single message can
improve response time, especially in systems where there is high latency on the request channel between the Client and
the Service Domain. Regardless of whether an object is a file or a directory, a Client can use either Directory resolve0
or Directory open0 to obtain the object reference. Directory resolve0 is equivalent to a Directory Open0 in which
PathType = DEPTH and the PathSpec has all process flags set to FALSE, except that last Step in the path, and the last
Step represents a single object. See also Composite Application Portability and Service Inter-operability interfaces
subclauses, for a variation of depth-first traversal.

Directory open0 in which PathType = BREADTH indicates a an explicit resolve of multiple objects at the target
Directory (flat, not hierarchical).

Privileges Required:
READER

Parameters
type/variable
PathType
aPathType

direction description
input Defines the traversal form of rPathSpec.

PathSpec
rPathSpec

input A sequence of Steps, each representing a node in a
directory hierarchy.

Obj Refs
rPathRefs

output The object references resolved as a result of this
operation.

5.5.1.5.14 DSM Directory close

DSM Directory close Close a reference to a Directory. (READER)

Application Portability / Service Inter-operability Syntax

module DSM (
interface Directory : Access, CosNaming: :NamingContext (

const AccessRole close ACR = READER;
- void close 0;

1 . 9
1 . 7

162

0 ISODEC ISO/IEC 13818=6:1998(E)

Semantics

Directory close0 is used by the Client to indicate that access to the directory is no longer required. This operation is
sent to the Directory to be closed. Closing a Directory is not specifically required unless the directory is bound as a
Service to the ServiceGateway, in which case network resources may need to be freed as a result of the close.

If a Directory object is closed, object references that were resolved using that Directory remain valid.

Privileges Required:
READER

5.5.1.5.15 DSM Directory get

DSM Directory get Return the attribute values bound to a PathSpec. (READER)

Application Portability / Service Inter-operability Syntax

module DSM (
interface Directory : Access, CosNaming: :NamingContext {

const AccessRole get ACR = READER; -
void get(

in PathType aPathType,
in PathSpec rPathSpec,
out PathValues rPathValues)
(NO - AUTH, UNK USER, SERVICE XFR,

NOT-FOUND, CANNOT-PROCEED, INV-NAME);

Semantics

The Directory get0 operation provides a path traversal that returns one or more attribute values of a Directory entry,
without returning any object references. aPathType specifies DEPTH or BREADTH. If aPathType is DEPTH, the
Steps of rPathSpec are <Directory>, <Directory>, . . . , <Object>, <Attribute>, indicating a linear path traversal and
single attribute access. If aPathType is BREADTH, the Steps of rPathSpec shall be <Object>, <Attribute>,
. ..) <Attribute>. indicating multiple attribute access.

This operation looks up each path node sequentially, but not atomically (other directory operations may occur between
the lookups of nodes). If the a particular resolve fails, then the entire operation raises the appropriate exception.

Directory get0 and Directory put0 operations are used to retrieve and set the values of an object’s attributes, without
resolving an object reference. The attribute values are stored at the Directory Service.

The data structures for the rPathValues of Directory get0 and Directory put0 are determined by their type. The
TypeCode of the CORBA - any of rPathValues shall identify the structure of the attribute value.

The attribute NameComponent kind may be NULL, because rPathValues identifies the kind. The attribute
NameComponent id shall be the identifier of the attribute, as defined in the IDL. For example, The id for the attribute
DSM::File::Content shall be “Content”.

163

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Privileges Required:
READER

Parameters
type/variable
PathType
aPathType

direction
input

description
Defines the traversal form rPathSpec.

PathSpec
rPathSpec

PathValues
rPathValues

input

output

A sequence of Steps, representing nodes in a directory
hierarchy and attributes of a Directory entry.

The attribute values returned as a result of this
operation.

5.5.1.5.16 DSM Directory put

DSM Directory put Bind attribute values to a PathSpec, overwriting any previous bindings.
(WRITER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Directory : Access, CosNaming::NamingContext (

#ifdef DSM GENERAL
cons;AccessRole put - ACR = WRITER;
void put(

in PathType aPathType,
in PathSpec rPathSpec,
in PathValues rPathValues)

#endif
I . 9

1 . 9

raises(UNK USER, NO AUTH, SERVICE XFR,
N&-T-FOUND,-CANNOT-PROCEED, INV - NAME);

Semantics

The Directory put0 operation provides a path traversal that sets one or more attribute values of a Directory entry,
without returning any object references. aPathType specifies DEPTH or BREADTH. If aPathType is DEPTH, the
Steps of rPathSpec are <Directory>, <Directory>, . . . , <Object>, <Attribute>, indicating a linear path traversal and
single attribute access. If aPathType is BREADTH, the Steps of rPathSpec shall be <Object>, <Attribute>,
“‘7 <Attribute>. indicating multiple attribute access.

This operation looks up each path node sequentially, but not atomically (other directory operations may occur between
the lookups of nodes). If the a particular resolve fails, then the entire operation raises the appropriate exception.

Directory get0 and Directory put0 operations are used to retrieve and set the values of an object’s attributes, without
resolving an object reference. The attribute values are stored at the Directory Service.

The data structures for the rPathValues of Directory get0 and Directory put0 are determined by their type. The

TypeCode of the CORBA - any of rPathValues shall identify the structure of the attribute value.

The attribute NameComponent kind may be NULL, because rPathValues identifies the kind. The attribute
NameComponent id shall be the identifier of the attribute, as defined in the IDL. For example, The id for the attribute

DSM: :File: :Content shall be “Content”.

164

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Privileges Required:
WRITER

Parameters
type/field
PathType

direction
input

description
Defines the traversal form rPathSpec.

aPathType

PathSpec
rPathSpec

input A sequence of Steps, representing nodes in a
directory hierarchy and attributes of a Directory
entry.

PathValues
rPathValues

input The attribute values to be bound as a result of this
operation.

5.5.1.6 Session
The Session interface enables a Client to establish a Session with a ServiceGateway Domain of Services, using the
operation Session attach(). While in the Session, the Client can navigate the Domain of Services, open new Services,
and perform any operations the Service interfaces support. When finished, the Client invokes Session detach0 to close,
i.e., perform Base close0 against, all object references of the Session.

5.5.1.6.1 Service Transfer
Session attach0 and Session detach0 can be used to perform Service Transfer. Most applications will have some
nesting of navigation and will require a suspension of one level of nest when proceeding to another. For example, a top
level navigator can be located in one Service Domain and a movie browser in another. When going from the top
navigator to the movie browser, the Client can suspend the navigator and attach to the movie browser. Then, when done
with the movie browser, the Client can pop back to the top navigator by resuming it at the previous state. This is very
common in applications and natural for human behavior.

Two models are available for Service Transfer:

1. Basic application level Service Transfer

In this method, the parameters required in the next Session attach0 (i.e., for the destinationserver) are sent to
the Client from the Server at the application level. The Client uses this information to do one of the following:

0 Release the Session with the sourceserver and establish a new session with the destinationServer
0 Maintain the Service with the sourceserver and establish a new session with the destinationServer

In the method when the Session with the sourceserver is released the Client cannot resume the context at a later
time.

2. Enhanced application level Service Transfer through Session detach(), State suspend0 and State resume().

In this method, the parameters required in the next DSM Session attach are sent to the Client from the Server at
the application level. The Client uses the State suspend0 and State resume0 operations to perform one of the
following:

0 Release the Session with the sourceserver (using detach0 with asuspend true)
0 Suspend aservice with forced release of its connection resources (using suspend0 with aRelease true)
0 Suspend a service without forced release of its connection resources; i.e., can be reassigned by the

SessionGateway to another service within a time-out period (using suspend0 with aRelease false)
0 Maintain the Service with the sourceServer

165

ISO/IEC 13818-6:1998(E) 0 ISOfIEC

In this method for the first three items above, the Client can resume the full context at a later time. Message flows for
both the Basic and Enhanced Service Transfer are given in Annex L.

l Release the Session with the sourceserver
0 Maintain minimum resources with the sourceserver
0 Maintain the Service with the sourceserver

In the method for the first two options above, the Client can resume the full context at a later time.

Message flows for both the Basic and Enhanced Service Transfer are given in Annex L.

5.5.1.6.2 Summary of Session Primitives

Defined in Session:

DSM Session attach Attach to a ServiceGateway Domain of Services.
(READER)

DSM Session detach Detach from a ServiceGateway Domain of Services.
(READER)

5.5.1.6.3

DSM Session attach

DSM Session attach

Attach to a ServiceGateway domain of Services. (READER)

Application Portability (Local Library) Syntax

module DSM (
interface Session {

const AccessRole attach ACR = READER; -
void attach (

in ServiceDomain aServiceDomain,// optional ServerId
in CosNaming: :Name pathName, // optional path name to resolve
in UserContext savedcontext, // previous application user context
out ObjRefs resolvedRefs) // objects resolved
raises (OPEN LIMIT, NO AUTH, UNK USER, SERVICE

BAD COMPAT -&FO, NO RESUME,
- XFR,

NoT_FOum, CANNOT_PROCEED, INV-NAME);
1 . 9

I . 9

Semantics
The Client invokes Session attach0 to establish a Session context with a ServiceGateway. This operation is invoked on
the local Session object. The identification of ServiceGateway may be provided by either aServiceDomain or
pathName, or both. aServickDomain is in NSAP address format. For an interactive Session, it is the globally unique
Server network address. For a Broadcast Carousel, it is the unique identifier of the Carousel. pathName provides the
logical path to a ServiceGateway and optionally a first Service.

aServiceDomain may be given with a 0 length pathName, and pathName may be given with a 0 length
aServiceDomain. In the former, the pathName shall be a non-conflicting path to the Service Domain in the system
environment namespace. If both are given, aServiceDomain uniquely identifies the server associated with the
ServiceGateway, and pathName provides the logical name of the ServiceGateway followed by the path to the first
Service.

A previous Session can be resumed by providing savedcontext from that Session. If this is not available, savedcontext
shall be 0 length.

166

0 ISO/IEC ISO/IEC 13818-6:1998(E)

Depending on the pathName input parameter, Session attach0 shall return object references for a ServiceGateway and
optionally for a first Service. If the first Service is a Composite object, it shall return object references for the Composite
parent and child objects.

Privileges Required:
READER

Parameters
type/variable
ServiceDomain
aServiceDomain

direction
input

description
The ServerId entry point to a Service Domain, identifying a
ServiceGateway.

CosNaming: :Name
pathName

input The logical path to the first Service.

UserContext
savedcontext

input Application state from a previously suspended application.

ObjRefs
resolvedRefs

output The object references resolved. ServiceGateway and
optionally first Service objects.

5.5.1.6.4 DSM Session detach

DSM Session detach Detach from a ServiceGateway domain of Services. (READER)

Application Portability (Local Library) Syntax

module DSM (
interface Session (

const AccessRole detach ACR = READER; -
void detach (

in boolean asuspend,
out UserContext savedcontext) // suspended user context
raises (NO-SUSPEND);

I . 9
1 . 9

Semantics

A Client may invoke Session detach0 to disconnect from a ServiceGateway and all objects of a Session. The operation
is invoked on a remote ServiceGateway object reference. If asuspend is TRUE, application state shall be returned as
savedcontext. If UserContext is not available, or if asuspend is FALSE, savedcontext shall be 0 length.The Client
may later invoke Session attach0 with this savedcontext in order to resume the application from the point of
suspension.

Privileges Required:
READER

167

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

Parameters
type/variable
boolean
asuspend

direction
input

description
If true, suspend application state and return savedcontext.

UserContext
savedcontext

output The suspended user context.

5.5.1.7 ServiceGateway
ServiceGateway inherits the Directory and Session interfaces. Directory bind0 bind-context(), rebind0
rebind-context0 and unbind0 require MANAGER privileges to be invoked on the ServiceGateway

5.5.1.7.1 Summary of ServiceGateway Primitives

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Inherited from Directory and
NamingContext:

operations: open, close, get, put,
list, resolve, bind, bind - context, rebind,
rebind
destroy

context, unbind, new-context,

Inherited from Session:
operations: attach, detach

Application Portability Syntax

module DSM (
interface ServiceGateway : Directory, Session {

const AccessRole bind ACR = MANAGER;
const AccessRole bind-context ACR = MANAGER;
const AccessRole rebind ACR: MANAGER;
const AccessRole rebind-context ACR = MANAGER;
const AccessRole unbind ACR =-MANAGER; -

1 . 9
1 ;

5.5.1.8 First
The First interface enables an application Client to obtain its first objects.

5.5.1.8.1

Defined in First:

Summary of First Primitives

DSM First root

DSM First service

Obtain the ServiceGateway object.

Obtain the Primary Service object.

168

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.1.8.2 DSM First root

DSM First root Obtain the ServiceGateway object.

Application Portability (Local Library) Syntax

module DSM {
interface First (

Object root 0;
1 . 9

I . 9

Semantics

A Client may invoke First root0 to obtain the object reference of the ServiceGateway for the current Session.

Privileges Required:
NONE

Parameters
Object output Current ServiceGateway object.

5.5.1.8.3 DSM First service

lr---- DSM First service Obtain the Primary Service object.

Application Portability (Local Library) Syntax

module DSM {
interface First (

Object service 0;
I . 9

1 . 7

Semantics

A Client may invoke First service0 to obtain the object reference of the current Session’s Primary Service. Following
Session attach(), this shall be the object reference of the Service specified in the pathName of the Session &a&().

Privileges Required:
NONE

Parameters
Object output Current Primary Service object.

5.5.2 Extended Interfaces
The DSM-CC Extended interfaces are optional. Each of these interfaces may be implemented at the discretion of the
Service Provider.

169

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

The Event interface can be used to subscribe to receiving Stream Event Descriptors that are synchronized with audio
and video in the MPEG stream.

Download provides a function call interface for the Download Protocol of clause 7.

The Composite interface is useful in high latency networks or for resolving multiple objects that have version
interdependencies.

The View interface can be used for sorting/filtering Directory information or accessing a database.

With the State interface, an object declares that it supports functionality to suspend and resume application state.

In a CORBA Server environment, there is an Interface Repository where new interfaces, operations, and associated
parameters may be discovered. In a DSM-CC system, the Interfaces operations are used to verify system integrity of all
shared interfaces and types.

The Security interface may be used in secure system environments, where passwords or encrypt keys need to be
exchanged.

The Config interface is useful if some applications require synchronous operations, while others can make asynchronous
requests.

LifeCycle create0 is a convenience function which assures uniqueness of Interoperable Object References,

The Kind interface enables Clients to dynamically determine which interfaces an object supports.

Abstract interfaces

jEvenr)(Composite)~~j[~j(Security)[~j(~j
attributes operations: operations: attributes onerations: operations: operations:
EventList list-subs[R] suspend [R] DeferredSync authenticate[R] create [0] is-a [R]
operations: resolve-subs[R] resume [R] operations: has-a [R]
subscribe[R] bind-subs [W] inquire [R]
unsubscribe[R] wait [R]

Instantiable interfaces

(Downluad
onerations:
info[R]
alloc[R]
start[R]
cancel [R]

, View) (Interfaces)

attributes onerations:
Style
operations:
query PI
read [R]
exec [W]

define[M]
check [M]
show [R]
undefine[M]

operations:
info[R]
proceed[R]
cancel [R]
install [0]
deinstall[0]

operations:
attach [R]
detach [R]

R ::= Reader
W ::= Writer 1 R
B ::= Broker 1 W 1 R
0 ::= Owner 1 B I W I R
M ::= Manager IO I B I W I R

170

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.2.1 Download

5.5.2.1 .l Download Definitions, Exceptions
module DSM (

struct ModuleInfo (
u short moduleId; -
octet moduleVersion;
u-long modulesize;
sequence<octet, 25% moduleInfoBytes;

1 ;
typedef sequencecModuleInfo, 65535> ModuleInfoList;
typedef sequencecu-short> ModuleList;

1 . 9

5.5.2.1.2

Download info

Summary of Download Primitives

Obtain information about prerequisite download modules.
(READER)

Download allot Allocate memory buffers for a download. (READER).

Download start Start and transfer the modules to the Client. (READER).

Download cancel Cancel a download in progress. (READER).

5.5.2.1.3

DSM Download info

DSM Download info

Obtain information about prerequisite download modules.
(READER)

Application Portability (Local Library) Syntax

module DSM (
interface Download (

const AccessRole info ACR = READER;
void info (out Module&foList rModulesInfo);

1 . ?
1 . 7

Semantics

Download info0 enables a Client to obtain information about modules that must be downloaded in order for an
application to proceed. The fields of ModuleInfo are defined in clause 7.

Privileges Required
READER

Parameters
ModuleInfoList
rModulesInfo

output ModuleId, version, size and other information for each
module of the Download image.

171

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.5.2.1.4 DSM Download allot

DSM Download allot Allocate memory buffers for a download. (READER)

Application Portability (Local Library) Syntax

module DSM {
interface Download {

const AccessRole allot ACR = READER;
void allot (in u short [ModuleId, -

in Object rWriteBuffer,
out Object rReadBuffer)
raises (BAD-MODULEID);

I .

Semantics

With Download alloc(), the application negotiates buffer management for a module to be downloaded. It can choose to
allocate memory or otherwise assign the buffer location for each module, or it can defer to the lower transport layer to
choose and manage the buffer location. If the convention is for the application to assign the buffer space for the module,
it will place a non-null pointer in rWriteBuffer. In this case the rReadBuff& reply will be null;. The data will be placed
at rWriteBuffer. If the application defers to the lower layer transp.ort to assign the buffer location, it places null in
rWriteBuffer and the lower layer transport will return a non-null reference TV the rReadBuffer buffer location. In the
second case, the data will be placed in rReadBuffer. The configuration step is performed individually on each module,
following a Download info0 invocation, and prior to Download starto.

Privileges Required

READER

Parameters
u-short
aModuleId

input Identifier of a module.

Object
wri teB uffer

input Whether to write data (TRUE) or address (FALSE) to
rReadB uffer .

Object
readB uffer

output Buffer or location of buffer.

5.5.2.1.5 DSM Download start

DSM Download start Start and transfer the modules to the Client. (READER)

Application Portability (Local Library) Syntax

module DSM {
interface Download (

const AccessRole start ACR = READER; -
void start (in ModuleList aModuleList)

raises(BAD-MODULE-ID, MPEG - DELIVERY, TIMEOUT);
1 . 9

1 . 9

Semantics

172

0 ISOIIEC ISO/IEC 13818=6:1998(E)

With Download starto, the Client requests that the transfer of modules begin. When it completes, all modules will be
downloaded. A module sequence can be selected. From the application interface, aModuleList indicates only those
modules that are to be placed in the Client’s allocated memory.

Privileges Required
READER
Parameters
ModuleList input A sequence of u-short listing modules by their id.
aModuleList

5.5.2.1.6 DSM Download cancel

DSM Download cancel Cancel a download in progress. (READER)

Application Portability (Local Library) Syntax

module DSM {
interface Download {

const AccessRole cancel ACR = READER; -
void cancel (in ModuleList aModuleList)

raises (BAD-MODULEJD, TIMEOUT) ;
1 . 9

1 . 9

Semantics

The Client calls Download cancel0 in order to cancel a download in progress. aModuleList identifies the ids of the
modules to cancel. After this operation is invoked, the transport layer will not write to Client’s allocated memory any
modules that are on aModuleList. The transport layer will issue cancel to the Server when the download has progressed
to the point where all remaining module ids to be downloaded are on alllodulelist.

Privileges Required
READER

Parameters
ModuleList
aModuleList

input A sequence of u short listing modules by their id. -

552.2 Event
The event interface in the Common Object Services specification of the Object Management Group is the foundation on
which the DSM-CC Event interface was built. The Event interface, however, differs in two respects. First the interface
packages the functions, which scatter across multiple interfaces in the Object Management Group design, into a single
interface. Second, the audience for the interface is a Client, such as the set-top device, which receives the media stream.
The stream object distributes the event data through a transport mechanism that differs from that of the object invocation
interface. For example, the Object Implementation of the Event interface could deliver events through the MPEG-2
stream.

The Client discovers
the existence of an
event by accessing
the EventList
attribute. The Client

Event &
distribution

Server

subscribe(), unsubscribe()

StreamEvent Descriptors
Client

173

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

invokes Event subscribe0 to request that the event be sent. The Client provides an eventName from the EventList,
which is a simple string. The stream object returns a eventId which uniquely identifies the event. There is only one
eventId associated with a stream event name.

Note that the event includes both the eventId and the rAppTime to which the event relates. The inclusion of the time
value enables the Client to schedule the reaction to the event to correlate with the presentation of a media stream.

Where the transport for event distribution is MPEG-2, the Stream Event structure shall be sent in the MPEG-2 stream
encapsulated in the Stream Event descriptor, and placed in a DSM-CC-section as specified in clause 9, Transport.. This
descriptor is defined in clause 6, Stream Descriptors. The stream object places the event data into the media stream near
the companion media data. Unsolicited Stream Event Descriptors are allowed in the MPEG-2 stream, but shall be
discarded by the DSM-CC Library.

5.5.2.2.1 Event Definitions, Exceptions
module DSM (

interface Event (
// In addition to the other descriptor fields, the stream object places the
// StreamEvent in the private data section of the media stream:
const u short NULL EVENT ID = 0; - - -
typedef sequencecchar, 255> eventName;
typedef SequenceceventName, 65535> EventList-T;
const AccessRole EventList get ACR = READER;
const AccessRole EventListput-ACR = OWNER; - -
attribute EventListT EventList;
// the following struct is sent in the MPEG stream
/I
struct StreamEvent (

u-short eventId;
AppNPT rAppTime;
sequence<octet> rPrivateData; } ;

1 . 7
1 . 9

The constant declaration captures the convention that if the eventId field of the descriptor data is the value zero, it is
understood that the event data which follows is invalid. If the event trigger time is maximum negative value, the
semantics are to immediately respond to the event.

5.5.2.2.2

Defined in Event:

Summary of Event Primitives

DSM Event subscribe Subscribe to receive an event over an MPEG stream. (READER)

DSM Event unsubscribe Indicate desire to no longer receive an event. (READER)

DSM Event notify Obtain Event data from a Stream Event descriptor. (READER)

5.5.2.2.3 DSM Event subscribe

DSM Event subscribe Subscribe to receive an event over an MPEG stream. (READER)

174

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Event (

const AccessRole subscribe ACR = READER; -
void subscribe(

in string a.EventName,
out u-short eventId)
raises(INV EVENT-NAME); -

1 . 9
1 . 9

Semantics

The Client invokes Event subscribe() to request that the specified event be sent when it occurs. The Client provides the
event name. The Service returns an eventId to associate with the event name. The scope of the eventId is at least the
media stream. The Client, in other words, should not find multiple eventIds related to the same event in the stream. The
exception relates to the situation where the Client provides an event name which the Service does not recognize.

Privileges Required
READER

Parameters
type/variable
string
aEventName

direction
input

description
The symbolic name of the event.

u-short
eventId

output The eventId which the Service assigns, and which the
Client should associate, with the event.

5.5.2.2.4 DSM Event unsubscribe

DSM Event unsubscribe Indicate desire to no longer receive an event. (READER)

g

Application Portability / Service Inter-operability Syntax

module DSM (
interface Event (

const AccessRole unsubscribe ACR = READER; -
void unsubscribe(

in u-short eventId)
raises(INVEVENT-ID) ;

1 . 9
1 . 9

175

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Semantics

The Client invokes Event unsubscribeo to instruct the Service to not generate the event. The Client provides the
eventId to describe the subscription to which the operation refers. The eventId with respect to the Client becomes stale.
The Service can assign the eventId to other subscription requests. The exception relates to the situation where the Client
provides a bogus eventId, for example a eventId which was valid but is now stale.

Privileges Required
READER

Parameters
type/variable
u-short

direction description
input The eventId which identifies the previous subscription.

eventId

5.5.2.2.5

DSM Event notify

DSM Event notify

Obtain Event data from a Stream Event descriptor. (READER)

Application Portability (Local Library) Syntax

module DSM {
interface Event {

#ifdef DSM PSEUDO
void notify (

out StreamEvent rStreamEvent);
#endif

1 . 9
1 . 7

Semantics

Event notify0 enables the Application Portability Interface applications to receive the data of the transmitted Stream
Events Descriptors. This functionality is necessary for portable applications that rely on the information carried in the
Stream Event Descriptors, such as the event NPT and event private data.

Note that the Event notify0 operation is not related to a function in the Client-Server interface because it handles the
reception of the Stream Event Descriptors at the Client to the Client’s application.

When the Client is using the synchronous interface, it would typically set up a thread that calls Event notify(). When -
the Event is received, Event-notify0 would return with the Descriptor data. When the Client is using the synchronous
deferred interface, it would call Event-notify0 to obtain a DSM RequestHandle. - This RequestHandle is then used to
inquire or wait for the arrival of the Stream Event Descriptor.

Privileges Required:
READER

Parameters
type/variable
S treamEvent
rStreamEvent

direction
output

description
StreamEvent Structure constructed from Stream Event
descriptor that was sent in an MPEG-2 stream.

176

0 ISO/IEC ISO/IEC 13818=6:1998(E)

552.3 Composite
The Composite interface provides the ability to associate a set of child objects related by a common parent. The child
objects are marked as either required or optional. A required child object must be resolved in order for the application to
start. An optional child may be resolved at any time during the running of the application. The child objects are
associated as a set of compatible versions. A Composite list-subs0 shall list all the child objects by name, version and
whether they are required or optional.

Directory open0 with aPathType = DEPTH must be used to resolve a Composite object. The Composite object shall
be recognized by the BindingType DSM::cobject in the Directory list0 reply. At the Application Portability Interface,
Directory open0 returns the parent Composite. A child object may be resolved with a subsequent Directory open0 or
Directory resolve(). If a parent Composite object is closed, its Child objects are closed as a result of the operation.

Composite bind subs0 and Composite unbind - subs0 operations are provided for creating and destroying the -
Composite association.

For Composite bindings at a Directory, the BindingType shall be DSM::cobject.

5.5.2.3.1

Composite list subs -

Summary of Composite Primitives

For each ChildRef, list NameComponent, Version and whether
required to be resolved upon opening. (READER)

Composite bind subs - Bind sub-objects to a Composite object. (WRITER)

Composite unbind subs - Unbind all sub-objects of a Composite object. (WRITER)

5.5.2.3.2 DSM Composite list subs -

DSM Composite list subs - For each ChildRef, list NameComponent, Version and whether required to
be resolved by resolveSubs. (READER)

Application Portability / Service Inter-operability Syntax

module DSM {
typedef u-long BindingType; // extends CosNaming BindingType
const BindingType cobject = 2;
interface Composite (

struct ChildInfo {
CosNaming: :NameComponent n;
Version rversion;
boolean required;

1.
19
typedef sequence<ChildInfo> ChildInfos;
I/
const AccessRole list subs ACR = READER; - -
void list-subs (

in CosNaming::Name name,
out ChildInfos infos)

raises (NOT-FOUND, INV-NAME);
1 . 7

1 . 9

Semantics

177

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

A consumer Client invokes Composite list subs0 to list information concerning the sub-objects of a composite object.
Information returned includes NameComponent, Version, and whether the sub-object is required or optional. An
application developer can use Composite to combine several well-known Service types, thus making maximum use of
existing U-U Library facilities.

Privileges Required
READER

Parameters
type/field
CosNaming: :Name
name
ChildInfos
rChildInfos

direction
input

output

description
The path name to the composite parent phantom.

A sequence of sub-object info structures, each
containing NameComponent, Version, and whether
the sub-object is required or optional.

5.5.2.3.3 DSM Composite bind subs -

DSM Composite bind subs - Bind sub-objects to a Composite object. (WRITER)

Application Portability / Service Inter-operability Syntax

module DSM
interface Composite {

#ifdef DSM GENERAL
structChildBinding{

CosNaming::NameComponent n;
Version rversion;
boolean required;
ObjRef obj ;

1 .
typedef sequencecChildBinding> ChildBindings;
const AccessRole bind subs ACR = WRITER; - -
void bind subs (-

in CosNaming::Name name,
in ChildBindings rChildBindings)

raises (NotFound, INV - NAME, AlreadyBound);
#endif

1 . 9
1 . 9

Semantics

A producer Client uses Composite bind-subs0 to bind a set of required and optional objects and their names to a
composite binder. The composite set consists of compatible versions of objects.

Privileges Required
WRITER

178

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Parameters
type/field
CosNaming: :Name

direction description
input The path name to the composite parent phantom.

name
ChildBindings
rChildBindings

input A sequence of sub-object references, each containing
NameComponent, object reference, and whether the
sub-object is required or optional.

5.5.2.3.4 DSM Composite unbind subs -

DSM Composite Unbind all sub-objects of a Composite object. (WRITER)
unbind-subs c

Application Portability / Service Inter-operability Syntax

module DSM
interface Composite {

#ifdef DSM GENERAL
cons;AccessRole unbind subs ACR = WRITER; - -
void unbind-subs (in CosNaming: :Name name)

raises (NotFound, INV-NAME);
#endif

Semantics

A producer Client uses Composite unbind-subs0 to unbind all sub-objects from a parent composite object.

Privileges Required
WRITER

Parameters
type/field
CosNaming::Name

direction
input

description
The path name to the composite parent phantom.

name

5.5.2.4 View
Multimedia client-server applications using MPEG for audio, video and file access also have a need for viewing
information in the perspective of the end user, as opposed to how the information is stored at the server. The View
primitives provide operations for sorting and filtering data such that directories and database information can be
presented to the user in a more palatable form.

Using the View interface, the relational model can be applied to objects in directories. The View Style in this case is
NON - DB, meaning the directory is not a database. The objects’ exported attributes and their associated values are used
in a View query0 query to produce a sorted and filtered result set. The result set can then be browsed using View
read().

Alternatively, the View interface can be applied to an actual database at the server. The View Style for this case is either
SQL89, SQL92, or SQL3. View query0 and View read0 are again used by the calling application to retrieve database
attributes. Note thatname for SQL3 may change as that standard nears completion.

For all View Styles, the SQL language syntax is used as the basic query form.

179

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

View read0 is provided which will return a number of rows. A View read0 from the calling application can result in a
View read0 RPC call by the DSM-CC Library which will pre-fetch results in anticipation of the cursor location in the
next View read().

Using the application portability interface, Directory open0 can be pipelined with View query0 and View read0 in
deferred synchronous mode, resulting in the pipelined execution of the operations.

The overlapped execution and local results caching overcomes a potentially significant response time issue in long-
latency networks.

5.5.2.4.1 Non-Database View
The View interface can be used as an extension of the Directory Interface to enable searching, sorting and filtering of
Directory objects, using a minimal SQL set. A NON DB View Style indicates that the View is not a Database, but does -
support limited SQL queries against a container of objects, e.g., a Directory.

The result set from the view contains temporary attribute objects which are browse-able by the client. For example, a
client can sort objects by the Access Size attribute, using view.

The SQL set supported by a NON DB View Style is as follows: -

SELECT, as defined in SQL92, with keywords (in order normally found):
ALL is the default and specifies that all objects that satisfy the SELECT statement should be

returned
FROM indicates which object types to perform the query against
WHERE specifies conditions
ASC sort in ascending order
DESC sort in descending order
GROUP BY return summary information about groups of objects
HAVING return summary information about groups of objects
ORDER BY the order in which rows are returned
UNION combine the results of two select statements
INTERSECT combine the results of two select statements
MINUS combine the results of two select statements

Conditions, i.e., [attribute operator value] combinations, as defined in SQL92 Some attributes are stored in structures.
The query will specify attributes within structures in ANSI-C syntax, i.e., <attribute structure name>.cattribute name>.
Operators in the query must compare a value to a basic type, e.g., an integer or string.

The following are strictly NOT allowed for NON DB View Style: -

1. DISTINCT, since there are no duplicate objects within a name context
2. CONNECT BY, START WITH, since hierarchy is explicit through use of Directories
3. FOR UPDATE OF, since writes are not allowed through SQL on NON DB View -
4. NO WAIT, since locks may not be set with NON DB View -
5. plus any other non-SELECT statement

5.5.2.4.2 Database View
A View object may represent an actual database at the server. The View Styles for a database are SQL89, SQL92 and
SQL3. Each of these refers to a SQL standard. Based on the type, the syntax and semantics of that standard are
applicable.

5.5.2.4.3 View Procedures
The following steps outline the query sequence:

1. The client application makes the Directory open0 of a View object, followed immediately by a View query0 with
a SQL statement.

2. The DSM-CC Library issues Directory open(), View query0 and View read0 RPCs in synchronous deferred
mode, allowing them to be pipelined.

180

0 ISO/IEC ISO/IEC 13818=6:1998(E)

3. The RPC Server establishes the query, executes it, and creates a results area for all rows matched. The RPC Server
fetches the initial set of result rows. In addition it marks which rows are to be returned.

4. The RPC reply sent to the client with a subset of the rows matched.

5. The rows returned from the View read0 are stored in a local buffer at the client.

The following steps outline the browsing sequence:

1. The client obtains the initial set of rows or objects from View read0 in its local buffer, as described above.

2. The client can obtain a row by invoking View read0 with cursor value that points into the matching result set at the
Server. The DSM-CC Library will invoke the remote interface View read0 as needed or to pre-fetch a window of
rows in anticipation of further reads.

3. Finally the client issues Base close0 is used to close the View and the query.

5.5.2.4.4
module DSM

interface View {

Definition: View Style Attribute

I/ View Style identifies the Query set supported by the View
// NON DB indicates service is not a Database but performs minimal searches,
// filters-and sorts using SELECT as described in this part of ISO/IEC 13818
I/ SQL89 indicates the View is a SQL89-compliant database
II SQL92 indicates the View is a SQL92-compliant database
/I SQL3 indicates the View is a SQL3-compliant database
const char NON DB = ‘N’;
const char SQLs9 = ’ 1’;
const char SQL92 = ‘2’;
const char SQL3 = ‘3’;
const AccessRole Style get ACR = READER; - -
readonly attribute char Style;

1 . 9
> . 9

181

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

5.5.2.4.5 View Definitions: Statement, Result
module DSM {

interface View (
typedef string SQLStatement;
II
typedef u-short FieldCode;
struct FieldDescribe {

string fieldName; // name of the field
FieldCode aType; // type of the field
opaque typeparameters; // parameters related to the given type

1 .
typedef sequencecFieldDescribe> ResultDescribe;
/I
// FieldCodes for standard SQL types
const FieldCode VTC CHAR =
const FieldCode VTC-SMALLINT =

1;

const FieldCode VTC-INTEGER =
2;

const FieldCode VTC%LOAI’ =
3;

const FieldCode VTC-SMALLFLOAT =
4

const FieldCode VTC-DECIMAL =
5;

const FieldCode VTC-REAL =
6;

const FieldCode VTC-DOUBLEPRECISION =
7;

const FieldCode VTC-CORBA TYPECODE =
8;

- - 9;
//
// these structs are placed into the opaque typeparameters field of
// the FieldDescribe struct depending on the value of the FieldCode
struct InfoChar {

u-short length;
boolean nullTerminated;

1 .
shuct InfoFloat {

u-short precision;
1 .

stiuct InfoDecimal (
u-short precision;
u-short scale;

1 .
N
// type definitions for the returned data
typedef opaque Field;
typedef sequencecField> Row;
typedef sequencecRow> Result;

1 . 9
I . 9

5.5.2.4.6

Defined in View:

Summary of View Primitives

DSM View query Execute a SQL select statement, fetch an initial set of result objects.
(READER)

DSM View read Read additional result rows in the context of a View query. (READER)

182

0 ISO/IEC

DSM View execute Execute a SQL write statement. (WRITER)

ISO/IEC 13818=6:1998(E)

5.5.2.4.7 DSM View query

DSM View query Execute a SQL select statement. Fetch an initial set of result objects.

Application Portability / Service Inter-operability Syntax

module DSM {
interface View (

const AccessRole query_ACR = READER;
void query(

in SQLStatement aSQLStatement,
in u-short maxRows,
out ResultDescribe describe,
out Result aResult,
out View iterator)
raises (ILLEGAL-SYNTAX);

Semantics

View query0 sends the SQL statement specified by aSQLStatement to the View object for execution. maxRows
defines the maximum number of rows to return. describe contains a description of the fields in the data returned in
aResult.

The iterator output is a View object reference. A View query0 can be sent to this iterator to perform a further reduction
of the current result set by means of a SQL statement. It also enables views to be created and manipulated without
closing or destroying the initial View.

Privileges Required
READER

183

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Parameters
type/variable
SQLStatement
aSQLStatement

direction
input

description
Standard SQL statement, subject to restrictions of the
View Style.

u-short
maxRows
ResultDescribe
describe

input Maximum number of rows to return.

output Description of return fields.

Result
aResult

output Results buffer of rows and fields.

View
iterator

output New View iterator for reading additional rows and
further reducing the result. These are accomplished by
sending a View read or query to the iterator.

5.5.2.4.8

DSM View read

DSM View read

Obtain the attributes of a single row or object.

Application Portability / Service Inter-operability Syntax

module DSM {
interface View {

const AccessRole read ACR = READER; -
void read(

in u-short aCursor,
in u-short maxRows,
out Result aResult)
raises(N0 - QUERY, INV - CURSOR);

I . 7
1 . 9

Semantics

View read0 is used to read additional rows after making a query. aCursor identifies an object in the list of objects,
either in the name context, or in the select full result.

read0 can be called only for the interator object returned from a query. If read0 is called for a View object without first
making a query, NO-QUERY exception is raised.

Privileges Required
READER

Parameters
type/field
u-short
aCursor

direction
input

description
Index into the full result of a select or the list of
objects in a name context.

u-short
maxRows

input Maximum number of rows to return.

Result output The Object’s attribute values or row field values.

184

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.2.4.9 DSM View execute

DSM View execute Execute a SQL write statement.

Application Portability / Service Inter-operability Syntax

module DSM {
interface View {

const AccessRole execute ACR = WRITER; -
void execute(

in SQLStatement aSQLStatement)
raises(ILLEGAL_SYNTA);

Semantics

View execute0 sends the SQL statement specified by aSQLStatement to the View object for execution of SQL inserts,
deletes, and updates.

Use of View execute0 is not permitted for the NON DB View Style. For NON DB Views, Directory commands such - -
as Directory bind0 and unbind0 should be used instead.

Privileges Required:
WRITER

Parameters
type/variable
SQLStatement
aSQLStatement

direction
input

description
Standard SQL statement, subject to restrictions of the
View Style.

5.5.2.5 State
The State interfaces enables an application to suspend state, and later resume where it left off.

5.5.2.5.1

DSM State suspend

Summary of State Primitives

Suspend application state for a Service. (READER)

DSM State resume Resume a Service from previous application state.
(READER)

185

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.5.2.5.2

DSM State suspend

DSM State suspend

Suspend application state for resumption at a later time.
(READER\

Service Inter-operability IDL Syntax

module DSM (
interface State (

const AccessRole suspend ACR = READER; -
void suspend(

in boolean aRelease,
out UserContext savedcontext)
raises (NO - SUSPEND);

I . 9
1 . 9

Semantics

State suspend0 is used to request that a Service Object Implementation instance preserve its Client specific state or
return it to the Client. If this object is a parent Composite with open child objects, State suspend0 cascades to the child
objects (how the suspend cascades to other open objects is outside the scope of DSM-CC). By setting the aRelease flag
to 1, the Client indicates it is not planning to resume this application in the immediate future.

Privileges Required:
READER

Parameters
type/variable
boolean
aRelease

direction
input

description
A hint to the underlying transport. If FALSE, an
indication the Client intends to resume soon. If TRUE,
an indication the Client intends to resume much later.

UserContext
savedcontext

output Opaque state information.

186

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.2.5.3 DSM State resume

DSM State resume Resume from a ServiceGateway domain of Services. (READER)

b

Application Portability / Service Inter-operability Syntax

module DSM (
interface State (

const AccessRole resume ACR = READER; -
void resume (

in UserContext savedcontext,
out ObjRefs restoredRefs)
raises (NO-RESUME);

1 . 7
1 . 9

Semantics

State resume0 is used to request an object instance to restore a previous state using a savedcontext sequence of octets.
The structure of restoredRefs is the same as that for the resolvedRefs in the Session attach().

Privileges Required:
READER

Parameters
type/variable
UserContext

direction description
input savedcontext from a previous State suspend0 or Session

savedcontext detach().

ObjRefs
restoredRefs

output object references enabling the application to continue where
it left off.

5.5.2.6 Interfaces
In a Service Domain where new interfaces need to be made public, an object can define its interfaces by use of the
Interfaces define0 operation. In addition to new interfaces, it can declare whether it inherits well-known interfaces such
as DSM-CC Directory, Stream and File, or whether it inherits other interfaces known to the Interfaces object. More
importantly, through Interfaces define(), an interface can be verified as being consistent with the complete and coherent
system-wide interface set.

The DSM-CC application space is constructed as a name space graph starting at the ServiceGateway. The nodes
represent objects of the various types specified by DSM-CC as well as additional types that may be implementation-
specific.

The Directory primitives provide browsing functions to traverse the graph. Each node has a minimum of a name and
type. The node may have other browse-able information such as version and date, providing the definition of the type
exports these attributes. Each object type has an exported interface, which is defined through Interfaces define().

An Interface Repository is recommended to insure that the object interfaces that exist in the Server are coherent and
non-conflicting. DSM-CC interfaces provide a well-known base set of interfaces. However, as applications are
developed, there will be new interfaces that build on the DSM-CC primitives. As these are installed in the system, it is
desirable that they be verified for correctness and that they do not conflict with the existing interfaces in the system. The
repository must assure all interfaces defined with it represent a valid collection of IDL definitions. For example, all
inherited interfaces exist, there are no duplicate operation names or other name collisions, all parameters have known
types, etc. This validation is performed by Interfaces check@

187

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.5.2.6.1
module DSM {

TCKind Constants

typedef u-long TCKind;
I/
// TCKinds from CORBA 2.0
const TCKind tk null = 0; -
const TCKind tk-void = 1;
const TCKind tk-short = 2; // = DSM s short --
const TCKind tk-long = 3; // = DSM-s-long
const TCKind tk ushort = 4; // = DSM-u-short -
const TCKind tk-ulong = 5; // = DSM-u-long
const TCKind tk-float = 6;
const TCKind tk-double = 7;
const TCKind tk boolean = 8; -
const TCKind tk-char = 9;
const TCKind tk-octet = 10;
const TCKind tk-any = 11;
const TCKind tk_TypeCode = 12;
const TCKind tk-Principal = 13;
const TCKind tk-objref = 14;
const TCKind tk-struct = 15;
const TCKind tk-union = 16;
const TCKind tk-enum = 17;
const TCKind tk-string = 18;
const TCKind tk-sequence = 19;
const TCKind tk-array = 20;
const TCKind tk-alias = 21;
const TCKind tk-except = 22;
const TCKind tk-longlong = 23;
const TCKind tk-ulonglong = 24;
// 25 - OxOOFFFFFF and 0x80000000 - Ox- OMG reserved
I/
// Component Tags registered with OMG
// The reserved range for ISO/IEC WGl 1 in OMG is Ox49534FO0 - Ox49535 1FF
//
// TCKinds specific to DSM-CC.
// Ox495341FOO - Ox495341F7F ISCYIEC and OMG reserved
// DSM-CC constructed TCKinds
const TCKind tk_IntfCode = 1230 196608; // Ox49534F80 identifies, supported interfaces
const TCKind tk-Access-Hist = 1230196609; I/ Ox49534F81 has Version and DateTime
const TCKind tk-Version = 1230196610; !/ Ox49534F82 has major and minor
const TCKind tk_DateTime = 1230196611; II Ox49534F83 has fields
const TCKind tk_Access-Lock = 1230196612; /I Ox49534F84 has readLock and writeLock
const TCKind tk - Access-Perms = 1230196613; // Ox49534F85 has fields
const TCKind tk-Stream-Info = 1230196614; 11 Ox49534F86 has description, duration, flags
const TCKind tk-Event-EventList = 1230196615; II Ox49534F87 is a sequence of string
const TCKind tk-Config-ActiveRequests = 1230196616; 11 Ox49534F88 is a seq of RequestHandle
I/ Ox49534F89 - Ox49534FFF ISO/IEC and OMG reserved

1 . 9

188

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.2.6.2 Exception TCKind Constants
module DSM (

// CosNaming exceptions
const TCKind tk NotFound = 1230196736; // Ox49535000
const TCKind tk?annotProceed = 1230196737; // Ox49535001 -
const TCKind tk_InvalidName = 1230196738; // Ox49535002
const TCKind tk_AlreadyBound = 1230196739; // Ox49535003
const TCKind tk_NotEmpty = 1230196740; // Ox49535004
//Ox49535005 - Ox49535030 ISO/IEC Reserved
II
// DSM-CC common exceptions
const TCKind tk ALREADY BOUND = 1230196784; // Ox49535030
const TCKind tk-BAD COMBAT INFO = 1230196785; /I Ox49535031
const TCKind tk-BAD-MODULE-ID = 1230196786; // Ox49535032
const TCKind tkBAD-MODULE-INFO = 1230196787; // Ox49535033
const TCKind tk-BAD-SCALE = 1230196788; I/ Ox49535034
const TCKind tkBAD-START = 1230196789; /I Ox49535035
const TCKind tkBAD-STOP = 1230196790; II Ox49535036
const TCKind tkBLOCK SIZE = 1230196791; I/ Ox49535037
const TCKind tk-CANNOT PROCEED = 1230196792; I/ Ox49535038
const TCKind tk-ILLEGAL-SYNTAX = 1230196793; // Ox49535039
const TCKind tk-INV CURsOR = 1230196794; // Ox4953503A
const TCKind tk-INVEVENT ID = 1230196795; // Ox4953503B
const TCKind tk-INVEVENT-NAME = 1230196796; // Ox4953503C
const TCKind tk-INV-KIND =-!l230196797; I/ Ox4953503D
const TCKind tk-INV-NAME = 1230196798; // Ox4953503E
const TCKind tk-INV-OFFSET = 1230196799; // Ox4953503F
const TCKind tk-INV-SIZE = 1230196800; // Ox49535040
const TCKind tk-MPfG DELIVERY = 1230196801; // Ox49535041
const TCKind tk-NO AfiTH = 1230196802; // Ox49535042
const TCKind tk-NO-QUERY = 1230196803; // Ox49535043
const TCKind tk-NO-REF TYPE = 1230196804; // Ox49535044
const TCKind tkNO-SUSPEND = 1230196805; // Ox49535045
const TCKind tk-NO-RESUME = 1230196806; // Ox49535046
const TCKind tk-NO?’ DEFINED = 1230196807; // Ox49535047
const TCKind tk-NOT-FOUND = 1230196808; // Ox49535048
const TCKind tk-OPEN LIMIT = 1230196809; // Ox49535049
const TCKind tkhREV-DEFINED = 1230196810; // Ox4953504A
const TCKind tk-REAf LOCKED = 1230196811; // Ox4953504B
const TCKind tk-TIMEOUT = 12301968 12; // Ox4953504C
const TCKind tk-UNK USER = 1230196813; // Ox4953504D
const TCKind tk-WRITE LOCKED = 1230196814; // Ox4953504E
const TCKind tk%ERVI~EJFR = 1230196815; // Ox4953504F
// Ox49535050 - ix49535OFF ISO/IEC reserved

I . 9

189

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.5.2.6.3 Interfaces Definitions
module DSM (

If A TypeCodeBuf holds a Corba 2.0 TypeCode
typedef opaque TypeCodeBuf;
typedef sequencecTypeCodeBuf> TypeCodeList;
If
interface Interfaces (

typedef opaque ReferenceData;
typedef string InterfaceDef;

1 . 3
1 . 7

5.5.2.6.4 Summary of Interfaces Primitives

DSM Interfaces show Show an interface definition, IntfCode and TypeCodes.
(READER)

DSM Interfaces define Define an object interface to the System (MANAGER)

DSM Interfaces check Verify the coherence of an interface with the repository.
(MANAGER)

DSM Interfaces undefine Remove an object interface definition from the System.
(MANAGER)

5.5.2.6.5 DSM Interfaces show

DSM Interfaces show Show an interface definition, IntfCode and TypeCodes.
(READER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Interfaces (

#ifdef DSM GENERAL
const-AccessRole show ACR = READER; -
void show (

in string aStrKind, If DSM-CC format, “Module: :Interface Type”
in IFKind anIFKind, If IFKind
out string rIDL, If IDL used in previous define
out IntfCode rIntf, If DSM-CC interface code with included IFKinds
out TypeCodeList rTypes) If TypeCodes required at this level of interface

raises (NotFound, INV - NAME);
#endif

1 ;
1 ;

Semantics

A READER Client can call Interfaces show0 to retrieve the IDL, IntfCode, TypeCodes of an interface or type. The
semantics of the output parameters IFKind and TypeCodeList are the same as those of the Interfaces define0
operation.

If anIFKind is non-zero, then it will be used to lookup the interface parameters. Otherwise, aStrKind will be used to
lookup the interface information. The Interfaces show0 function enables the following sequence: A Client, after

190

0 ISOIIEC ISWIEC 138184:1998(E)

invoking Direchn-y list(), discovers a new interface kind from the NameComponent kind of one of the Bindings in the
Directory list0 reply. The Client then resolves an object that supports DSM::Interfaces for this system, and invokes
Interfaces show0 with aStrKind from the NameComponent kind. The Client then iterates the Interfaces show0 with
anIFKind from each of the IntfCode included IFKinds, to obtain all type information for the interface inheritance
hierarchy. If the Client supports these types, or if it can dynamically interpret them, it can then communicate with the
new interface.

IDL, IntfCodes and TypeCodes must be available for inter-operability reasons. The IDL is used to generate language
mappings. IntfCodes are used by Kind-is-a0 and other operations that desire the efficiency of u-long vs. string format.
TypeCodes are used by exception handlers, Directory-get(), Directory-put(), View-Read(), etc., to identify the
values in the any structure. These IntfCodes and TypeCodes are necessary at application compile time, if structures are
to be pre-compiled as opposed to dynamically interpreted. A compiler may invoke Interfaces define0 or Interfaces
show0 in the process of generating the language mapping.

aStrKind can be formatted as follows:

0 It can refer to an interface, in which case it will be of the form “<Module>::<Interface>“.

0 It can refer to an interface by it’s DSM-CC reserved 3-character string alias.

0 It can also refer to common types at the Repository level, in which case it will be of the form “<Type>“.

0 It can also refer to common types at the Module level, in which case it will be of the form “cModule::Type>“.

0 It can furthermore refer to types within an interface, in which case it will be in the form “<Module::Interface
Type>“.

In the above, “<Module>” refers to the module symbolic name in the IDL. “<Interface>” refers to the interface
symbolic name in the IDL. “<Type>” refers to the Type definition symbolic name in the IDL.

Privileges Required:
READER

Parameters
type/variable
string
aKind

direction description
input The DSM-CC NameComponent kind in the form

“Module: :Interface”, or “Module: :Type”, or
“Module: :Interface Type”.

string
rIDL

output The IDL defined for the interface or type.

IntfCode
rIntf

output The defined IntfCode for this interface.

TypeCodeList
rTypes

output DSM-CC TypeCodes used by this interface, or
TypeCodes representing common type definitions.

191

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

5.5.2.6.6 DSM Interfaces define

DSM Interfaces define Define an object interface to the System (MANAGER)

Application Portability / Service Inter-operability Syntax

module DSM (
interface Interfaces (

#ifdef DSM GENERAL
cons;AccessRole define ACR = MANAGER; -
void define (

in ReferenceData id, // unique Identifier
in InterfaceDef rIDL, // IDL definition
out IntfCode rIntf, // DSM-CC interface code with included IFKinds
out TypeCodeList rTypes) // TypeCodes required at this level of interface
raises (PREV - DEFINED, ILLEGAL-SYNTAX, NO-REF-TYPE);

#endif
I . 7

1 . 7

Semantics

Interfaces define0 is used by a MANAGER to declare object interfaces and type definitions to the system environment.
The interface definition specifies the exported interface of the object, i.e., exported methods and attributes, plus data
type definitions. The interface definition may ‘include’ other interfaces to order to enable new interfaces to extend the
functionality of existing interfaces. The object type is specified in OMG IDL. This interface definition will replace any
previous definition.

The interface is verified for completeness and coherence with the other interfaces that have previously been defined, i.e.,
success from this operation means that the set of system interfaces including this one will have a definitions for all
referenced types and will be without name conflicts.

A maximum of one interface can be defined per Interfaces define0 operation. IntfCode is returned which provides
IFKind enumeration unique for this system environment. The IFKind is the input to the operation Kind has

an
- a().The

IntfCode is the output of the operation Kind is - a(). IntfCode also contains the kind string to be used in
NameComponent kind, the id of the Interface Repository and the IFKind of each of the included interfaces. A
sequence of TypeCode is returned which identifies the component types used by this interface. If no interface is defined,
i.e., component types are defined outside of interfaces, an IFKind of ik-null and the defined TypeCodes are returned.

The interface definition can specify the AccessRole for each method, as well as the get AccessRole and put AccessRole
for each exported attribute. If these are not specified, the AccessRole defaults to READER.

Following the Interfaces define(), the object type may be used in Lifecycle create0 to produce an object reference of a
known interface type.

Privileges Required:
MANAGER

192

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Parameters
type/variable
ReferenceData
id

direction description
input Immutable identification information, chosen by the

manager of the interface.

InterfaceDef
rIDL

input The IDL for an interface or common types definition.

IntfCode
rIntf

output The defined IntfCode for this interface.

TypeCodeList
rTypes

output DSM-CC TypeCodes used by this interface, or
TypeCodes representing common type definitions.

5.5.2.6.7 DSM Interfaces check

1 DSM Interfaces check Verify the coherence of an interface with the repository. I
(MANAGER)

Application Portability / Service Inter-operability Syntax

module DSM {
interface Interfaces {

#ifdef DSM GENERAL
cons;AccessRole check ACR = MANAGER;
void check (in IFKind a;IFKind)

raises (NO-REF-TYPE);
#endif

1 . 9
> . 9

Semantics

An MANAGER may use Interfaces check0 to verify the repository coherency. anIFKind represents the interface to be
checked. NO-REF-TYPE indicates a missing type definition.

Privileges Required:
MANAGER

193

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Parameters
type/variable
IFKind
anIFKind

direction description
output Identification of the interface to be checked in the

context of the system interfaces repository.

5.5.2.6.8 DSM Interfaces undefine

DSM Interfaces undefine Remove an object interface definition from the System.
(MANAGER)

Application Portability / Service Inter-operability Syntax

module DSM (
interface Interfaces {

#ifdef DSM GENERAL
cons;AccessRole undefine ACR = MANAGER;
void undefine (in ReferenceData id, out IFKindList usedBy);

#endif
1 . 9

1 . 7

Semantics

An MANAGER may use Interfaces undefme() to remove the definition of an interface and its associated type
definitions from the interfaces repository. If another interface includes this interface, a system incoherence will result,
indicated by non-zero includedIn output. When this has been fixed, an interfaces check0 should be performed on the
includedIn interfaces to again verify system coherency.

Privileges Required:
MANAGER

Parameters
type/variable
ReferenceData
id

direction description
input Immutable identification information, chosen by the

manager of the interface.

IFKindList
includedIn

output Identification of the interfaces that have included this
interface.

5.5.2.7 Security

5.5.2.7.1 DSM Security authenticate

DSM Security authenticate Request authentication with password or decryption key.
(READER)

Application Portability (Local Library) Syntax

194

0 ISO/IEC ISO/IEC 13818=6:1998(E)

module DSM {
struct AuthRequest {

string apassword;
opaque authData;

I .
typedef AuthRequest AuthRequest-T;
interface Security {

const AccessRole authenticate ACR = READER;
void authenticate (in AuthReqiest T authInfo); -

Semantics

The purpose of Security authenticate() is to enable the Client to provide authentication information for the purpose of
obtaining access to (i.e., resolving) an object. The authenticate must be given with a resolve operation if the object has
either a non-Null apassword or authData with length greater than 0 in its Perms attribute. The input argument
authInfo is included in the ServiceContextList of the immediately succeeding resolve operation. If a Directory
open0 Directory get(), or Session attach0 operation is received without a corresponding authenticate, and
authentication is required as described above, a NO-AUTH exception will be given. NO-AUTH can carry an encrypt
key challenge. The Client is expected to know the reason for the NO-AUTH, and will respond accordingly. If an
encrypted data response is required, the exception will carry an authData challenge which must be successfully
processed by the Client. The Client must then send a Security authenticate0 with proper password or processed
encrypt data followed by the repeated resolve operation (a new RPC transaction).

This standard does not specify an encryption algorithm. It does enable the following sequence: a) the Service passes
authData encrypt challenge to the Client, b) the Client processes the received authData via the encryption algorithm,
c) the Client returns transformed authData response to the Service, and d) the Service verifies the challenge/response
via the encryption algorithm.

The atomic operation of the authenticate with the following operation from the Client is implicit by the fact that the
input structure AuthRequest-T is placed in the ServiceContextList of the associated operation.

AuthRequest T can be sent in the ServiceContextList of the ClientSessionSetupRequest. Also, in any UN0 or -
DSM-CC ONC RPC request, it can be in the ServiceContextList of the RPC message request header, as described in
Annex C. Thus, authentication can occur for access to any object and with any RPC request, in addition to Session
attach(). In DSM-CC, an owner of an application object can require authentication by setting the Perms attribute of the
object.

Privileges Required:
READER

Parameters
type/variable
Password
aPassword

direction
input

description
A character string password for authentication to open
an object.

AuthRequest T -
authInfo

input A sequence of bytes used by an encryption or other
authentication mechanism.

5.5.2.8 Config
The Config interface enables an application to choose synchronous or synchronous deferred invocation behavior. In
synchronous mode, the request blocks until the output parameters are valid. In synchronous deferred mode, the
operation returns immediately. A RequestHandle can be tested to determine when the ouput parameters are valid.

195

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Applications can choose to initiate synchronous deferred requests to the various Services on a per process basis. DSM-
CC synchronous deferred allows the application process to pipeline its function calls in a non-blocking fashion. The
DSM-CC IDL compiler can be given the option to add a RequestHandle to operations as the return value in place of
void (or this can be done by hand if such a compiler is not available). The resulting C compilation will have this
RequestHandle, which can be used to issue synchronous deferred requests. The following Config interface is then used
by the application thread to change mode from synchronous to synchronous deferred and back.

<Request> Inquire Wait
A A A

Application I/F

Create Request Object
Generate Remote Request
Reply to <Request>

~~

Reply to Inquire
(COMPLETED-NO)

Tr
Reply to Wait
Destroy Request Object

A

Remote I/F

Figure 5-11 Application and Service I/O

DSM-CC Application Interface primitives can compile to be either synchronous deferred or synchronous. If the Client is
multi-threaded, it can pipeline messages by sending them on separate threads. Each message does not block the next
because they are called from separate threads, the calling thread will wait on the reply from the Server. Each thread can
set the mode for its RPCs through the Config interface. If DeferredSync is set to FALSE, RequestHandle will always be
0 and each invocation from that thread will block until the Remote reply is received. If DeferredSync is TRUE, the
invocations will not block and the RequestHandle will advance with each invocation.

The deferred synchronous mode works as follows: the Client application issues a request by calling a DSM-CC
primitive, at which time the DSM-CC Library creates a request object for the transaction at hand. It then initiates the
remote procedure call (RPC), and replies immediately to the calling application. The Client application may elect to
continue doing something else, issue separate requests or wait on any particular outstanding request.

The Request Object is destroyed in the DSM-CC Library for any of the following reasons:

0 Null exception from an Inquire invocation.
0 Reply to Wait upon remote reply received.
0 Destruction of higher level containment object. For example, if a remote reply is receivecl and the DSM-CC Library

determines that the parent Service is closed, the corresponding request object is destroyed.

196

0 ISO/IEC ISO/IEC 13818-6:1998(E)

5.5.2.8.1 Config Definitions
module DSM (

// RequestHandle is 0 if Config:: DeferredSync is FALSE (synchronous RPC)
typedef u-long RequestHandle;
interface Config {

// if TRUE RPC mode is deferred synchronous
attribute boolean DeferredSync;
typedef sequence<RequestHandle, 1024> RequestList;
readonly attribute RequestList ActiveRequests;

1 . 7
1 . 9

5.5.2.8.2 Summary of Config Primitives

DSM Config inquire Inquire whether an operation’s output parameters are valid.

DSM Config wait Wait for an operation’s output parameters to be valid.

5.5.2.8.3 DSM Config inquire

DSM Conf’ig inquire Inquire whether an operation’s output parameters are valid.

Application Portability (Local Library) Syntax

module DSM {
interface Config (

void inquire (in RequestHandle aRequest); // inquire as to status
1 . 9

1 . 9

Semantics

Config inquire0 enables the Client to check the status of the transaction. If Conf’ig inquire0 returns without an
exception, the operation is completed. If it returns an exception with either COMPLETED-NO or
COMPLETED - MAYBE, the operation is not complete. A successful Config inquire0 signifies that the RPC reply data
is valid. If the application has pointers to reply data as a result of the request, it may now access this data.

Privileges Required:
NONE

Parameters Parameters
type/variable type/variable
RequestHandle RequestHandle
aRequest aRequest

direction direction description description
input input A handle for an outstanding request. A handle for an outstanding request.

5.5.2.8.4 DSM Config wait

DSM Config wait Wait for an operation’s output parameters to be valid.

Application Portability (Local Library) Syntax

197

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

module DSM (
interface Config (

void wait (in RequestHandle aRequest);
1 . 9

1 . 9

I/ like CORBA get-response

Semantics
Config wait0 enables a Client to block until an operation’s output parameters are valid. This is similar to the CORBA
get - response operation.

Privileges Required:
NONE

Parameters
type/variable
RequestHandle
aRequest

direction
input

description
A handle for an outstanding request.

5.5.2.9 LifeCycle
The LifeCycle create0 operation is used to create a unique Interoperable Object Reference that is usable for Client-
Server communications.

LifeCycle create0 does not create the object itself. There are too many initialization variables for different kinds of
objects to define a universal operator that actually creates the entire object for all language variations. There are many
language dependencies (consider C++ constructors using inheritance vs. C). LifeCycle Create0 does, however,
generate an IOR that is unique and usable for later operations such as Directory bind(). The IOR remains unique and is
valid across Server boots, with the exception that, if the Server address changes, the address in the IOR must be updated.
It is up to the Server implementation to maintain the persistency of the associated object.

5.5.2.9.1 DSM LifeCycle create

DSM LifeCycle create Create an object reference of a specified kind. (OWNER)

Application Portability (Local Library) Syntax

module DSM (
interface LifeCycle (

#ifdef DSM GENERAL
cons;AccessRole create ACR = OWNER; -
void create (

in string aKind,
in Version rversion,
out 1OP::IOR rObjRef’);

#endif
1 . 9

1 . 9

Semantics

LifeCycle create0 is used to create an IOR which can be associated with an instance of an object type previously
defined by Interfaces define(). An IOR with unique object-key and valid type-id is generated. The host/port address of
the caller is set in the host and port fields. The address can be modified if the object resides at a different address then
the caller. The type-id is given the string format “Module::Interface” in the same format as the DSM-CC

198

0 ISO/IEC ISO/IEC 13818=6:1998(E)

NameComponentkind. Once created, additional tagged protocol profiles can be added at any time. The application must
not alter the initial opaque data placed in the object-key, but can append to the object-key in order to extend the object
identification.

LifeCycle create0 is typically called as an Application Portability Interface, but is not precluded from being called as a
Service Inter-operability Interface. This object reference can be used to bind the resulting IOR to a Directory, e.g. using
Directory bind().

Privileges Required:
OWNER

Parameters
type/variable
string
aTypeId

direction description
input A DSM-CC kind, as obtained by Interfaces define(), or

constructed in the form “cmodule>::<interface>”

Version
rversion

input Major and minor version of the new object.

ObjRef
rObjRef

output An Interoperable Object Reference with a valid
type-id, version, host/port address of the caller, and
unique objectkey

5.5.2.10 Kind
Kind provides local operations to determine the interfaces an object supports. If an object includes other interfaces, the
Kind has a() operation can be invoked on it to determine whether a specific interface is included. The Kind is-a0
operation-can be invoked to list the interfaces the object supports. An application would typically include the DSM-CC
interfaces in various object types. For example, the application could define an interface type for several different
formats of files, including the DSM::File interface in each one, and use kind to tell them apart.

5.5.2.10.1 Summary of Kind Primitives

DSM Kind has a - Determine whether an object supports an interface. (READER)

DSM Kind is a - Show all interfaces an object supports. (READER)

5.5.2.10.2 DSM Kind has a - - -

199

ISO/IEC 13818=6:1998(E)

DSM Kind has a - Determine whether an object supports an interface. (READER)

Application Portability (Local Library) Syntax

0 ISOIIEC

module DSM (
interface Kind (

#ifdef DSM GENERAL
cons;AccessRole has a ACR = READER; --
void has-a (

in IFKind anIFKind,
out boolean averdict);

#endif

>

.
7

Semantics

Kind has - a() enables a Client to test whether an object includes(inherits) a specified interface. The interface is
identified by anIFKind. If aVerdict is TRUE, the object includes that interface. If averdict is FALSE, it does not.
has - a() is an application interface resulting in a local invocation only.

Privileges Required:
READER

Parameters
type/variable
IFKind
anIFKind

direction description
input A DSM defined object type, e.g. Directory, File,

Stream, for narrowing the type of object.

boolean
averdict

output TRUE or FALSE. TRUE if the object exports the
interface of anIFKind.

5.5.2.10.3 DSM Kind is a - - -

DSM Kind is a - Show all interfaces an object supports. (READER)

Application Portability (Local Library) Syntax

module DSM (
interface Kind {

#ifdef DSM GENERAL
cons;AccessRole is a ACR = READER; --
void is-a (

out IntfCode whatItIs);
#endif

I . 9
1 ;

Semantics

Kind is - a() returns the Interface Code for an object. The Interface Code contains the IFKind and string kind of the most
derived interface, the repositoryId of the defining InterfaceRepository, and the sequence of inherited IFKinds. Kind
is-a0 is an application interface resulting in a local invocation only.

200

0 ISO/IEC ISOLIEC 13818-6:1998(E)

Privileges Required:
READER

Parameters
type/variable
IntfCode
whatItIs

direction description
output Identifies the TCKind of object, and the TCKinds of

its inherited interfaces.

5.5.3 C Language Mappings
The application portability interfaces provide a true API with a language mapping. It can be generated using an OMG or
DSM-CC IDL compiler from the Client-Service IDL. If ANSI C is the language of choice, the mapping shown in this
subclause will be used. Applications can link with this interface as a function call library which in turn will invoke the
corresponding remote procedure calls.

The application portability interfaces define a library of functions calls that can be used by Client applications to invoke
the DSM-CC Client-Service interface and local DSM-CC Library functionality.

Applications that use these functions will be portable between Clients that contain the corresponding DSM-CC remote
access Library.

5.5.3.1 Scoped Identifiers
A global identifier is derived from the IDL global name by converting occurrences of “::” to “_” and eliminating any
leading underscores.

In some cases, very long identifiers are generated that exceed the capabilities of C compilers. To eliminate excessively
long identifiers, the IDL compiler may generate a #define macro to substitute a unique, short sequence of characters in
the place of a long sequence of characters. In particular, the following macro is used to shorten several CosNaming
identifiers:

#define CosNaming COS

5.5.3.2 C Mapping for Operations
The IDL compiler will generate the following parameters in the C mapping equivalent of the IDL. The standard CORBA
compiler generates:

0 the object to which the function will be sent, and
0 the environment (exception) structure.

The DSM IDL Compiler generates the above 2 parameters, and with Synchronous Deferred option on,

will also generate:

0 a RequestHandle, which is used as an index to RPC completion status. The RequestHandle will be generated for
those operations which have a void return value in the IDL specification. It will take the place of the void return
value.

For these generated C mappings, the table describing the parameters of each primitive is augmented. with these entries:

201

JSO/IEC 13818-6:1998(E)

DSM <interface name> -
object

input object reference to which the call is made.

0 ISO/IEC

CORBA Environment -
ev

output The resulting status of the operation. If the operation
succeeded the ev structure shall have the major exception
type of CORBA-NO-EXCEPTION, otherwise it shall
have one of the major exception types
CORBA SYSTEM EXCEPTION or - -
CORBA USER - - EXCEPTION, and shall contain either
a CORBA system exception structure, or one of the
possible DSM exception structures, as defined by the
raises statement.

DSM RequestHandle - output Synchronous Deferred completion status.

Refer to the CORBA architecture specification for additional details on C mapping rules. In addition, the CORBA
architecture specification has example code on how exceptions can be handled in C.

Below is a brief overview of types frequently used by DSM-CC:

5.5.3.2.1 C Mapping for Basic Data Types
The basic IDL data types used in DSM map as follows:

IDL DSM shorthand C
short s-short CORBA-short (16 bit)
unsigned short u-short CORBA-unsigned-short (16 bit)
long s-long CORBA-long (32 bit)
unsigned long u-long CORBA-unsigned-long (32 bit)
long long s-longlong CORBA-longlong (64 bit)
unsigned long long u-longlong CORBA-unsigned longlong - (64 bit)

The implementation is responsible for providing the typedefs for CORBA - short, CORBA - long, etc., consistent with the
IDL requirements for these types.

5.5.3.2.2 Constants
Constant identifiers are #defined in the C mapping:

5.5.3.2.3 Struct Types
A struct in IDL maps directly to the equivalent C struct.

5.5.3.2.4 Sequence Types
A sequence type is converted to a struct with a maximum length, actual length and buffer pointer.

Example:

typedef sequencecoctet, MAX-LENGTH> rSeq;

is converted at application level to:

typedef struct {
CORBA-unsigned-long -maximum;
CORBA-unsigned-long -length;
CORBA octet * -buffer;

} rSeq; -

202

0 ISOIIEC ISO/IEC 13818=6:1998(E)

It is encoded on the wire by CDR as

struct {
CORBA-unsigned-long -length;
CORBA octet * -buffer; -

1 ;

The CORBA data type opaque is a sequence<octet>.

5.5.3.2.5 Strings
IDL strings are mapped to O-byte terminated character arrays; i.e., the length of the string is encoded in the character
array itself through the placement of the O-byte.

5.5.3.2.6 Any
The CORBA typedef any maps as follows in C:

typedef struct any {
CORBA TypeCode - -type;
void * -value;}
CORBA-any;

The TypeCode format is defined in the UN0 CORBA 2.0 Inter-operability Specification. The first field is always an
unsigned long that contains the tcKind. tcKinds are enumerated in the Interfaces interface.
Complex TypeCodes can contain a parameter list or an encapsulated CDR structure following the tcKind.

5.5.3.2.7 ev
ev is the environment structure. It is defined in the specific language mappings of the CORBA IDL. For example, it is
the first parameter in the reply of the C language function mapping. In DSM-CC, ev is somewhat opaque in that it is
specified as a structure with at a least _ ex and -major members, and possibly additional implementation-specific
members. -ex contains a string identifier plus the specific exception structure related to an invocation. -major identifies
the exception type. _ major is one of CORBA-NO-EXCEPTION, CORBA-SYSTEM-EXCEPTION or
CORBA USER EXCEPTION. - -

enum CORBA-ExceptionType {
CORBA NO EXCEPTION, - -
CORBA SYSTEM EXCEPTION, - -
CORBA USER EXCEPTION - -

1 ;

typedef struct CORBA-Environment {
CORBA-ExceptionType -major;
CORBA Exception * 3x ; -

// implementation-specific members
;'cORBA Environment; -

The CORBA Exception is a structure that contains a string id in the form “<module>: :<interface>: :<exception>” or -
“<module>: :<exception> “. Note: the CDR Data Encoding for CORBA-exception is a string id followed by the
exception body (the CORBA System exception structure or a User exception structure defined by the raises statement of
the operation). CORBA provides the functions CORBA-exception-id0 for accessing the string id,
CORBA-exception-value0 for accessing the exception structure, and CORBA-exception-free0 for freeing memory
associated with the exception. The member names are not defined, and it is recommended that the above pseudo-
functions be used to access CORBA Exception member values -

5.5.3.2.8 Object
Object in the C mapping is declared as type void *. This definition permits a flexibility of Client implementation.

203

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

553.3 API Definitions
Because nearly all of the Client-Service interfaces have a I- 1 mapping with the Application Portability interfaces, the
semantics and parameter descriptions are maintained in the Client-Service Interfaces subclause. Refer to that subclause
for the descriptions of the interfaces or their operations.

5.5.3.3.1 C Mapping for the Synchronous Interface
The synchronous C mapping of the DSM-CC Core interfaces are shown below. These functions are generated directly
from a-standard CORBA IDL compiler. When called by the application, the function will always block, i.e., it will not
return until all output parameters are valid.

5.5.3.3.1 .l Base
void DSM-Base close (-

DSM-Base object,
CORBA Environment * ev) -

void DSM-Base destroy (-
DSM-Base object,
CORBA Environment * ev) -

5.5.3.3.1.2 Access
DSM-u-longlong DSMAccess-get-Size (

DSM-Access object,
CORBA Environment * ev) -

DSM-Access Hi&-T DSM-Access qet_Hist (-
DSM-Access object,
CORBA Environment * ev) -

void DSM-Access-set_Hist (
DSM-Access object,
CORBA Environment * ev) -
DSMAccess-Hist-T val)

DSM-Access-Lock-T DSMAccess get-lock (
DSM-Access object,
CORBA Environment * ev) -

void DSM-Access-set-lock (
DSM-Access object,
CORBA Environment * ev) -
DSM-Access-Lock-T val)

DSM-Access-Perms-T DSM-Access qet_Perms (
DSM-Access object,
CORBA Environment * ev) -

void DSMAccess-set Perms (-
DSM-Access object,
CORBA Environment * ev) -
DSM-Access-Perms-T val)

204

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.3.3.1.3 Stream
void DSM-Streamsause (

DSM-Stream object,
CORBA Environment * ev, -
DSM-AppNPT * rStop)

void DSM Stream-resume (-
DSM-Stream object,
CORBA Environment * ev, -
DSM-AppNPT * rStart,
DSM-Scale * rScale)

void DSM-Stream-status (
DSM-Stream object,
CORBA Environment * ev, -
DSM-Stream-Stat * rAppStatus,
DSM-Stream-Stat * rActStatus)

void DSM-Stream-reset (
DSM-Stream object,
CORBA Environment * ev) -

void DSM-Stream-jump (
DSM-Stream object,
CORBA Environment * ev, -
DSM-AppNPT * rStart,
DSM-AppNPT * rStop,
DSM-Scale * rScale)

void DSM-Streamslay (
DSM-Stream object,
CORBA Environment * ev, -
DSM-AppNPT * rStart,
DSMAppNPT * rStop,
DSM-Scale * rScale)

DSM-Stream-Info-T DSM-Stream get-Info (
DSM-Stream object,
CORBA Environment * ev) -

void DSM-Stream-set-Info (
DSM-Stream object,
CORBA Environment * ev) -
DSM-Stream-Info-T val)

205

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

5.5.3.3.1.4 File
void DSM-File-read (

DSM File object, -
CORBA Environment * ev, -
DSM-u-longlong * aoffset,
DSM-u-long aSize,
CORBA boolean * aReliable, -
DSM-opaque * rData)

void DSM-File-write (
DSM-File object,
CORBA Environment * ev, -
DSM-u-longlong * aoffset,
DSM-u-long aSize,
DSM-opaque * rData)

DSM-u-longlong DSM-File qet_ContentSize (
DSM-File object,
CORBA Environment * ev) -

DSM-opaque DSM-File-get-Content (
DSM-File object,
CORBA Environment * ev); -

void DSM-File-set-Content (
DSM-File object,
CORBA Environment * ev, -
DSM-opaque * Content);

5.5.3.3.1.5 Directory
void DSM-Directory-list (

DSM-Directory object,
CORBA Environment * ev, -
CORBA-unsigned-long how-many,
CosNaming BindingList - * bl,
CORBA Object - * bi)

CORBA-Object DSM Directory resolve (- -
DSM-Directory object,
CORBA Environment * ev, -
CosNaming Name * n) -

void DSM-Directory-open (
DSM-Directory object,
CORBA Environment * ev, -
DSM-PathType aPathType,
DSM-PathSpec * rPathSpec,
DSM-ObjRefs * resolvedRefs)

206

0 ISOIIEC ISO/IEC 13818-6:1998(E)

void DSM Directory-close (-
DSM-Directory object,
CORBA Environment * ev) -

void DSM-Directory-get (
DSM-Directory object,
CORBA Environment * ev, -
DSM-PathType aPathType,
DSM-PathSpec * rPathSpec,
DSM-PathValues * rPathValues)

void DSM-Directorysut (
DSM-Directory object,
CORBA Environment * ev, -
DSM-PathType aPathType,
DSM-PathSpec * rPathSpec,
DSM-PathValues * rPathValues)

CORBA boolean CosNaming BindingIterator next one (- - - -
CosNaming BindingIterator object, -
CORBA Environment * ev, -
CosNaming-Binding * b)

CORBA boolean CosNaming BindingIterator next n (- - - -
CosNaming BindingIterator object, -
CORBA Environment * ev, -
CORBA-unsigned-long how-many,
CosNaming BindingList * bl) -

void CosNaming-BindingIterator-destroy (
CosNaming BindingIterator object, -
CORBA Environment * ev) -

5.5.3.3.1.6 Session
void DSM-Session-attach (

DSM-Session object,
CORBA Environment * ev, -
CORBA sequence octet * aServiceDomain, - -
CosNaming Name * pathName, -
DSM UserContext * savedcontext, -
DSM-ObjRefs * resolvedRefs)

void DSM-Session-detach (
DSM-Session object,
CORBA Environment * ev, -
CORBA-boolean asuspend,
DSMJserContext * savedcontext)

5.5.3.3.1.7 First
CORBA Object DSM First-root (- -

DSM-First object,
CORBA Environment * ev) -

CORBA Object DSM First service (- - -
DSM First object, -
CORBA Environment * ev) -

207

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

5.5.3.3.1.8 Event
void DSM Event subscribe (- -

DSM-Event object,
CORBA Environment * ev, -
CORBA string aEventName, -
DSM-u-short * eventId)

void DSM Event unsubscribe (- -
DSM-Event object,
CORBA Environment * ev, -
DSM-u-short eventId)

void DSM-Event-notify (
DSM-Event object,
CORBA Environment * ev, -
DSM Event StreamEvent * rStreamEvent) - -

DSM Event EventList T DSM Event qet_EventList (- - - -
DSM-Event object,
CORBA Environment * ev); -

void DSM-Event-set_EventList (
DSM-Event object,
CORBA-Environment * ev,
DSM-Event EventList-T * EventList); -

5.5.3.3.1.9 Download
void DSM-Download-info (

DSM-Download object,
CORBA Environment * ev, -
DSM-Download-ModuleInfoList * rModulesInfo)

void DSM-Download-allot (
DSM-Download object,
CORBA Environment * ev, -
DSM-u-short aModuleId,
CORBA Object - rWriteBuffer,
CORBA Object - * rReadBuffer)

void DSM-Download-start (
DSM-Download object,
CORBA Environment * ev, -
DSM-Download-ModuleList * aModuleList)

void DSM-Download-cancel (
DSM-Download object,
CORBA Environment * ev, -
DSM-Download ModuleList * aModuleList) -

5.5.3.3.1 .lO Composite
void DSM-Composite-bind-subs (

DSM-Composite object,
CORBA Environment * ev, -
CosNaming Name * name, -
DSM-Composite-ChildRefs * rChildRefs)

208

0 ISO/IEC ISO/IEC 13818=6:1998(E)

void DSM-Composite-unbind-subs (
DSM-Composite object,
CORBA Environment * ev, -
CosNaming Name * name) -

void DSM-Composite-list-subs (
DSM-Composite object,
CORBA Environment * ev, -
CosNaming Name * name, -
DSM-Composite-ChildInfos * infos)

voi
5.5.3.3.1 .l 1 View

-d DSMJiew-query (
DSM-View object,
CORBA Environment * ev, -
DSM-View SQLStatement aSQLStatement, -
DSM u short maxRows, --
DSM View ViewDescribe * describe, - -
DSMView Result * aResult, -
DSMView * iterator)

void DSM-View-read (
DSM-View object,
CORBA Environment * ev, -
DSM-u-short acursor,
DSM-u-short maxRows,
DSMView Result * aResult) -

void DSMView-execute (
DSMJiew object,
CORBA Environment * ev, -
DSM-View-SQLStatement aSQLStatement)

CORBA char DSM View get-style (- -
DSMJiew object,
CORBA Environment * ev) -

5.5.3.3.1 .12 State

void DSM-State-suspend (
DSM-State object,
CORBA Environment * ev, -
CORBA boolean aRelease, -
DSM-UserContext * savedcontext)

void DSM-State-resume (
DSM-State object,
CORBA Environment * ev, -
DSM-UserContext * savedcontext,
DSM-ObjRefs * restoredRefs)

209

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

5.5.3.3.1 .13 Interfaces
void DSM Interfaces - show (-

DSM-Interfaces object,
CORBA Environment * ev, -
CORBA string - aStrKind,
DSM-IFKind anIFKind,
CORBA-string * rIDL,
DSM-IntfCode * rIntf,
DSM-TypeCodeList * rTypes)

void DSM Interfaces define (- -
DSM-Interfaces object,
CORBA Environment * ev, -
DSM-Interfaces ReferenceData * id, -
DSM Interfaces InterfaceDef rIDL, - -
DSM-IntfCode * rIntf,
DSM-TypeCodeList * rTypes)

void DSM-Interfaces-check (
DSM-Interfaces object,
CORBA Environment * ev, -
DSM-IFKind anIFKind)

void DSM-Interfaces-undefine (
DSM-Interfaces object,
CORBA Environment * ev, -
DSM-Interfaces-ReferenceData * id,
DSM-IFKindList * usedBy)

5.5.3.3.1 .14 Security
void DSM-Security-authenticate (

DSM-Security object,
CORBA Environment * ev, -
DSMAuthRequest-T * authInfo)

5.5.3.3.1 .15 LifeCycle
void DSM-LifeCycle-create (

DSM-LifeCycle object,
CORBA-Environment * ev,
CORBA-string aKind,
DSM-Version * rversion,
IOP-IOR * rObjRef)

5.5.3.3.1 .16 Kind
void DSM-Kind-has-a (

DSM-Kind object,
CORBA Environment * ev, -
DSM-IFKind anIFKind,
CORBA boolean * averdict) -

void DSM-Kind-is-a (
DSM-Kind object,
CORBA Environment * ev, -
DSM-IntfCode * whatItIs)

210

0 ISO/IEC ISO/IEC 13818=6:1998(E)

5.5.3.3.2 C Mapping for the Synchronous Deferred Interface
When a synchronous deferred C mapping is desired, either the IDL compiler or the programmer must follow these rules:

1. The IDL operations must specify a return value of void.
2. The type DSM RequestHandle will be substituted for the void return value. -

A function with the synchronous deferred C mapping can operate either synchronously or asynchronously, using the
Config interface. The following are the synchronous deferred C mappings for DSM-CC interfaces:

5.5.3.3.2.1 Config
These functions are used to configure the DSM-CC Library RPC mechanism.

void DSM-Config-inquire (
DSM-Config object,
CORBA Environment * ev, -
RequestHandle aRequest)

void DSM-Config-wait (
DSM-Config object,
CORBA Environment * ev, -
RequestHandle aRequest)

CORBA-boolean DSM-Config get_DeferredSync (
DSM-Config object,
CORBA Environment * ev); -

void DSM-Confiq set-DeferredSync (
DSM-Config object,
CORBA Environment * ev, -
CORBA boolean DeferredSync) -

DSM-Config-RequestList DSM-Config-get_ActiveRequests (
DSM-Config object,
CORBA Environment * ev) -

5.5.3.3.2.2 How to Convert Synchronous to Synchronous Deferred
In the following example, we show the C mapping differences between Synchronous and Synchronous Deferred:

Synchronous:

void DSM-Base-close (
DSM-Base object,
CORBA Environment * ev) -

Synchronous Deferred:

DSM-RequestHandle DSM-Base-close (
DSM-Base object,
CORBA-Environment * ev)

Any Synchronous API that returns void can be converted to Synchronous Deferred by defining it to return
DSM RequestHandle instead of void, as shown above. -

5.6 Service Interoperability Interfaces(W)
This subclause describes the interfaces that are use by the DSM-CC Library Stubs to invoke RpCs and U-N Session
message sequences over the network.

211

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

5.6.1 ConnBinder and ‘Resource to Connection Association
As a result of Broadcasts, Session Establishment and RPC resolve operations, a Client shall receive connection-related
information for potentially multiple communication paths to objects. For each object, channels can be setup that have
various purposes.

For example, communication with an Stream object (using object access Model D) may require RPC and MPEG
channels. Communication with an Object Carousel Stream (using object access model B) may require elementary stream
identification.

The U-U Protocol defines the Tap, which establishes the link from a User-to-User object reference to a lower layer
communication channel. It further defines ConnBinder as a sequence of all the Taps used for communication with a
given object.

The Tap has the following information:

1. An id. This identifies the Tap to the Client. It may be reused.

2. A use. This is a indication as to the type of the connection.

3. An association tag. This tag identifies a set of U-N Network ResourceDescriptors which have the same association
tag value.

4. A selector. This is an opaque value which is only non-zero when the Server performs internal multiplexing of a
network-level connection. If this is the case the selector is used to select a particular application-level association
from those defined by the multiplexing scheme. The selector format is Tap use specific. An example of a tap
selector might be a PID when the network connection is a single program transport stream.

u-u
Connections

Resource Resource
Descriptors Descriptors

Descriptors

IDL Syntax: ConnBinder and Tap

212

0 ISOIIEC ISOLIEC 13818=6:1998(E)

module DSM {
struct Tap (

u-short id; // identifier
u-short use; II the use for the Tap
u-short assocTag; // the group identifier for network resource descriptors
sequence<octet, 25% selector; // upper protocol selection info

> .
typedef sequence<Tap, 25% ConnBinder; // typically have request and data channels

typedef u-short TapUse;
const TapUse UNKNOWN USE = 0;
const TapUse MPEG TS I?P USE = 1;
const TapUse MPEG-TS-D&WN USE = 2; - - -

Client

// MPEG transport upstream from Client
// MPEG transport downstream to

const TapUse MPEG ES UP USE = 3;
const TapUse MPEG-ES-DOWN - USE = 4; - -

Client

// MPEG elementary upstream from Client
// MPEG elementary downstream to

const TapUse DOWNLOAD CTRL USE = 5;
const TapUse DOWNLOAD-CTRL-UP USE =

// control request/response
6;

const TapUse DOWNLOAD-CTRL-DOWN USE =
// control request from Client

const TapUse DOWNLOAD-DATA USE = 8;
7; // control response to Client

const TapUse DOWNLOAD-DATA-UP USE =
// data request/response

9; // data response upstream from Client
const TapUse DOWNLOAD-DATA-DOWN USE =
const TapUse STR NPT USE = 1 1 ;- -

10; // data block downstream to Client

const TapUse STR-STATUS AND EVENT USE =
// NPT Descriptors

const TapUse STR-EVENT USE =13; -
12; // Stream Mode and Event Descriptors

const TapUse STR-STATUS USE =14;
// Stream Event Descriptor

const TapUse RPC-USE = 15;
// Stream Mode Descriptor
/I RPC bi-directional

const TapUse IP I?SE = 16; // IP bi-directional
const TapUse SDB CTRL USE = 17;
const TapUse T120TAPll 18;

// control channel for Switched Digital Broadcast

const TapUse T120-TAP2 = 19;
// reserved for use and definition by T. 120

const TapUse T120-TAP3 = 20;
// reserved for use and definition by T. 120

const TapUse T120-TAP4 = 21;
// reserved for use and definition by T. 120

- // reserved for use and definition by T. 120
const TapUse BIOP-DELIVERY-PARA-USE = 22; // Module delivery parameters
const TapUse BIOP OBJECT USE = 23;
const TapUse BIOP-ES USE: 24;

// BIOP objects in Modules

const TapUse BIOP-PROGRAM USE = 25;
// Elementary Stream

const TapUse BIOP-DNL CT&USE = 26;
// Program

- - - // Download control messages
1 . 7

The ConnBinder shall be carried in each DSM-CC IOR.

For U-N Sessions, it is not assumed that the IORs can be decoded immediatly following Session Establishment (U-N
Download might deliver the decoder). Therefore, a separate ConnBinder for Download Taps is explicitly placed in the
SessionUU attach0 output. The Server in its negotiations with the network shall determine the association tag and
resource group assignments for each end-to-end connection. During the Session, the network shall inform the Client of
changes to the association tags and related network resources through U-N Session add resource messages. Meanwhile,
in the resolve reply, the Server shall return the association tag, use and selector for each Tap in the ConnBinder of the
object reference.

Multiple Taps may share the same association tag, enabling one communication path to be used for more than one
purpose.

213

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.6.1 .l Selector
A 0 length Tap selector shall indicate no selector information is present. Otherwise, the first 16 bits of the selector data
shall be a type identifier to specify the remaining structure of the selector.

module DSM (
typedef u-short SelectorType;
II SelectorType 0 is ISOIIEC reserved
const SelectorType MESSAGE = 1;
struct MessageSelector (

u-long transactionId;
u-long timeout;

1 . 7
1 . 9

SelectorType MESSAGE identifies a MessageSelector. It is used by the Object Carousel. It contains a transactionId
field and a timeout field. The value of the transactionId field shall be set to the transactionId of the
DownloadInfoIndication message that contains the module delivery parameters. The timeout field shall indicate the
timeout period to be used to time out the acquisition of the DownloadInfoIndication message. The units of the timeout
field are microseconds. Refer to the clause 11, U-U Object Carousel, for further information.

5.6.2 Remote Procedure Call
The User-to-User primitives require the use of remote procedure calls to invoke operations over the network. The
preferred and default RPC is Universal Networked Objects (UNO). The preferred and default data representation is
Common Data Representation (CDR), also defined in the same specification. The required object reference format is the
Interoperable Object Reference (IOR). These protocols and representations are defined by OMG specification “CORBA
2.0 Inter-operability: Universal Networked Objects.“. UN0 does not require the use of TCP.

An alternative RPC may be chosen and negotiated by exchange of the Download InfoRequest CompatibilityDescriptor
and the IOR’s ProfileId. Following this negotiation, the RPC request and reply message headers shall be those of the
chosen RPC, and the data representation shall conform to the chosen encoding.

In a DSM-CC network, the RPC request header shall contain the following parameters:

0 Requesting Principal (type opaque). The Requesting Principal is the identifier of the human or process that is
controlling the requesting Client Application.

0 Obiect Kev(tvpe opaque). The object key identifies a client/service connection at the server Object.

0 Service Context (type IOP: :ServiceContextList). The ServiceContextList carries optional client/service information.

In a DSM-CC network, the RPC reply header shall (at a minimum)contain the following parameters:

0 Replv Status (type enumeration). The Reply Status, as defined by GIOP, is an enumeration:

module GIOP (
enum ReplyS tatusType {

NO EXCEPTION,
USER EXCEPTION,
SYSTEM EXCEPTION,
LOCATION_FORWARD};

1 . 9
0 Service Context (type 1OP::ServiceContextList). The ServiceContextList carries optional client/service information.

It is defined later in this subclause.

5.6.3 The Object Reference
A Service Object Implementation instance is uniquely identified within the full DSM-CC system environment by its
object reference. At the API level the object reference is a handle, with no need by the application to access its contents.
However, in the RPC Stub, it is structured, and at a minimum contains the IOP Interoperable Object Reference(IOR).

214

0 ISO/IEC ISO/IEC 13818=6:1998(E)

RPC Request
RPC Reply

Session attach(), Directory resolve(),ad Directory open0 are the resolve operations of DSM-CC User-to-User. A
resolve operation takes a name input and returns a reference to an object instance. This reference is called an object
reference. It contains addressing information that uniquely identifies the object, e.g., by host, port, version and
object-key. The object reference is used in construction of the Network and RPC request headers that are used in
routing the RPC request to the object.

DSM-CC uses the Interoperable Object Reference(IOR) format defined by OMG for object references at the Client-
Service Inter-operability Interface.

module IOP {
typedef unsigned long Profileld;
const Profileld TAG INTERNET IOP = 0;
const Profileld TAG-MULTIPLE-COMPONENTS = 1; -
struct TaggedProfile(

Profileld tag;
sequencecocteb profile data; -

1 .

sh-uct IOR {
string type-id;
sequence<TaggedProfile> taggedProfileList;

19
typedef unsigned long Componentld;
struct TaggedComponent {

Componentld tag;
sequence<octeb component - data;

1;
typedef sequence <TaggedComponent> MultipleComponentProfile;

DSM-CC has registered a range of ProfileId values with OMG. DSM-CC defines several Profile Body structures, each
with an assigned ProfileId. The ProfileBody is placed in the encapsulation profile-data of the IOR. The first octet of the
encapsulation is a byte-order, where a value of 0 (FALSE) indicates big-endian, and 1 (TRUE) indicates little-endian.
Following that, the CORBA 2.0 encapsulation contains the encoded (according to ProfileId) connection information.
The encapsulation begins at an octet according to the alignment rules of the data encoding, i.e., there may be padding for
proper alignment to the first data type in the encapsulation.

The following range of ProfileIds has been registered with OMG:

Profile Tags Ox49534FOO-Ox49534FOF (the first 3 octets spell “ISO”)

5.6.3.1 Min Protocol Profile
The DSM-CC Min Protocol Profile is a CORBA 2.0 single profile. It uses CDR encoding and UN0 RPC. It has the
minimum required ConnBinder. The ConnBinder must contain the RPCJJSE Tap. The selector field of this Tap further
identifies the connection, according to the network stack in use.

215

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

module DSM (
const IOP::ProfileId TAG MIN = 1230196480; // Ox49534FOO

struct MinProfileBody(
ConnBinder cbind;

1 . 9
1 . 9

5.6.3.2 Child Protocol Profile
The DSM-CC Child Protocol Profile is a CORBA 2.0 single profile. It uses CDR encoding and UN0 RPC. It is
typically used for Composite child object references. It has the minimum required ConnBinder, plus a string for
identifying the object.

module DSM (
const 1OP::ProfileId TAG CHILD = 1230196481; // 0~49534FOl

struct ChildProfileBodi {
ConnBinder cbind;
string nameId;

1 . 9
> . 9

5.6.3.3 Options Protocol Profile
The DSM-CC Options Profile is a CORBA 2.0 multiple component profile. It uses CDR encoding and UN0 RPC. It
enables a variable list of information to be included in the IOR. The Component Tag range of Ox49534F40 -
Ox49534F7F is reserved with OMG, and used by DSM-CC for IOR connection-related information. DSM-CC
TaggedComponents are encoded as a ComponentId followed by length, then followed by the encoding of the type
identified. DSM-CC defines the following TaggedComponents for use in this profile.

module DSM {
const 1OP::ProfileId TAG OPTIONS = 1230196482; ff Ox49534F02 -

const 1OP::ComponentId TAG-ConnBinder = 1230196544; // Ox49534F40
//
const 1OP::ComponentId TAG IIOPAddr= 1230196545; // Ox49534F41 -
typedef IIOP: :ProfileBody IIOPAddrComponent;
I/
const 1OP::ComponentId TAG Addr = 1230196546; // Ox49534F42 -
struct AddrComponent (string host; u-short port;};
/I
const 1OP::ComponentId TAG NameId = 1230196547; // Ox49534F43 -
typedef string NameIdComponent;
I/
const 1OP::ComponentId TAG-IntfCode = 1230196548; // Ox49534F44
II
const 1OP::ComponentId TAG-ObjectKey = 1230196549; // Ox49534F45
typedef sequencecoctet> ObjectKeyComponent;
II
const IOP: :ComponentId TAG-ServiceLocation = 1230196550; /I Ox49534F46

1
. j

TAG ConnBinder identifies a ConnBinder structure. It is mandatory for all DSM-CC IORs. The ConnBinder is -
described in the previous subclause.

TAG IIOPAddr identifies a 1IOP::Prof’ileBody. It is used to hold iiop - - version, host, port and object - key, as defined
by the CORBA IIOP ProfileBody. iiop version describers the version of IIOP that the agent at the specified address is
prepared to communicate with. The ho; is the Internet host to which messages may be sent. It may be a fully quallified
domain name or Internet standard “dotted decimal” form (e.g., “192.231.79.52”). The port is the TCP/IP or UDP/IP port

216

0 ISO/IEC ISO/IEC 1381%6:1998(E)

number at the specified host where the target agent is listening for requests. The object-key is opaque value supplied by
the agent producing the IOR. It uniquely identifies the object instance.

module IIOP {
struct Version{

char major; char minor;
11
struct ProfileBody {

Version iiop version; -
string host;
unsigned short port;
sequence<octet> object-key;

1
. 1

1
. 9

TAG Addr identifies an AddrComponent. It provides IP host address and port. The semantics of host and port are the
sameas described above for TAG IIOPAddr. -

TAG NameId identifies a NameIdComponent. It is used to hold the bound name identifier of the object, such as for a -
child of a Composite object.

TAG IntfCode identifies an IntfCodeComponent. It describes inherited interfaces. -

TAG - ObjectKey identifies an ObjectKeyComponent. It contains the unique identification of an object instance in the
context of a Server Object Implementation.

TAG ServiceLocation identifies a ServiceLocation. It may be used to convey aServiceDomain, pathName and
savedcontext for a subsequent Session attach().

5.6.3.4 Lite Protocol Profiles
The Lite Profiles have the same IDL syntax as their counterpart DSM-CC CDR profiles. The encoding is CDR-Lite.
CDR-Lite differs from CDR in two ways:

0 It uses the maximum value on sequences and strings to reduce the size of the encoded length value. An IDL-
specified maximum of 255 results in an encoded octet to hold the sequence or string length. An IDL-specified
maximum of 65,535 results in encoded unsigned short to hold the sequence or string length.

0 It removes the CDR requirement for byte alignment in order to achieve compact packing of data.

A Multiple Component Profile called LiteComponentProfile is used for TAG LITE OPTIONS, in order to reduce the - -
size of the profile.

module DSM (
struct LiteComponent (

IOP: :ComponentId tag;
sequence<octet, 255> component-data;

I,
typedef sequence<LiteComponent, 255> LiteComponentProfile;

const 1OP::ProfileId TAG LITE MIN = 1230196483; // Ox49534F03
const IOP::ProfileId TAGILITEICHILD = 1230196484; // Ox49534F04
const 1OP::ProfileId TAG LITE-OPTIONS = 1230196485; // Ox49534F05 -

5.6.3.5 BIOP Protocol Profile
The BIOP profile identifies the default data encoding method used within DSM-CC U-U Object Carousels. The default
data encoding is CDR-Lite.

217

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

module DSM (
const 1OP::ProfileId TAG BIOP = 1230196486; // Ox49534F06 -

1 . 1

module BIOP (
const 1OP::ComponentId TAG-ObjectLocation = 1230196560; I/ Ox49534F50

struct ObjectLocation (
’ unsigned long carouselId;

unsigned short moduleId;
DSM: :Version version;
sequence <octet, 255> objectKey;

1 . 9
1 . 1

BIOP::TAG - ObjectLocation identifies a BIOP::ObjectLocation component. It uniquely locates the object within the
Broadcast network. Refer to clause 11, U-U Object Carousel, for further information.

5.6.3.6 ONC Protocol Profile
The DSM-CC ONC Profile is a CORBA 2.0 multiple component profile. It uses XDR encoding and ONC RPC. It
enables a variable list of information to be included in the IOR. The TaggedComponents of the Options Profile may be
included. In addition, DSM-CC defines the following TaggedComponents for use in this profile.

module DSM (
const 1OP::ProfileId TAG ONC = 1230196487; // Ox49534F07 -

module DSM ONC (
const IOPIComponentId TAG Intf = 1230196568; // Ox49534F58 -

struct IntfComponent (
unsigned long aProgram;
unsigned long aversion;

1 . 1
1 . 1

DSM 0NC::TAG Intf identifies the DSM - - - 0NC::IntfComponent. This structure contains ONC Program and ONC
Version. Refer to Informative Annex C, ONC RPC XDR Mappings, for further information.

5.6.4 ServiceContextList
The UN0 RPC Request and Reply Message Headers carry a ServiceContextList parameter that is useful in carrying
certain information related to the RPC but not necessarily information that is exposed to the application level. Examples
of this are authentication, compatibility information, and End-User preferences. DSM-CC uses this encoding to carry
similar information in the U-N Session Establishment messages uuData field. The ServiceContextList is defined by
CORBA 2.0, shown below:

218

0 ISO/TEC ISO/IEC 13818=6:1998(E)

module IOP {
typedef unsigned long ServiceID;
struct ServiceContext {

Service1 D context - id;
sequencecocteb context - data;

typedef sequence <ServiceContext> ServiceContextList;
const Service1 D T ransactionService = 0;

1
. 1

The context data in the ServiceContext is a UN0 encapsulation, meaning that it always begin with an octet that has a -
boolean value for byte order. FALSE (0) byte order indicates big-endian, TRUE (1) byte order indicates little-endian - -
for the ensuing encapsulation.

If there is no ServiceContext, the ServiceContextList shall consist of a DSM::u long with value = 0. -

Note: The CORBA 2.0 ServiceId should not be confused with the DSM-CC ServerId. The ServiceId identifies some
application contextual information, whereas the DSM-CC ServerId is a Server identifier as specified by clause 4 of this
part of ISO/IEC 13818.

5.6.4.1 ServiceContext
The ServiceContext is identified by a ServiceContext identifier. Within DSM-CC, ServiceContext identifiers are
expected to be allocated as IS0 reserved and private, where identifiers O-255 are IS0 reserved and 256-232 are for
private application use.

The ServiceContext identifier shall have the following format:

MSB Octet: a disposition which indicates how the receiving object should respond to a ServiceContext indication:

0: Act on the message and the ServiceContext
1: Return an error if the context id is unknown -
2: Ignore the ServiceContext if the context id is unknown -

The 24 bits of the 3 LSB octets are the actual id with reserved and private values as described above. The following are
reserved values for DSM-CC:

value

0

structure description

ISO/IEC reserved

1 DSM: :CompatibilityDescriptor Compatibility information format (ref clause 6) in request or reply.
Used for operation-specific compatibility exchange.

2 DSM::Download InfoRequest For negotiation large transfer flow-control in a request. An operation
may imply a possible Download. Without changing the syntax of the
operation, Download request and response can be carried in the
ServiceContextList.

3 DSM: :Download InfoResponse For negotiation large transfer flow-control in a reply.

4 DSM::AuthRequest-T A Security authenticate0 request can cause insertion of authentication
data in the ServiceContextList of the following operation.

5 DSM::ConnBinder For carrying Download Taps information in a File read0 or other reply
to a large transfer request.

6 DSM: :Version To identify version selection in a resolve request, for use where a
version other than latest version is required.

I I

219

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

5.6.5 Core Interfaces

5.6.5.1 Base
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Base API for
individual operation descriptions.

Application Portability / Service Inter-operability Syntax

module DSM (
interface Base (

const AccessRole close ACR = READER;
- void close 0;

#ifdef DSM GENERAL
cons;AccessRole destroy ACR = OWNER; -
void destroy 0;

#endif
> . 7

> ;

TapUse

RPC USE -

Service Inter-operability Semantics

Base close0 implies that network resources needed for the Client communication to that object can be deleted, if these
resources are not used for communication between the Client and another object.

Base destroy0 indicates that the object shall cease to exist for all Clients, and all resources related to it should be
deleted.

5.6.5.2 Access
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Access API for
data type and attribute descriptions.

220

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax

module DSM (
struct DateTime {

s-long tm-set;
s-long tm-min;
s-long tm-hour;
s-long tm-mday;
s-long tm-mon;
s-long tm-year;
s-long tm-wday;
s-long tm-yday;
s-long tm-isdst; } ;

// tm from ANSI C std. See Kernighan & Ritchie, 2”d edition, p. 255
// seconds after midnight, O-61
// minutes after the hour, O-59
// hours since midnight, O-23
// day of the month, l-3 1
// months since January, O-l 1
II years since 1900
// days since Sunday, O-6
I/ days since Jan LO-365
// Daylight Savings Time flag

interface Access (
#ifdef DSM GENERAL

II size
const AccessRole Size get ACR = READER; - -
readonly attribute u-longlong Size; // size of all attributes in octets;

#endif
I/ history
struct Hist T (-

Version aversion; // object version
DateTime aDateTime; } ; // time created or last updated, GMT

#ifdef DSM GENERAL
cons;AccessRole Hist get ACR = READER;
const AccessRole Hist-put-ACR = BROKER; - -
attribute Hist-T Hist; // version and time of persistent object

#endif
// lock status
struct Lock-T { boolean readlock; boolean writelock; } ;
const AccessRole Lock get ACR = READER;
const AccessRole Lock-put-ACR = WRITER; - -
attribute Lock-T Lock;

// permissions
struct Perms-T {

// the next 4 are binary masks of binary flags signifying
// groups that can access the object
u-short managerperm;
u-short brokerperm;
u-longlong writerperm;
u-longlong readerperm;
opaque owner; //owner identifier = Principal
string aPassword; //PIN
opaque authData; //system-specific
// instruct lower layers to implement a secure connection for this object
boolean allsecure; } ; // all methods parameters encrypted

#ifdef DSM GENERAL -
const AccessRole Perms get_ACR = OWNER;
const AccessRole Perms-put_ACR = OWNER; -
attribute Perms T Perms; -

#endif
> . 9

> . 9

221

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Service Inter-operability Semantics

The End-User’s Principal Id shall be sent in the RPC message header of the request. The Requesting Principal is
available as an index associating the End-User’s AccessRoles. The DSM-CC Library may optionally send authentication
data (AuthRequest T containing encryption information or password) in the ServiceContextList of the request. At the
Service, authorization to invoke shall be performed on a per operation basis, according to the Access Control Role of the
operation, the AccessRole of the End-User, and authentication data. It is beyond the scope of DSM-CC to describe the
authentication and authorization mechanisms.

Tap&e

RPC USE -

5.6.5.3 Stream
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Stream API for
state machine and individual operation descriptions.

222

0 ISOIIEC

Application Portability / Service Inter-operability Syntax

module DSM (
interface Stream : Base, Access (

typedef u-long Mode;
const Mode OPEN M = 0;
const Mode PAUSE M = 1;
const Mode TRANSPORT M = 2;
const Mode TRANSPORT-PAUSE M = 3;
const Mode SEARCH TRGSPOR? M = 4;
const Mode SEARCH-TRANSPORT-PAUSE M = 5;
const Mode PAUSE SEARCH TRAkPORT-M = 6;

- const Mode END Ok STREAk M = 7;
const Mode PRJZ %EkH TRANSPORT M = 8;
const Mode PRE-SEARCH-TRANSPORTIPAUSE - M = 9; - -
struct Stat (

AppNPT rposition;
Scale rScale;
Mode aMode; } ;

struct Info T (-
string<255> aDescription;
AppNPT duration;
boolean audio;
boolean video;
boolean data;) ;

const AccessRole Info get ACR = READER;
const AccessRole Info-put- ACR = OWNER; - -
attribute Info-T Info;
const AccessRole pause_ACR = READER;
void pause (in AppNPT rStop)

raises (MPEG-DELIVERY, BAD-STOP);
const AccessRole resume ACR = READER;
void resume (in AppNPT-ktart, in Scale rScale)

raises (MPEG-DELIVERY, BAD-START, BAD-SCALE);
const AccessRole status ACR = READER; -
void status (in Stat rAppStatus, out Stat rActStatus)

raises (MPEG-DELIVERY);
const AccessRole reset ACR = READER; -
void reset 0;
const AccessRole jump_ACR = READER;
void jump (

in AppNPT rStart,
in AppNPT rStop,
in Scale rScale)
raises (MPEG-DELIVERY, BAD-START, BAD-STOP, BAD-SCALE);

const AccessRole play_ACR = READER;
void play (

in AppNPT rStart,
in AppNPT rStop,
in Scale rScale)
raises (MPEG DELIVERY, BAD-START, BAD-STOP, BAD-SCALE); -

1 . 9
1 ;

ISO/IEC 13818=6:1998(E)

223

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Possible TapUses

RPC USE - operation requests and replies

MPEG DOWN TS USE - - - MPEG-2 Transport Stream delivery

MPEG DOWN ES USE - - - MPEG-2 Elementary Stream delivery

STR NPT USE - - NPT Descriptors

STR STATUS AND EVENT USE - - - - Stream Mode and Event Descriptors

STR STATUS USE - - Stream Mode Descriptor

Service Inter-operability Semantics

The DSM-CC Library Client Stream stub may be modified to intercept MPEG-2 Stream descriptors that contain Normal
Play Time and Stream state machine information. In this case, Stream status0 may become a local library operation
that returns parameters of higher accuracy.

5653.1 Transport and Application Level NPT
There are two formats for NPT, transport level NPT and application level NPT.

The transport NPT on the MPEG transport, as described in clause 8 of this part of ISO/IEC 138 18, is in PTS 33 bit
format. The reason is that networks may want to deal with Audio, Video and DSM-CC descriptors using the same
timestamp format. The conversion from PTS format to seconds and microseconds is easy and not compute-intensive. the
conversion the other way is not. The Server will format 33 bit values (in 64 bit parameters) on the MPEG downstream
for all NPT descriptors.

The application NPT is raised to the human level, i.e. seconds and microseconds, to satisfy requirements from MHEG
and many application-level users. This is referred to as application NPT. This can be carried on the RPC request to the
Server in this form (the current IDL). The Server can convert from application NPT to transport NPT bit format if
needed.

Conversion from transport NPT to application NPT is included in clause 8 of this document.

5.6.5.3.2 Consistent Quantization Rules
The Stream Service shall always apply consistent quantization rules:

0 Resume at current NPT (retrieved by Stream status0) after pause now will be no loss (will not drop nor duplicate
stream data).

0 Resume now after pause now will be no loss (will not drop nor duplicate stream data).
0 Resume at other time than now means no guarantee of the frame relationship to a previous pause (now).

Regarding Stream Mode descriptors and NPT descriptors in the MPEG stream:

0 Sending of NPT and Stream Mode descriptors is optional. However, sending of Stream Mode descriptor for End of
Stream is mandatory. The Stream object must send an EOS Stream Mode Descriptor when the State Machine
transitions to EOS.

0 There is a general policy to include descriptors just before discontinuities.
0 Use post-discontinuity indicator to define when effective (see subclause 8.4.1).
0 Stream Mode descriptors may be sent in the MPEG transport stream upon occurrence of a stream state machine

change.

5.6.5.4 File
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the File API for
individual operation descriptions.

224

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax

module DSM (
interface File : Base, Access (

const AccessRole Content get ACR = READER;
const AccessRole Content-put-ACR = WRITER; - -
attribute opaque Content; II file content

#ifdef DSM GENERAL -
const AccessRole ContentSize get ACR = READER; - -
readonly attribute uslonglong ContentSize; II file content size in octets

#endif
const AccessRole read ACR = READER; -
void read (

in u-longlong aOffset,
in u-long aSize,
in boolean aReliable,
out opaque rData)
raises (INV OFFSET, INV-SIZE, READ-LOCKED);

const AccessRole write ACR = WRITER; -
void write (

in u-longlong aOffset,
in u-long aSize,
in opaque rData)
raises (INV-OFFSET, INV_SIZE, WRITE-LOCKED);

1 . 9
1 . 9

TapUse

RPC USE -

5.6.5.5 Bindinglterator
The Application Portability Interface maps l- 1 to the Service Inter-operability Interface. Refer to the Directory API for
individual operation descriptions.

Application Portability / Service Inter-operability Syntax: CosNaming Types

module CosNaming(
VP&et string Istring;
struct NameComponent {

lstring id;
lstring kind;

1 .
typedef sequencecNameComponent> Name;
// note: BindingType equates to the CORBA enum definition
// while allowing extension for DSM-CC implementations
typedef unsigned long BindingType;
const BindingType nobject = 0;
const BindingType ncontext = 1;
struct Binding {

Name binding name;
BindingType b&ding-type;

1
.

typedef sequence <Binding> BindingList;

225

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Application Portability / Service Inter-operability Syntax: Operations

module CosNaming {
interface Bindinglterator {

boolean next-one (out Binding b);
boolean next n (in unsigned long how-many, -

out BindingList bl);
void destroy 0;

Ij

TapUse

RPC USE -

5.6.5.6 NamingContext
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Directory API for
individual operation descriptions.

226

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax

module CosNaming {
interface NamingContext (

enum NotFoundReason (missing - node, not-context, not-object);

exception NotFound (
NotFoundReason why;
Name rest of - - name;

1 .
exception CannotProceed {

NamingContext cxt;
Name rest of - - name;

1 .
exception InvalidName ();
exception AlreadyBound ();
exception NotEmpty {);

void list (in unsigned long how-many,
out BindingList bl, out BindingIterator bi);

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

#ifdef DSM GENERAL
voidbind (in Name n, in Object obj)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
void bind-context (in Name n, in NamingContext nc)

raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind (in Name n, in Object obj)

raises (NotFound, CannotProceed, InvalidName);
void rebind-context (in Name n, in NamingContext nc)

raises (NotFound, CannotProceed, InvalidName);
void unbind (in Name n)

raises (NotFound, CannotProceed, InvalidName);
NamingContext new-context();
NamingContext bind-new-context (in Name n)

raises (NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy ()

raises (NotEmpty);
#endif

1 . 3
1 . 7

TapUse

RPC USE -

5.6.5.7 Directory
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Directory API for
individual operation descriptions.

227

ISO/IEC 1381%6:1998(E) 0 ISOIIEC

Application Portability / Service Inter-operability Syntax

module DSM {
interface Directory : Access, CosNaming: :NamingContext (

II Access Control Roles for inherited NamingContext operations
const AccessRole list ACR = READER;
const AccessRole resolve ACR = READER;
const AccessRole bind ACR = WRITER;
const AccessRole bind-context ACR = WRITER;
const AccessRole rebind ACRI WRITER;
const AccessRole rebind-context ACR = WRITER;
const AccessRole unbind ACR =-WRITER;
const AccessRole new cktext ACR = OWNER;
const AccessRole bind-new context ACR = OWNER;
const AccessRole destroy AkR = OWNER; -
II
const AccessRole open_ACR = READER;
void open(

in PathType aPathType,
in PathSpec rPathSpec,
out ObjRefs resolvedRefs)

raises(OPEN LIMIT, NO AUTH, UNK USER, SERVICE XFR,
NOT FOUND, CANNOT PROCEED, INV-NtiE);

const AccessRile close ACR = READER;
- void close 0;

const AccessRole get - ACR = READER;
void get(

in PathType aPathType,
in PathSpec rPathSpec,
out PathValues rPathValues)

raises(N0 AUTH, UNK USER, SERVICE XFR,
NOT FOUND, &NOT-PROCEED, INV

#ifdef DSM GENERAL
- NAME);

cons;AccessRole put - ACR = WRITER;
void put(

in PathType aPathType,
in PathSpec rPathSpec,
in PathValues rPathValues)

raises(N0 AUTH, UNK USER, SERVICE XFR,
NOT FOUND, kNNOT_PRO&&D, INV - - NAME);

#endif
1 . 9

> . 7

TapUse

RPC USE -

Service Inter-operability Semantics

AccessRoles are defined for all inherited CosNaming operations. The Directory Service therefore performs
authorization of Clients to perform these operations.

A ConnBinder must be present in the object reference (IOR) of the Directory resolve0 and Directory open0 WC
replies.

The ApI level Directory resolve() or Directory open0 may result in a local operation to return an object reference that
was previously obtained through SessionUU attach0 or Directory open0 RPC of a Composite object.

228

0 ISOIIEC ISO/IEC 13818=6:1998(E)

5.6.6 Extended Interfaces

5.6.6.1 SessionUU
The SessionUU interface provides definitions for uuData of the DSM-CC U-N Session establishment and teardown
messages. The in parameters become the uuData in the ClientSessionSetupRequest, and the out parameters become the
uuData in the ClientSessionSetupConfirm.

pseudo-IDL

module DSM {
interface SessionUU {

const AccessRole attach ACR = READER; -
void attach (

in opaque downloadInfoReq, II download info request
in CosNaming: :Name pathName, II path name to resolve
in UserContext savedcontext, II previous application user context
in Principal aprincipal, II identification of End User
in 1OP::ServiceContextList inSC, II optional Service info
out opaque downloadInfoResp, II download info response
out ConnBinder downloadTaps, II download connection info
out ObjRefs resolvedRefs, II objects resolved
out IOP: :ServiceContextList 0utSC) II optional Service info
raises (NO AUTH, BAD COMPAT-INFO, UNK USER,

SERVICEJFR:NO RESUME, OPEN LIMIT,
~oT_Foum, CANNOT-PROCEED, INV-NAME);

const AccessRole detach ACR = READER; -
void detach (

in boolean asuspend,
in Principal aprincipal, II identification of End User
in IOP: :ServiceContextList inSC, II optional Service info
out IOP: :ServiceContextList outSC, II optional Service info
out UserContext savedcontext) II suspended user context
raises (NO - SUSPEND);

Service Inter-operability Semantics

Both SessionUU attach0 and SessionUU detach0 are used by local library Session object operations Session attach0
and Session detach0 respectively.

SessionUU attach0 specifies the parameters to be included in the uuData fields of the User-Network Session
Establishment messages. The input parameters are placed in uuData field of the U-N ClientSessionSetupRequest, and
the output parameters are retrieved from uuData field of the U-N ClientSessionSetupResponse. downloadInfoRequest
and DownloadInfoResponse contain the data encodings specified in clause 7. An identification of a previously
suspended user context savedcontext enables the Client to indicate that an application is to resume from previously
suspended state. If this is set to 0, it indicates the application is starting up for the first time. A path specification
pathName names the path to ServiceGatewayUU and possibly a first Service to be opened. resolvedRefs shall contain
an object reference for the ServiceGatewayUU and resolved object reference(s) for the first Service. A default Service
may be specified in the second Step of pathName as a NULL string NameComponent.id. This shall be an indication to
the ServiceGatewayUU that it can choose the first Service for the Client. Each resolved IOR of the SessionUU attach0
output must contain a ConnBinder.

The ServiceGatewayUU output from SessionUU attach0 is presented to the Client as a ServiceGateway object
reference, i.e., the Client only sees the ServiceGateway, while the remote Server implements ServiceGatewayUU.

SessionUU detach0 specifies the parameters to be included in the uuData fileds of the User-Network Session Teardown
messages.

229

ISO/IEC 1381%6:1998(E) 0 ISOIIEC

In addition to Session Teardown, all object references are closed for that Session. If asuspend is true, the
ServiceGatewayUU shall inform Services which are maintaining user context for this End User to return user context
state for a possible resumption of those Services. It is up to the application to determine which state is to be returned and
maintained between Sessions. The Client may later invoke attach0 with this UserContext in order to resume from the
saved state.

aprincipal specifies a specific user (i.e., human) or requesting principal in the OMG sense. Each system environment
shall establish a format for recognizing the identity of subscribers and other End User Clients. This is used on all RPC
messages, as well, for identifying the requester. It is also used in DSM-CC for identifying the owner of an object, and
would commonly be used for obtaining a Client’s permissions to access or perform operations on an object.
ServiceContextList carries optional application-specific information passed between Client and Service.

5.6.6.1.1 Partial Path
On a ClientSessionSetupConfirm, a valid session can exist even though the entire pathName has not been resolved. The
partial path must include at least the object reference of the first Step in the path, a ServiceGatewayUU. The length of
the resolved references specify the portion of the path that was successfully resolved.

5.6.6.2 ServiceGatewayUU
ServiceGatewayUU inherits the Directory interface. Directory bind0 bind - context(), rebind0 rebind - context0 and
unbind0 require MANAGER privileges to be invoked on the ServiceGatewayUU object.

The Client only sees the local ServiceGateway object at the Application Portability interface. This object translates to
the Service Inter-operability ServiceGatewayUU interface, if the U-N Session protocol is used. The Server in this case
would implement the ServiceGatewayUU interface.

5.6.6.2.1 Summary of ServiceGatewayUU Primitives

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Inherited from Directory and
NaminrrContext:

operations: open, close, get, put,
list, resolve, bind, bind - context, rebind,
rebind-context, unbind, new-context,
destroy

Service Inter-operability Syntax

module DSM (
interface ServiceGatewayUU : Directory (

const AccessRole bind ACR = MANAGER;
const AccessRole bind-context ACR = MANAGER;
const AccessRole rebind ACRI MANAGER;
const AccessRole rebind-context ACR = MANAGER;
const AccessRole unbind ACR =-MANAGER; -

1 . 9
1 . 9

TapUse

RPC USE -

230

0 ISOIIEC ISO/IEC 13818=6:1998(E)

5.6.6.3 SessionSI
The Sessions1 interface may be used in systems where there is no DSM-CC User-to-Network signaling. It provides
operations to establish a Session without management of network resources. The Session in this case is a context for
active object references and their state, plus it may serve to identify the requesting Principal involved.

The Client only sees the local ServiceGateway object at the Application Portability interface. This object in turn calls
the Service Inter-operability ServiceGatewayS interface, if the RPC Session protocol is used. The Server in this case
would implement the ServiceGatewayS interface.

Service Inter-operability Syntax

module DSM (
interface Sessions1 {

const AccessRole attach ACR = READER; -
void attach (

in InfoRequest downloadInfoReq, II download info request
in CosNaming: :Name pathName, II path name to resolve
in UserContext savedcontext, II previous application user context
out InfoResponse downloadInfoResp, II download info response
out ObjRefs resolvedRefs) II objects resolved
raises (NO AUTH, UNK USER, OPEN LIMIT, SERVICE

BAD COMPAT-INFO, NO RESUME,
- XFR,

NOT~FOUND, CANNOT-PROCEED, INV-NAME);
const AccessRole detach ACR = READER; -
void detach (

in boolean asuspend,
out UserContext savedcontext) II suspended user context
raises (NO-SUSPEND);

TapUse

RPC USE -

Service Inter-operability Semantics

Sessions1 attach0 is invoked against a local Sessions1 object, which acts as a logical path root to remote Services. The
first node in the pathName is that of a ServiceGateway. The Sessions1 object shall resolve the ServiceGateway, and if
the path extends beyond the ServiceGateway, shall propagate the resolve.

A Client invokes Sessions1 attach0 to open a new Session over the network using an RPC. downloadInfoRequest and
DownloadInfoResponse contain Download negotiation parameters as specified in the DownloadSI interface. An
identification of a previously suspended user context savedcontext enables the Client to indicate that an application is
to resume from previously suspended state. If this is set to 0, it indicates the application is starting up for the first time.
A path specification pathName names the path to ServiceGateway and possibly a first Service to be opened. A default
Service may be specified in the second Step of pathName as a NULL string NameComponent.id. A default Service
NameComponent.id is an indication to the ServiceGateway that it can choose the first Service for the Client.
resolvedRefs shall contain references for the resolved object references.

A Client invokes Sessions1 detach0 to close all object references for a Session using an RPC. If asuspend is true, the
ServiceGateway will inform Services which are maintaining user context for this End User to return user context state
for a possible resumption of those Services. It is up to the application to determine which state is to be returned and
maintained between Sessions. The Client may later invoke attach0 with this UserContext in order to resume from the
saved state.

5.6.6.4 ServiceGatewaySl
ServiceGatewayS inherits the Directory and SessionSI interfaces. Directory bind0 bind-context(), rebind0
rebind-context0 and unbind0 require MANAGER privileges to be invoked on the ServiceGatewayS object.

231

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

5.6.6.4.1 Summary of ServiceGatewayS Primitives

Inherited from Access:
attributes: Size, Hist, Lock, Perms

Inherited from Directorv and
NamingContext:

operations: open, close, get, put,
list, resolve, bind, bind - context, rebind,
rebind
destroy

context, unbind, new-context,

Inherited from SessionSI:
operations: attach, detach

Service Inter-operability Syntax

module DSM {
interface ServiceGatewayS : Directory, Sessions1 {

const AccessRole bind ACR = MANAGER;
const AccessRole bind-context ACR = MANAGER;
const AccessRole rebind ACRZ MANAGER;
const AccessRole rebind-context ACR = MANAGER;
const AccessRole unbind ACR =-MANAGER; -

1, 9
1 . 9

TapUse

RPC USE -

5.6.6.5 DownloadSI
When an RPC stack is present in the Client, the DownloadSI interface can be used to perform lower layer U-N
Download requests. This interface implements model 2 of U-N Download in clause 7 (where ControlUp, DataUp and
ControlDown are carried on an RPC bi-directional channel). All control messages including DataRequest are exchanged
over this interface. The DownloadDataBlocks are sent over a high-bandwidth downstream channel, e.g., one which
conveys an MPEG-2 stream. Thus, taps are returned for the RPC and for the data downstream channels. While the
Download Application Portability Interface is simplified by not exposing network flow-control to the application, the
DownloadSI Service Inter-operability Interface at the lower layer will perform the details of windowing and flow control
as described in clause 7. The RPC interface provides a reliable Download plus invocation authorization on each
message, where higher security is desired.

The pre-conditions for this interface are that a Client can send messages to an object reference for an application Service
that supports this interface. The first operation is a DownloadSI info(). The reply to this RPC is a sequence of
DownloadInfo structures that contain size, private opaque data, and description of each module that must be
downloaded in order for the Client to run the application. Following this, a series of DownloadSI proceed0 messages
to be sent to control the Download transfer. The request message body of DownloadSI proceed0 is the
DownloadDataRequest as described in clause ‘7. A DownloadSI cancel0 can be sent to cancel a download in progress.

The Client can recognize an object that supports the Download interface through a Directory list0 operation at the
parent directory where the object’s name and object reference are bound. NameComponent kind in the Directory list0
reply identifies whether the object is a Download Service. Following a resolve of an object reference, Kind has-a0 may
be invoked to test whether Download is supported as an inherited interface.

The U-N Download data encoding of clause 7 also supports broadcast download in various forms. This does not require
RPC control as described in this subclause.

232

0 ISOIIEC ISO/IEC 13818=6:1998(E)

CDR-Lite encoding will convert the DownloadSI programming interface to exact data encoding specified in clauses 6
and 7.

Service Inter-operability Syntax: InfoRequest and InfoResponse

module DSM (
struct SubDescriptor {

octet SubDescriptorType;
octet SubDescriptorLength;
sequence<octet, 255> additionalInformation;

1 .
siruct InterfaceDescriptor {

octet descriptorType;
octet descriptorLength;
u-long specifier;
u-short model;
u-short version;
sequence<SubDescriptor, 255> subDescriptorList;

I,
struct CompatibilityDescriptor (

u-short length;
sequence<InterfaceDescriptor, 65535> interfaceDescriptorList;

1 .
sluct InfoRequest (

u-long buffersize;
u-short maximumBlockSize;
CompatibilityDescriptor userCompatibilitiesBytes;
sequence<octet, 65535> privateDataBytes;

1 .
siruct ModuleInfo {

u short moduleId; -
octet moduleVersion;
u-long modulesize;
sequencecoctet, 255> moduleInfoBytes;

1 .
typedef sequencecModuleInfo, 65535> ModuleInfoList;
II
II The complete InfoResponse contains Server calculated
II transport parameters plus application level information
II
struct InfoResponse {

u - long downloadId;
u-short blocksize;
octet windowsize;
octet a&Period;
u-long tCDownloadWindow;
u-long tCDownloadScenario;
CompatibilityDescriptor userCompatibilitiesBytes;
ModuleInfoList modulesInfo;
sequence<octet, 65535> privateDataBytes;

1 . ?
1 . ?

233

ISOAEC 13818-6:1998(E)

Service Inter-operability Syntax: Operations

module DSM (
interface DownloadSI (

#ifdef DSM CONSUMER
II Download Data&quest is sent to start the Download or
II to cause the Server to send the next group of Download DataBlocks
struct DataRequest {

u-short moduleId;
u-short blockNumber;
octet downloadReason;

0 ISOIIEC

1 .
//‘when the Server receives a Download DataRequest, it
// will send a series of a&Period Download Da&Blocks:
struct CancelRequest (

u-short moduleId;
u-short blockNumber;
octet downloadCancelReason;
char privateDataLen;
sequence<octet, 65535> privateDataBytes;

1 .
cbnst AccessRole info ACR = READER; -
void info (in InfoRequest reqNegotiation,

out InfoResponse respNegotiation)
raises (BAD-COMPAT-INFO, BUF-SIZE, BLOCK-SIZE);

const AccessRole proceed ACR = READER;
void proceed (in DataRequest ackNack)

raises(BAD_MODULE-ID, TIMEOUT, MPEG-DELIVERY);
const AccessRole cancel ACR = READER;
void cancel (in CancelRequest cancelReq)

raises (BAD - MODULE-ID, TIMEOUT) ;
#endif
#ifdef DSM GENERAL

structModuleInstallInfo (
u short aModuleId;
l-path to object containing Download data
CosNaming: :Name n;

1 .
typedef sequence<ModuleInstallInfo> ModuleInstallList;

1 .
co&t AccessRole install ACR = OWNER; -
void install (in CompatibilityDescriptor compatInfo,

in ModuleInfoList modulesInfo,
in ModuleInstallList pathsInfo)

raises (BAD - COMPAT INFO, BAD MODULE
INV-GAME, NOT-FOUND); -

INFO,

const AccessRole deinstall ACR = OWNER; -
void deinstall (in CompatibilityDescriptor compatInfo)

raises (B AD - COMPAT-INFO) ;
#endif

1 . 7
1 . 9

234

0 ISOIIEC ISO/IEC 138%8-6:1998(E)

TapUse

RPC USE -

DOWNLOAD DATA DOWN USE - - -

Service Inter-operability Semantics

operation requests

Download DataBlocks

DownloadSI info0 is used to obtain download module information and negotiate flow-control parameters for a
Download. Downloads1 info0 enables a Client to obtain information about modules that must be downloaded in order
for an application to proceed. It is also used to negotiate flow-control parameters based on buffer size, block size and
network reliability. For efficiency reasons, it is recommended that the first InterfaceDescriptor in the
CompatibilityDescriptor identify the dominant Client hardware specifier, model and version. The InfoRequest and
InfoResponse fields are described in clause 7.

DownloadSI proceed0 is used iteratively to transfer a series of DownloadDataBlocks to the Client. The
DownloadDataBlocks are normally transfered over the channel identified by the DOWNLOAD DATA DOWN USE - - -
Tap. The DataRequest fields are described in clause 7.

Downloads1 cancel0 is used to cancel a Download in progress. The CancelRequest fields are described in clause 7.

Informative: A new interface type that inherits both File and Download is possible. In this case, the U-N download
protocol described in clause 7 can be used for large transfers requested by File read(). To accomplish this, the
InfoRequest is carried in the ServiceContextList of the associated operation. The InfoResponse and ConnBinder are
carried in the ServiceContextList of the RPC reply. The data to be transferred is treated as a single module to be
downloaded. The negotiation of flow-control parameters is the same as the U-N Download protocol. Since the Client is
making the selection, there is no compatibility matching. This mechanism may also be used for other objects that have
operations that potentially require large data transfers. The Download interface must be supported by the target object.

DownloadSI install0 enables an owner to bind download configuration to the Server. The configuration consists of the
compatibility information that describes the Client configuration, module information for the modules to be downloaded,
and the path name to download module data for each module. The CompatibilityDescriptor fields are defined in clause
6.For efficiency purposes, it is recommended that the first InterfaceDescriptor in the CompatibilityDescriptor identify
the dominant Client hardware specifier, model and version. The ModuleInfoList contains information for each module
to be downloaded. ModuleInfo fields are defined in clause 7. The ModuleInstallList contains the pathNames to objects
at the Server that contain the download module data.

DSM DownloadSI deinstall() enables an OWNER to unbind a Download configuration from the Server. The Client
CompatibilityDescriptor identifies the download configuration to be removed.

5.6.6.6 Event
The Application Portability Interface maps 1- 1 to the Service Inter-operability Interface, except for Event notify(),
which is a local operation. Refer to the Event API for individual operation descriptions. Note that Event notify0 is
implemented as a local library operation at the Client. To the IDL Compiler, defining DSM-SERVER will cause Event
notify0 to not be compiled for the Server Stub.

235

ISO/IEC 13818=5:1998(E) 0 ISO/IEC

Application Portability / Service Inter-operability Syntax

module DSM
interface Event {

// In addition to the other descriptor fields, the stream object places the
// StreamEvent in the private data section of the media stream:
const u short NULL EVENT ID = 0; - - -
typedef sequencecchar, 25% eventName;
typedef sequence<eventName, 65535~ EventList-T;
const AccessRole EventList get ACR = READER;
const AccessRole EventList-put-ACR = OWNER; - -
attribute EventList T EventList;
// the following strict is sent in the MPEG stream
I/
struct StreamEvent (

u-short eventId;
AppNPT rAppTime;
sequence<octet> rPrivateData;

I,
const AccessRole subscribe ACR = READER; -
void subscribe(

in string aEventName,
out u-short eventId)
raises(INV-EVENT-NAME) ;

const AccessRole unsubscribe ACR = READER; -
void unsubscribe(

in u short eventId)
rais&(INV EVENT-ID);

- #ifdef DSM PSEUDO -
void notify (out StreamEvent rStreamEvent);

#endif // DSM PSEUDO -

Possible TapUses

RPC USE - operation requests

STREAM EVENT USE - - Stream Event Descriptors

STR STATUS AND EVENT USE - - - - Stream Mode and Event Descriptors

Service Inter-operability Semantics

The local Event object shall monitor the MPEG-2 Stream for Stream Event descriptors that match the eventId for
subscribed events. It shall hold event information for each eventId until such time an application level Event notify0 is
invoked or the object is closed.

5.6.6.7 Composite
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the Composite API for
individual operation descriptions.

236

0 ISOIIEC ISOAEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax

module DSM (
typedef u-long BindingType; // extends CosNaming BindingType
const BindingType cobject = 2;
interface Composite (

struct ChildInfo {
CosNaming: :NameComponent n;
Version rversion;
boolean required;

1 .

tipedef sequence&hildInfo> ChildInfos;
II
const AccessRole list subs ACR = READER; - -
void list subs (-

in CosNaming: :Name name,
out ChildInfos infos)

raises (NOT FOUND, INV-NAME);
#ifdef DSM GENERAL

struck ChildBinding {
CosNaming: :NameComponent n;
Version rversion;
boolean required;
ObjRef obj ;

1 .
typedef sequencecChildBinding> ChildBindings;
const AccessRole bind subs ACR = WRITER; - -
void bind subs (-

in CosNaming::Name name,
in ChildBindings rChildBindings)
raises (NOT FOUND, INV-NAME, ALREADY-BOUND);

const AccessRole unbind subs ACR = WRITER; - -
void unbind-subs (in CosNaming::Name name)

raises (NOT-FOUND, INV-NAME);
#endif

TapUse

RPC USE -

Service Inter-operability Semantics

Directory open0 with aPathType = DEPTH must be used to resolve a Composite object. The ObjRefs returned are the
sequence of object references whose corresponding aPathSpec Step Process flags areTRUE (the last of which being
the Composite Parent object reference), followed by the Child object references.

While Directory open0 at the Application Portability Interface returns the parent Composite to the Client Application,
the corresponding Directory open0 at the Service Interoperability Interface returns the object references of the
Composite parent and the required child objects over the network. The child objects are associated as being compatible
versions, such that when the Directory open0 is invoked, the set of required compatible sub-objects are resolved.

Opening a required child is a local operation, because the object reference is present from the previous Directory
open(). Opening an optional child causes an object reference for the child to be returned over the network.

With Composite bind subs(), subset of child objects are labeled as required, i.e.,
Directory open0 operation. Another subset are labeled optional, i.e.,

they should be opened together by a
they may be opened individually at any time

237

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

during the running of the application. The optional sub-objects are included with the composite set for version
compatibility reasons.

Each child object reference shall have a NameId in its IOR to provide the child’s symbolic name.

5.6.6.8 View
The Application Portability Interface maps I- 1 to the Service Inter-operability Interface. Refer to the View API for
individual operation descriptions.

Application Portability / Service Inter-operability Syntax: View Styles

module DSM
interface View (

// View Style identifies the Query set supported by the View
// NON DB indicates service is not a Database but performs minimal searches,
// filters-and sorts using SELECT as described in this part of ISO/IEC 138 18
I/ SQL89 indicates the View is a SQL89-compliant database
// SQL92 indicates the View is a SQL92-compliant database
// SQL3 indicates the View is a SQL3-compliant database
const char NON DB = ‘N’;
const char SQL89 = ‘1’;
const char SQL92 = ‘2’;
const char SQL3 = ‘3’;
const AccessRole Style - get - ACR = READER;
readonly attribute char Style;

I . 7
1 . 9

238

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Application Portability / Service Inter-operability Syntax: Statement and Result

module DSM {
interface View {

typedef string SQLStatement;
/I
typedef u-short FieldCode;
struct FieldDescribe {

string fieldName; // name of the field
FieldCode aType; // type of the field
opaque typeparameters; // parameters related to the given type

> .
type&f sequencecFieldDescribe> ResultDescribe;
I/
// FieldCodes for standard SQL types
const FieldCode VTC CHAR = 1;
const FieldCode VTC-SMALLINT = 2;
const FieldCode VTC-INTEGER = 3;
const FieldCode VTC-FLOAT = 4
const FieldCode VTC-SMALLFLOAT = 5;
const FieldCode VTC-DECIMAL = 6;
const FieldCode VTC-REAL = 7;
const FieldCode VTC-DOUBLEPRECISION = 8;
const FieldCode VTC-CORBA TYPECODE = 9; - -
/I
// these structs are placed into the opaque typeparameters field of
// the FieldDescribe struct depending on the value of the FieldCode
struct InfoChar {

u-short length;
boolean nullTerminated;

1 .
stkuct InfoFloat (

u-short precision;
I,

struct InfoDecimal (
u-short precision;
u-short scale;

1;
If
// type definitions for the returned data
typedef opaque Field;
typedef sequence<Field> Row;
typedef sequencecRow> Result;

239

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Application Portability / Service Inter-operability Syntax: Operations

module DSM (
interface View (

If query0 executes an SQL query (select) in the server and
If returns the first set of rows
const AccessRole query - ACR = READER;
void query(

in SQLStatement aSQLStatement,
in u-short maxRows,
out ResultDescribe describe,
out Result aResult,
out View iterator)
raises (ILLEGAL-SYNTAX);

If read0 returns additional rows from the query
const AccessRole read ACR = READER; -
void read(

in u-short aCursor,
in u-short maxRows,
out Result aResult)
raises(N0 QUERY, INVCURSOR);

If execute0 executes an SQL statement in the server (for example “update”)
const AccessRole execute ACR = WRITER; -
void execute(

in SQLStatement aSQLStatement)
raises(ILLEGAL-SYNTAX);

TapUse

RPC USE -

5.6.6.9 State
The Application Portability Interface maps l-l to the Service Inter-operability Interface. Refer to the State ApI for
individual operation descriptions.

Application Portability / Service Inter-operability Syntax

module DSM (
interface State (

const AccessRole suspend - ACR = READER;
void suspend(

in boolean aRelease,
out UserContext savedcontext)
raises (NO-SUSPEND);

const AccessRole resume ACR = READER; -
void resume (

in UserContext savedcontext,
out ObjRefs restoredRefs)
raises (NO RESUME); -

TapUse

RPC USE -

240

0 ISOIIEC ISOLIEC 13818=6:1998(E)

Service Inter-operability Semantics

In addition to suspending application state, State suspend() provides the aRelease flag for management of network
resources. If aRelease is true then the object instance forces network resources to be released immediately. When
aRelease is not set to true the object instance preserves the association tags but the resources might be reassigned or
released after a local time-out. In either case, if this object is a parent Composite with open child objects, State
suspend0 cascades to the child objects.

A ConnBinder must be present in the object reference (IOR) of the State resume0 RPC reply.

5.6.6.10 Interfaces
The Application Portability Interface maps I- 1 to the Service Inter-operability Interface. Refer to the Interfaces API for
individual operation descriptions.

Application Portability / Service Inter-operability Syntax

module DSM (
#ifdef DSM GENERAL

If A TypeCodeBuf holds a Corba 2.0 TypeCode
typedef opaque TypeCodeBuf;
typedef sequence<TypeCodeBuf> TypeCodeList;
If
interface Interfaces (

typedef opaque ReferenceData;
typedef string InterfaceDef;
const AccessRole show ACR = READER; -
void show (

in string aStrKind, If DSM-CC format, “Module: :Interface Type”
in IFKind anIFKind, If IFKind
out string rIDL, If IDL used in previous define
out IntfCode rIntf, If DSM-CC interface code with included IFKinds
out TypeCodeList rTypes)ff TypeCodes required at this level of interface
raises (NOT-DEFINED, INV-KIND);

const AccessRole define ACR = MANAGER; -
void define (

in ReferenceData id, If unique Identifier
in InterfaceDef rIDL, If IDL definition
out IntfCode rIntf, If DSM-CC interface code with included IFKinds
out TypeCodeList rTypes)// TypeCodes required at this level
raises (PREV-DEFINED, ILLEGAL-SYNTAX, NO-REF-TYPE);

const AccessRole check ACR = MANAGER;
void check (in IFKind a;IFKind)

raises (NO-REF-TYPE);
const AccessRole undefine_ACR = MANAGER;
void undefine (in ReferenceData id, out IFKindList usedBy);

1 .
#endff
1 . 9

TapUse

RPC USE -

5.7 Application Boot Process
This subclause describes the process that establishes a Session, performs Download, and starts a Client application. The
process consists of a series of steps, each with pre and post-conditions. It is possible that certain Client configurations

241

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

will satisfy the post-conditions for a step through previously resident functional elements. Thus, if post-conditions for a
given step are already satisfied, that step need not be performed.

The Application boot process described here is informative. The process conforms to the U-N Session messages defined
in clause 4, the U-N Download messages defined in clause 7, and the User-to-User operations defined in this clause. The
operations and their supporting IDL definitions are normative. The pre and post-conditions are normative.

The Application Boot Process encompasses the following lifecycle phases:

1. Session attach0 is invoked by the Main Resident Application on a local Session object, in order to establish a
Session, set up connections to initial remote Service objects, download the functional elements needed to run the
application, and decode the parameters that will be used by application.

2. Following Session attach(), the Client application is launched.

3. The newly started application invokes First service0 to obtain the object reference for its first remote Service. The
application may also invoke First root0 to obtain the object reference for the ServiceGateway. During the Session,
it may resolve new object references, and invoke object operations on local Object Implementations and active
object references.

4. When finished, Session detach0 is invoked by the Client Application on the object reference of the
ServiceGateway, in order to teardown the Session and disconnect from remote Service objects.

5.7.1 Session attach0 Pre-conditions

Main Resident Application
I* API

Session obiect ,
API

Download
object

U-N U-N U-N

Config Session Download
Protocol Protocol

Lower Network Stack

The following pre-conditions must be satisfied in order to call Session attach0 for the U-N Case.

0 Lower Network Stack is present. It includes the Physical, Data link, Network and Transport layers of the OS1
Model.

0 Session input parameters are present.

1. ClientId. ClientId is carried in the U-N Session protocol to globally identify the Client device. ClientId is a
20 octet value.

2. Service location information. These include ServerId, optional path name, and optional user context. The
20 octet ServerId globally identifies the Server-side device that will negotiate the U-N Session messages.
There is a l-l relationship between ServerId and ServiceGateway, i.e., there may only be one ServerId for
a given ServiceGateway instance The path name is the complete logical path from a ServiceGateway to a
Service. The user context is an opaque value that holds application initial parameters

3. CompatibilityDescriptor. The CompatibilityDescriptor contains configuration information to clearly
distinguish the Client profile, e.g., system hardware descriptor, system software descriptor, and
descriptor(s) identifying the network protocol(s) the Client supports. This descriptor can identify the

242

0 ISOIIEC ISOLIEC 13818=6:1998(E)

protocol to be used for Download. In the absence of such identification, the Download message set of
clause 7 shall be used as the default.

4. Transaction timeout values. Timeouts can occur on the U-N Session and Download message sequences,
resulting in a cancellation of the transaction. The Timeouts are specified in the U-N Session and U-N
Download, clauses 4 and 7, of this part of ISOIIEC 138 18.

0 Other parameters are also optionally present: PrincipalId to identify the End-User to a Service Domain (there may
be more than one PrincipalId for more than one Service Domain). Service Context information such as preferences.
DSM-CC does not define how these are obtained. They may be included in the Server Binding. Additionally, a
display name may be associated with the path name. The display name is the End-User’s alias for an application or
Service name. It is recommended that the display name be formated as a UNIcode string, to accommodate alphabets
with more than 255 characters.

0 U-N Session Protocol is present. The U-N Session protocol includes U-N Session state machine and the ability to
send/receive U-N messages.

a Download Protocol is present. The Download protocol includes the encoded U-N Download message set. The
Download message set is replaceable by other protocol, such as broadcast Download or RPC. A Download InfoRequest
message including CompatibilityDescriptor is pre-encoded.

0 Session Local Object Implementation is present. The Session object provides attach0 and detach0 operations to the
upper programming layer, the Session state machine, and U-N Session encoded protocol to the lower layer. The Session
object is replaceable by other Session objects that could interface with different lower layer protocols (such as broadcast
or RX).

0 Download Local Object Implementation object is present. The Download object provides info(), alloc(), start0 and
cancel0 operations to the upper programming layer, the Download state machine, and Download encoded protocol to
the lower layer. The Download object may also interface to other lower layer protocols, such as broadcast Download or
RPC-based Download.

0 A Main Resident Application is running. This application shall invoke Session attach(), and then launch the newly
loaded Client application.

5.7.2 Session attach0 Procedure
For an interactive Session based on DSM-CC User-to-Network signaling, Session attach0 performs the following steps:

1. Resolve path-specific parameters to be used in U-N Session Establishment, if necessary.

2. Use SessionUU attach0 to populate the uuData of Session Establishment messages, and establish the U-N
Session. The syntax is defined in the Service Inter-operability Interfaces subclause.

3. Perform a Download sequence to download DSM-CC Library stubs, application Client executable and
other functional elements needed to run the application.

4. Decode Downloaded data to produce progamming level structs and parameters, and bind ObjectReferences
with network resources.

5.7.2.1 Resolving Path-specific Parameters
Path-specific parameters may be known in advance by the calling application, or may be stored in a local binding list in
the Session object. This subclause is informative and describes the use of the Server Binding List,

The Server Bindings can be used to hold various path-specific parameters required for U-N Session Establishment. The
Session object maintains this state to enable resolution of a ServerId and SavedContext, given a PathName. At a
minimum each Server Binding contains fields for ServerId, CosNaming::Name, and SavedContext. A default ServerId
can exist with a NULL (length 0) PathName.

Server Binding List:
.

ServerId PathName SavedContext
20 octet CosNaming: :Name opaque \

243

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

A default Server Binding with a ServerId and NULL PathName is used if the caller of Session attach0 does not have a
name for a remote Service.

A display name, if present in the ServerBinding, can be used as an End-User alias for the Server Binding. In this case,
the Session attach0 may accept either the display name alias of the Service (in the NameComponent id) or the full
PathName to the Service.

PrincipalId (End-User identification) and ServiceContextList parameters (such as user preferences), may also be present
in the Server Binding, or may be global Client parameters common to many Service paths. The default values for these
parameters are NULL (zero-length).

5.7.2.1.1 Post-condition
These values are known:

ServerId, pathName, savedcontext, PrincipalId, ServiceContextList, DownloadInfoRequest

5.7.2.2 Establishing the U-N Session
The uuData for all U-N Session messages is encoded as big-endian CDR. The U-N Session Establishment sequence
with uuData is shown below:

Client SRM Server

ClientSessionSetupRequest

! ServerSess ionSetupIndication
uuData

(UU attach inputs)

ServerAddResourceConfirm

ClientSessionSetupConfirm
uuData

ServerSessionSetupResponse’
I uuData

(UU attachoutputs)

(UU attach outputs)
IOR WI ConnBinder

\

-
WI Association Tags

/

Note that -long in following CDR big-endian data encoding diagrams represents the count of elements in a sequence,
according to CORBA terminology.

5.7.2.2.1 ClientSessionSetupRequest
The marshaled input parameters of the SessionUU attach0 are the uuData of ClientSessionSetupRequest, as described
below. The resulting uuData field of ClientSessionSetupRequest is as follows.

0 A U-N Download InfoRequest structure.

244

0 ISOIIEC ISOLIEC 13818=6:1998(E)

0 A CosNaming::Name identifying a path to the desired Service. The Name extends logically from the
remote ServiceGateway. The terminal leaf shall contain a name identifier that identifies the desired initial
Service. This is placed in the path&me parameter used in ClientSessionSetupRequest.

0 A UserContext value, for resumption of previously suspended application state. This is placed in the input
savedcontext parameter.

0 An End-User identification of the consumer, unique within the context of the ServiceGateway Service
Domain. This is placed in the aprincipal parameter.

0 Optional ServiceContextList information, placed in the inSC parameter. The ServiceContextList defined
later in this subclause.

The Network shall take the uuData of ClientSessionSetupRequest and place it in the uuData of
ServerSessionSetupIndication, as part of the Session establishment sequence.

U-U Data
Client Session Setup Request

opaque downloadInfoReq
CosNaming::Name pathName u-long -length

sequence0

CosNaming:: string id
NameComponent string kind

<other NameComponents>

User-Context savedcontext
Principal aPrincipal

1OP::ServiceContextLis t inSC

The Server may use the Client CompatibilityDescriptor, Service Name, PrincipalId and ServiceContextList to determine
parameters for negotiating session resources with the SRM.

5.7.2.2.2 ClientSessionSetupConfirm
Near the completion of the User-to-Network session establishment, the Server shall return ServerSessionSetupConfirm
to the network, with uuData containing the marshaled output parameters of SessionUU attach(). This uuData is
forwarded to the Client in the ClientSessionSetupResponse. The output parameters of SessionUU attach0 are one of
two choices:

1. If the U-N response field indicates the session is established:

0

0

U-N Download InfoResponse, placed in the downloadInfoResp parameter.

Connection information for Download data and control channels, placed in the downloadTaps
parameter.

0

0

Resolved Interoperable Object References(IOR) for the ServiceGatewayUU and optionally for the first
Service, as were identified in pathName. These are placed in resolvedRefs parameter.
Optional ServiceContextList information, placed in the outSC parameter.

245

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

U-U Data
Client Session Setup Response

U-N response field indicates
a valid session

opaque down1oadInfoResp
ConnBinder downloadTaps

ObjRefs resolvedRefs u long - - length
sequence<IOP: :IOR> .

IOP: : IOR string id
u - long ProfileId

opaque encapsulation

<other IOP: :IORs>

1OP::ServiceContextList 0utSC

2. If the U-N response field indicates the session is NOT established, uuData shall contain:

0 Exception. This shall contain exception type and value.

U-U Data any exception DSM Typecode string kind
Client Session Setup Response string repositoryId

u - long TCKind
U-N response field indicates
an invalid session opaque value

5.7.2.2.3 Session Establishment Post-conditions
A table of tag/network resource associations contains the Resource Association Tags and Resource Descriptors that
were returned in the ClientSessionSetupResponse.

The uuData is not decoded. DownloadInfoResponse and downloadTaps are present in CDR big-endian format.The
encoding of other uuData parameters is not yet known.

The undecoded resolvedRefs contains an IOR for the ServiceGatewayUU, and may contain IORs of the first Service. If
the first Service is a Composite, IORs are present for the parent and child references. If not, the first Service is
referenced by a single IOR.

5.7.2.3 Download
The Download sequence returns all functional elements needed to initially run the application, including the Client
Application itself, DSM-CC Library Stubs for objects the application will reference, and the RPC Protocol, if it is not
already present.

As part of the Application Boot Process, the execution of U-N Download does not require the RPC to be present.
Following U-N Download, the RPC must be present.

downloadTaps from uuData of ClientSessionSetupResponse provide the connection information for Download data
channels. This ConnBinder shall be encoded as CDR, big-endian.

246

0 ISOIIEC ISO/IEC 13818=6:1998(E)

DSM::ConnBinder u-long -length

Tap u-short id
u-short use

u-short assocTag
sequence<octet, 255> selector

cother Taps>

The Download Protocol receives DownloadInfoResponse from uuData of ClientSessionSetupResponse. The
Download Client state machine of clause 7 is DCActive.

Download start0 is invoked by the Session attach0 procedure to send a series of DataRequest messages to retrieve all
required DownloadDataBlocks, as described in clause 7, U-N Download.

The Download process retrieves byte sequences that must be decoded in order for Client Application to access object
structures at a programming level. Following Download, the encoder/decoder must be present, either in the RPC or in
the DSM-CC Library stubs.

The IORs (resolvedRefs) from SessionUU attach0 are now decoded to determine to the Protocol ProfileId (and hence
the encoding/decoding specification) for each Client/object binding. The IOR contains a string identifier for the object
type, a length indicating a number of TaggedProfiles, and an array of TaggedProfiles (DSM-CC typically uses 1
TaggedProfile). The string identifier shall be either the NameComponent kind format (“<Module>::<Interface>”) or an
alias (see the Entity Identification subclause). The Tagged Profile contains a ProfileId and a CORBA 2.0 encapsulation.
The profileId specifies the RPC, the data encoding, and the structure of the encapsulation. The top format of the IOR
shall be be big-endian CDR. The encapsulation encoding and all other encodings for the object shall be determined by
the ProfileId. The IOR encoding is shown below:

IOP: : IOR string id u-long length
char . . .

IO

sequence<TaggedProfile> u-long length
TaggedProfile u - long profileId

encapsulation
I

cother TaggedProfile>

The Downloaded data encodings are now converted to programming level constructs. Download returns, Session
attach0 returns, and the Main Resident Application launches the new Client Application.

247

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Main Resident Application

I API
Client Application

Session obiect
API

Download Stream File Directory First
object object object object object

U-N
U-N

U-N

Config
Session Download

RPC

Protocol Protocol
Protocol

Lower Network Stack

5.7.3 Session Tear-down
1. The marshaled input parameters SessionUU detach0 specify the uuData field of ClientReleaseRequest. This user

data is then forwarded by the network to the Server in ServerReleaseRequest. The input parameters in SessionUU
detach0 are:

0 A boolean suspend indication which indicates to the Server that application state should be preserved for
later resumption. This is placed in the aSuspend parameter.

0 Optional ServiceContextList information, placed in the inSC parameter.

2. The output parameters of ServiceGateway detachUU() are marshaled together and placed in the uuData field of
ServerReleaseConfirm. This user data is then forwarded by the network to the Client in ClientReleaseConfirm.
The output parameters of ServiceGateway detachUU() are:

0 A UserContext value containing state for later resumption of this session, placed in the savedcontext
parameter. A value of zero will indicate an exception occurred in the process of suspending the session
state, and that state from this session is no longer valid.

0 Optional ServiceContextList information, placed in the outSC parameter.

5.7.4 Session Transfer Implications
While the User-to-User Interface does not preclude the use of the User-to-Network Session Transfer (clause 4), a
transfer to a new Service Domain implies that object references must be updated in order for the Client to communicate
with the new Service. No mechanism is described in this part of ISOIIEC 138 18 for notifying the Client of the new
object references, nor for notifying that a transfer is about to take place. In addition, no provision has been made in this
part of ISOIIEC 138 18 for the Client to download an application from the new Service Domain.

In order to meet the requirement for transferring a Client between Service Domains, a User-to-User Service Transfer is
defined in subclause 5.5.1.6.3, DSM Session attach.

Refer to Informative Annex L, Service Transfer Message Flows, for further information

248

0 ISOIIEC ISO/IEC 13818=6:1998(E)

6. User Compatibility
In order to download data or software to a given user, certain information concerning that user may need to be
transferred as part of the request to insure that appropriate data be delivered. Compatibility descriptors are used to
transfer this information.

6.1 Compatibility Descriptors
Compatibility descriptors may be used to convey an inventory of available hardware or software on a Client to a Server.
From this information, the Server may make decisions as to the appropriate data to download to the Client.
Compatibility descriptors may also be used by the Server to inform a class of Clients which information to download.

The format of the compatibility descriptor enables organizations to define various subDescriptor’s to describe the details
of hardware and software modules. Possible subDescriptor’s may include processor, memory, operating system, or
network protocol stack.

Compatibility descriptors shall have the format shown in Table 6-l.

Table 6-l Compatibility Descriptor Format

Syntax Num. of Bytes
;ompatibilityDescriptor() (

compatibilityDescriptorLength
descriptorCount
for (i=O; I < descriptorCount; i++) (

descriptorType
descriptorLength
specifierType
specifierData
model
version
subDescriptorCount
for (i = 0; j c subDescriptorCount; j++) {

subDescriptor()
1

I
I

2
2

subDescriptor {
SubDescriptorType
SubDescriptorLength
for (k=O; kcsubDescriptorLength; k++) (

additionalInformation
1

The compatibilityDescriptorLength is a two byte field that defines the total length of the descriptors that follow
including the descriptorCount but not including the compatibilityDescriptorLength itself.

The descriptorCount indicates the number of descriptors which follow the descriptorCount field.

The descriptorType is a one byte field that is used to distinguish the type of the hardware or software that is being
referenced by this descriptor. Allowable values for the descriptorType are shown in Table 6-2.

249

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 6-2 descriptorType field values

descriptorType Description
0x00 Pad descriptor.
0x01 System Hardware descriptor.
0x02 System Software descriptor.

0x03 -0x3F ISOIIEC 138 18-6 reserved.
0x40-OXFF User Defined.

The Pad descriptor may be used to provide alignment for any data which follows.

The System Hardware descriptor is used to identify the specifier, model, and version of the manufacturer of the user
device.

The System Software descriptor is used to identify the specifier, model, and version of the manufacturer of the system
software of the user device.

The descriptorLength field is a one byte field that is the total length of the descriptor, not including the descriptorType
and descriptorLength fields.

The specifier is a globally unique identifier for an organization that is responsible for defining the semantics of the
model and version fields, and any subDescriptors within the encapsulating descriptor. The specifier consists of the
specifierType field and the specifierData field.

The SpecifierType is a one byte field that is used to distinguish the format of the specifierData field. The definition of
specifierType values are shown in Table 6-3.

Table 6-3 specifierType field values

specifierType
0x00
0x01

0x02-Ox7F
0x80-OxFF

Description
ISOIIEC 138 18-6 reserved.
IEEE OUI.
ISOIIEC 138 18-6 reserved.
User Defined \

The specifierData field is a three byte field to uniquely identify an organization. The value assigned to this field is
dependent on the specifierType field.

The model field is a two byte field whose semantics are specified by the organization identified by the specifier. The use
of this field is intended to distinguish between various models defined by the organization. A model value of all l’s
indicates that this descriptor applies to all models.

The version field is a two byte field whose semantics are specified by the organization identified by the specifier. The
use of this field is intended to distinguish between different versions of a model defined by the organization. A version
of all l’s indicates that this descriptor applies to all versions.

The subDescriptorCount is a one byte field set to the number of subDescriptors for the descriptor.

The subDescriptor contains additional descriptors whose semantics are specified by the organization identified by the
specifier.

The SubDescriptorType is a one byte field that determines the type of the subDescriptor. The semantics of this field are
specified by the organization identified by the specifier.

The SubDescriptorLength is a one byte field that is the total length of all additionalInformation fields included in the
subDescriptor.

The additionalInformation fields allow the inclusion of arbitrary data. The syntax and semantics of any additional
information are specified by the organization identified by the specifier.

250

0 ISO/IEC ISO/IEC 13818-6:1998(E)

6.1.1 IEEE OUI Specifier
When the specifierType of the IEEE Organization Unique Identifier (OUI) is used, the specifierData shall include a
three byte IEEE OUI as described in IEEE-802.1990. ISO/IEC reserved specifierTypes shall also use a three byte
identifier. The format of the specifierData is shown in Table 6-4.

Table 6-4 specifierData definition using IEEE OUI

specifierData (
Syntax Num. of Bytes I

251

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

7. User-to-Network Download

7.1 Overview
The U-N Download protocol is a “lightweight” and fast protocol to download data or software to a Client. To reduce
confusion between the entity performing the “server side” of the download and the common use of the term “Server” in
this part of ISO/IEC I38 18, the entity performing the “server side” of the download shall be called the “Download
Server?‘. The download protocol is “lightweight” to enable implementation on Clients with limited memory.

The download protocol supports the following scenarios:

1. Flow-controlled download. This scenario embodies the downloading of a complete set of data from one Download
Server to one Client in a flow-controlled way. The Client controls the transfer of the data via a control channel to the
Download Server.

2. Data carousel. This scenario embodies the cyclic transmission of data by the Download Server. Clients will typically
only acquire a subset of the transmitted data, depending upon the application. In this scenario, the Download Server
may serve multiple Clients simultaneously

3. Non-flow-controlled download. This scenario embodies the downloading of a complete set of data in a non-flow-
controlled way. The Download Server can use this scenario to download data to several Clients simultaneously
because the transfer of data is not controlled by the Client. Instead, the transfer is based on mutual agreements about
the transfer parameters.

The three download scenarios all share the same message set, although not all messages are used in each scenario. The
message set is divided into two categories: control messages and data messages. The control messages are request-
response messages similar to the DSM-CC U-N messages. The Download Server and Clients may use these messages to
exchange information about the download process prior to the actual data transfer. The data messages are used to
transport the download data and, for the flow-controlled download, to acknowledge the transmission of the data.

A complete flow-controlled or non-flow-controlled download operation embodies the transfer of a download “image” to
the Client. The image is sub-divided into one or more “modules”. The entire image and each module are divided into
“blocks”. All blocks within a download image other than the last block of a module are of the same size. Modules are a
delineation of logically separate groups of data within the overall image. A typical, but not normative, use of modules is
to indicate groups of data that need to be loaded into contiguous memory, allowing the Client to fragment the allocated
memory chunks by module size, rather than having to allocate a memory chunk of the image size. Blocks carry the
actual downloaded data. Each block contains data from only one module.

For the flow-controlled download scenario, and optionally for the non-flow-controlled download scenario, the block size
is negotiated to meet requirements for efficiency and effective error detection. In this negotiation, the Client sets the
initial limits on the maximum block size. If possible, the Download Server will use that block size. However, the block
size may be limited by Download Server constraints (for example, a download image may have been divided previously
into blocks that satisfy the most restrictive Client to which the download image will be served) and Network constraints
such as bit error rates and maximum transport packet size. The protocol provided will run with very small block sizes,
which allows its use over highly error-laden networks as well as networks which only support very small network block
sizes.

In the flow-controlled download scenario, the Client and Download Server negotiate a window size for a one way
sliding window protocol. The sliding window protocol applies only to data messages and not control message
exchanges. The complexity of the sliding window algorithm is restricted to the Download Server side. The size of the
window can be negotiated by the Client and the Download Server. When the window is negotiated, the Download
Server also selects the number of blocks the Client is expected to receive before sending an acknowledgment. The
number of blocks is known as the ack period. The value chosen for the ack period shall be equal to or smaller than the
window size. The ack period is employed as a simple way to limit the rate that the Client sends acknowledgments back
to the Download Server, and therefore limits the network traffic and protocol stack processing. The window size is only
relevant for the flow-controlled scenario.

The data carousel scenario embodies the cyclic transmission of data to Clients. The data transmitted within the data
carousel is organized in “modules” which are divided into “blocks”. All blocks of all modules within the data carousel
are of the same size, except for the last block of each module which may be of a smaller size. Modules are a delineation

252

0 ISO/IEC ISO/IEC 13818=6:1998(E)

of logically separate groups of data within the data carousel. The modules of a data carousel are described by control
messages. These messages may describe all modules, or a subset of modules, transmitted in the data carousel. Based on
the control messages, the Clients may acquire a subset of the modules from the network.

The different scenarios may be executed over either a reliable or unreliable network transport. In the case of a reliable
transport, various fields may be unused in some messages.

7.1.1 Download Network Models
The Download scenarios may be implemented over many different network models. Each scenario places certain
requirements on the underlying network model. These requirements are best defined by examining the message flows
defined by the download protocol.

There are four message flows present in the download protocol: ControlDown, ControlUp, DataDown, DataUp. The
ControlDown flow describes download control messages that are sent by the Download Server to the Client. The
ControlUp flow describes download control messages that are sent by the Client to the Download Server. The
DataDown flow describes download data messages that are sent by the Download Server to the Client. The DataUp flow
describes download data messages that are sent by the Client to the Download Server.

For the flow-controlled scenario, communication must be possible from the Client to the Download Server, and from the
Download Server to the Client. This scenario requires all four download message flows: ControlDown, ControlUp,
DataDown, and DataUp.

For the data carousel scenario, communication must be possible from the Download Server to the Client. This scenario
requires two flows: ControlDown and DataDown.

The non-flow-controlled scenario requires communication from the Download Server to the Client, and may utilize
communication from the Client to the Download Server. This scenario requires the flows: ControlDown and DataDown,
and optionally ControlUp.

For the download protocol to be used on a particular network model, the download message flows must be mapped onto
one or more network connections. This mapping is network specific and outside the scope of this part of ISO/IEC
138 18; however, some example network models and flow mappings are described in this clause to clarify the mapping
process. In these examples, the lines represent network connections with a label indicating the flows mapped over that
connection.

The first example network model has four connections. One connection from the Download Server to the Client carries
the ControlDown flow, while another connection from the Download Server to the Client carries the DataDown flow. A
connection from the Client to the Download Server carries the ControlUp flow, and another connection from the Client
to the Download Server carries the DataUp flow.

Client Server

b ControlUp

b DataUp

ControlDown

DataDown

Figure 7-1 Network Model 1

The second example network model is similar to the first model, but the ControlUp and DataUp flows are mapped to a
single connection from the Client to the Download Server. For example, this connection may be over a low-bandwidth
control channel.

253

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Client Server

b ControlUp, DataUp

ControlDown

DataDown

Figure 7-2 Network Model 2

The third example network model has a single connection in each direction. The connection from the Download Server
to the Client carries the ControlDown and DataDown flows, while the connection from the Client to the Download
Server carries the ControlUp and DataUp flows.

Client Server

b ControlUp, DataUp

ControlDown, DataDown

Figure 7-3 Network Model 3

The fourth example network model has a single, typically broadcast, connection from the Download Server to the Client.
The connection carries the ControlDown and DataDown flows. Note that since the ControlUp and DataUp flows are not
mapped to connections in this network model, the flow-controlled scenario can not be supported. Additionally, the non-
flow-controlled scenario can only be supported by this network model if the optional ControlUp flow is not used.

Client Server

ControlDown, DataDown

Figure 7-4 Network Model 4

7.1.2 Preconditions and Assumptions
The following preconditions and assumptions shall apply to the download scenarios:

1. The download scenario to be executed shall be known by convention or by some other means, such as data in U-N
Configuration Messages.

2. The mapping of download message flows to the underlying network model shall be known by convention or by
some other means, such as data in U-N Configuration Messages.

3. The connections to support the download messages flows in the underlying network model shall have been
established.

4. For the flow-controlled download scenario and for the non-flow-controlled download scenario when the optional
DownloadInfoRequest message is used, the transaction state machine parameters for the download control messages
shall be known. These parameters are the time-out value for a control message (tMsg), the maximum number of
allowed re-transmissions (retransBound), and also the hold timer for the expiration state (tHold). These values may
be obtained through U-N Configuration Messages.

5. For the non-flow-controlled download and the data carousel scenarios, if MPEG-2 Transport Streams are used to
deliver the data, then the data delivery rate, specified as a leak rate in the Transport Stream System Target Decoder
(T-STD) as defined in ISO/IEC 13818-1 (MPEG-2 Systems), shall be known.

254

0 ISO/IEC ISO/IEC 138U3=6:1998(E)

6. If Download is used in combination with U-N session messages, the Client shall know whether or not to place the
DownloadInfoRequest message in the uuData field of the ClientSessionSetupRequest message. This may be known
by convention or through U-N Configuration Parameters defined in clause 3.

7.2 Download Message Set
The download messages are divided into two categories: download control messages and download data messages.
Control messages are typical request-response messages similar to other DSM-CC User-to-Network messages. The
control messages are DownloadInfoRequest, DownloadInfoResponse, DownloadInfoIndication, DownloadCancel, and
DownloadServerInitiate. Data messages are used for the actual data transfer of modules and the associated
acknowledgments. The data messages are DownloadDataBlock and DownloadDataRequest.

7.2.1 Download Control Message Format
Download control messages utilize the DSM-CC message header as defined in clause 2.

Table 7-1 Format of Download Data Messages

Syntax Num. of Bytes 1
downloadControlMessage() {

dsmccMessageHeader()
controlMessagePayload()

The dsmccMessageHeader is defined in clause 2.

The controlMessagePayload is defined by the definitions of the download control messages in subclause 7.3.

7.2.2 Download Data Message Format
Download data messages have a download-specific format. Table 7-2 defines the structure of the download data
messages.

Table 7-2 Format of Download Data Messages

Syntax
downloadDataMessage() (

dsmccDownloadDataHeader()
dataMessagePayload()

I

Num. of Bytes

The dsmccDownloadDataHeader is defined in subclause 7.2.2.1.

The dataMessagePayload is one of the download data messages defined in subclause 7.3.

7.2.2.1 DSM-CC Download Data Header
The DSM-CC download data messages begin with the dsmccDownloadDataHeader. This header contains information
about the type of message being passed, as well as any adaptation data which may be needed by the transport
mechanism, such as conditional access information needed to decode the data. Table 7-3 defines the format of the DSM-
CC download data header.

Note that this header uses a format which is compatible with the dsmccMessageHeader defined in clause 2, with the
transactionId field replaced by a downloadId. This change is due a difference in the semantics of transactionId versus
downloadId. A transactionId correlates a request-response pair of messages, while a downloadId associates an entire set
of data messages.

255

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 7-3 DSM-CC Download Data Header Format

downloadId

adaptationLength
messageLength
for(adaptationLength>O) {

dsmccAdaptationHeader()

The protocolDiscr-finator field is used to indicate that the message is a MPEG-2 DSM-CC message. The value of this
field is defined in clause 2.

The dsmccType field is used to indicate the type of the DSM-CC message. Clause 2 defines the possible dsmccType
values.

The messageId field indicates the type of message which is being passed. The values of the messageId are defined
within the scope of the dsmccType.

The downloadId field is used to associate the download data messages and the download control messages of a single
instance of a download scenario.

The reserved field is reserved by ISO/IEC 138 18-6 and shall be set to OxF’F.

The adaptationLength field indicates the total length in bytes of the dsmccAdaptationHeader. This length shall be a
multiple of four bytes. Any messages that include a non-zero length dsmccAdaptationHeader shall append padding bytes
to make the adaptationLength a multiple of four bytes.

The messageLength field is used to indicate the total length in bytes following this field. This length includes the
dsmccAdaptationHeader indicated in the adaptationLength and the message payload indicated by the messageId field.

The dsmccAdaptationHeader is defined in clause 2.

7.3 Message Descriptions
The messageId values for the Download messages are specified as follows:

Table 7-4 DSM-CC Download messageId assignments

Message Name
DownloadInfoRequest
DownloadInfoResponse,
DownloadInfoIndication
DownloadDataBlock
DownloadDataRequest
DownloadCancel

messageId
0x1001
0x1002

0x1003
0x1004
0x1005

Description 1
Client requests download parameters
Download Server provides download parameters

Download Server sends one download data block
Client acknowledges downloaded data blocks
Client or Download Server aborts the download scenario

DownloadServerInitiate 0x1006
in progress
Download Server remests Client tn initiate 2

In the following subclauses, the message bodies of the download messages are defined. The semantics of the fields of
the messages are applicable for all download scenarios unless stated otherwise.

256

0 ISO/IEC ISO/IEC 1381&6:1998(E)

7.3.1 DownIoadInfoRequest
The DownloadInfoRequest message shall be sent from the Client to inform the Download Server of the capabilities and
limitations of the Client. The Download Server uses the information to select an appropriate download image for the
Client. The algorithm for this selection is outside the scope of this part of ISO/IEC 138 18. The DownloadInfoRequest
message shall be used in the flow-controlled download scenario, and optionally in the non-flow-controlled download
scenario. It is not used in the data carousel scenario.

Table 7-5 DownloadInfoRequest Message

Syntax
DownloadInfoRequest() (

dsmccMessageHeader()
buffersize
maximumBlockSize
compatibilityDescriptor()
privateDataLength
for(i=O;icprivateDataLength;i++) {

privateDataByte
1

Num. of Bytes

4
2

2

1

The buffersize field indicates the maximum number of bytes the Client can receive from the Download Server before
requiring flow control (an acknowledgment). The Download Server selects a window size no larger than the number of
blocks in the buffer size (windowsize <= buffersize / blocksize). The value of buffersize shall be equal to or larger than
maximumBlockSize (buffersize >= maximumBlockSize). A value of buffersize equal to 0 means there is unlimited
buffer size available, or equivalently the Client can absorb data at a rate greater than the maximum physical network can
deliver.

The maximumBlockSize field indicates the maximum block size in number of bytes that the Client agrees to support.
The Download Server shall select a blocksize which shall be no larger than this size. A value of 0 means that the Client
places no restrictions on the maximum block size.

The compatibilityDescriptor structure as defined in clause 6. This information will be used by the Download Server to
select the correct download image to send to the Client. The algorithm for this selection is outside the scope of this part
of ISO/IEC 13818.

The privateDataLength field defines the length in bytes of the following privateDataByte fields.

The data in the privateDataByte field is carried from the Client to the Download Server transparently. For example,
this field could be used to carry information to fully or partially specify what data to download, or information about
which of multiple possible download connections the Client would prefer.

7.3.2 DownIoadInfoResponse and Downloadlnfolndication
DownloadInfoResponse and DownloadInfoIndication refer to the same syntactic message definition, with slightly
differing semantics. The DownloadInfoResponse message shall be used as a response to the DownloadInfoRequest
message, while the DownloadInfoIndication shall be used for the data carousel scenario and non-flow-controlled
scenario when no DownloadInfoRequest is sent. In both cases, this message shall be sent from the Download Server to
Client to inform the Client of download parameters.

When a DownloadInfoIndication is sent by the Download Server, the transactionId field in the dsmccMessageHeader
shall be used as a versioning mechanism. The Download Server shall set the transactionId field to an arbitrary value, and
continue to use that value for each transmission of the DownloadInfoIndication, so long as the entire
DownloadInfoIndication message remains unchanged If any field of the DownloadInfoIndication message is modified,
then transactionId shall be incremented, modulo the field size of transactionId. The downloadId correlates the
DownloadInfoIndication messages with their corresponding download scenario in progress.

257

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 7-6 DownloadInfoResponse and DownloadInfoIndication message

Syntax
DownloadInfoResponse(), DownloadInfoIndication() (

Num. of Bytes

dsmccMessageHeader()
downloadId
blocksize
windowsize
ackPeriod
tCDownloadWindow
tCDownloadScenario
compatibilityDescriptor()
numberOfModules
for(i=O;ic numberOfModules;i++) (

moduleId
moduleSize
moduleVersion
moduleInfoLength
for(i=O;i< moduleInfoLength;i++) (

moduleInfoByte
1

1
privateDataLength
for(i=O;ic privateDataLength;i++) {

privateDataByte
1

2

1

2

1

The downloadId field is the identifier of the download scenario in progress. The downloadId shall be uniquely defined
within the Network for data carousel scenario and unique within the connection for the flow-controlled and non-flow-
controlled scenarios. This identifier shall be used in all of the subsequent DownloadDataBlock, DownloadDataRequest,
and DownloadCancel messages used by the download scenario in progress.

The blocksize field is the length in bytes of the data in every block carried in the DownloadDataBlock messages, except
for the last block of each module which may be smaller than blocksize. In a DownloadInfoResponse, the value of this
field shall be less than or equal to the maximumBlockSize sent in the associated DownloadInfoRequest message.

The windowsize is the number of blocks in the sliding window. A value of 0 means that the window is the size of the
entire image and that no acknowledgments are to be sent by the Client. A window size of 0 may only be used in a
downloadInfoResponse if the Client set the buffersize to 0 in the DownloadInfoRequest message. This field is unused
for non-flow-controlled download and data carousel scenarios and shall be set to 0 in these scenarios.

The ackPeriod is the number of blocks the Client would normally be required to receive before sending a positive
acknowledgment. The a&Period does not limit when a negative acknowledgment can be sent. The Client shall send a
positive acknowledgment after successfully storing the last block in the image. This field is unused for non-flow-
controlled download and data carousel scenarios and shall be set to 0 in these scenarios.

The tCDownloadWindow field indicates the time out period in microseconds for each acknowledgment. This field is
unused for non-flow-controlled download and data carousel scenarios and shall be set to 0 in these scenarios.

The tCDownloadScenario field indicates the time out period in microseconds for the entire download scenario in
progress.

The compatibilityDescriptor structure is defined in clause 6. The Download Server may use this structure to indicate
for which Clients the described modules are appropriate.

The numberOfModules field is the number of modules described in the loop following this field. For flow-controlled
and non-flow controlled download scenarios, the loop describes all the modules that have to be downloaded by the
Client. For the data carousel scenario, the loop describes a subset of all the modules associated with this data carousel,
although it may describes all of them.

258

0 ISOIIEC ISO/IEC 13818=6:1998(E)

The moduleId field is an identifier for the module that is described by the modulesize, moduleVersion, and
moduleInfoByte fields. The moduleId is unique within the scope of the downloadId.

The modulesize field is the length in bytes of the described module.

The moduleVersion field is the version of the described module*

The moduleInfoLength field defines the length in bytes of the moduleInfo field for the described module.

The moduleInfoByte information describes the module. In general, the information is implementation-specific. Typical
module information may include module type (e.g., non-executable, driver, application) or entry point.

The privateDataLength field defines the length in bytes of the following privateDataByte fields.

The data in the privateDataByte field is carried from the Client to the Download Server transparently. This field may
be used to carry information to enhance the information in the moduleInfo fields, or information about which of multiple
possible download connections the Client should use.

7.3.3 DownloadDataBlock
The DownloadDataBlock message shall be sent from the Download Server to the Client. It contains a single data block
of a module. The DownloadIMaBlock message is used in all download scenarios.

Table 7-7 DownloadDataBlock

Syntax Num. of Bytes
DownloadDataBlock() {

dsmccDownloadDataHeader()
moduleId
moduleVersion
reserved
blockNumber
for(i=O;icN;i++) {

blockDataByte

The moduleId field identifies to which module this block belongs.

The moduleVersion field identifies the version of the module to which this block belongs.

The reserved field is reserved by ISO/IEC 138 18-6 and shall be set to OxFF.

The blockNumber field identifies the position of the block within the module. Block number 0 shall be the first block of
a module.

The blockDataByte conveys the data of the block.

7.3.4 DownIoadDataRequest
For flow-controlled downloads, the DownloadDataRequest message shall be sent from the Client to the Download
Server. It is used to control the flow of data from the Download Server to the Client, such as commence data
transmission, to positively or negatively acknowledge data, or complete the download scenario. Sending of the
DownloadDataRequest with any reason excluding rsnEnd indicates the Client shall be ready to accept more data. The
DownloadDataRequest message is not used in the non-flow-controlled or the data carousel scenarios.

259

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 7-S DownloadDataRequest message

DownloadDataRequest() (
dsmccDownloadDataHeader()
moduleId
blockNumber
downloadReason

The composite of the moduleId and blockNumber fields provide a sequence number for the ordered delivery of data
blocks. The moduleId and blockNumber fields shall point to the next block to be received. In the flow-controlled
scenario, the sequence of the blocks in the image shall be defined by the sequence which the modules are described in
the DownloadInfoRequest message, together with the definition that the first block in a module shall be block number 0.
In the non-flow-controlled and data carousel scenarios, the sequence of blocks may be arbitrary.

The downloadReason field indicates the reason for the response. Table 7-9 defines the allowed downloadReason codes.

Table 7-9 downloadReason assignments
v

downlnsdRessnn
I

I

I Value 1 Descriution -- . . --^-----------

rsnstart
rsnAckCont

rsnNakRetransBlock

rsnNakRetransWindow

rsnEnd

. --I- 1- -----

0x00 ISO/IEC 138 18-6 reserved
0x01 Start request for download
0x02 Acknowledges reception of previous blocks and requests

continuation of transmission from indicated block
0x03 Requests re-transmission of blocks starting from indicated block

because blocks are missing
0x04 Requests re-transmission of blocks starting from indicated block

because timer tCDownloadWindow expired
0x05 End download because all blocks are successfully received

0x06 - OxEF ISOIIEC 13 8 18-6 reserved
n vn nm n- A

B
1 uxru - uxrr 1 rrivare use

In the case of the beginning of an instance of a download scenario where no block have been received, the
DownloadDataRequest message shall be sent with the downloadReason set to rsnstart, and with the moduleId and
blockNumber set to point to the first block of the image. In the case of the successful completion of a download, the
DownloadDataRequest message shall be sent with the downloadReason set to rsnEnd, and with the moduleId and
blockNumber fields set to point to the first block of the image.

7.3.5 DownloadCancel
The DownloadCancel message shall be sent by either the Client or the Download Server to abort the download scenario
in progress. The transmission of this message implies the termination of the complete download scenario. The
DownloadCancel message may be used in all download scenarios.

260

0 ISO/IEC ISO/IEC 13818-6:1998(E)

Table 7-10 DownloadCancel message

Syntax
DownloadCancel() (

dsmccMessageHeader()
downloadId
moduleId
blockNumber
downloadCancelReason
reserved
privateDataLength
for(i=O;icprivateDataLength;i++) {

privateDataByte
I

Num. of Bytes

4
2
2
1
1
2

1

The downloadId field is the identifier of the instance of the download scenario in progress. It shall be used this to
associate the DownloadCancel message to a particular download scenario in progress or data carousel.

The moduleId and blockNumber fields indicate the last processed DownloadDataBlock message at the time of the
cancel. If no data blocks have been processed, these fields shall be set to 0.

The downloadCancelReason field contains a reason code that explains the reason for the cancellation. Table 7-l 1
defines the possible downloadCancelReason codes, and which users are allowed to send these codes.

261

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

Table 7-11 downloadCancelReason assignments

downloadCancelReason

rsnScenarioTimeout
rsnInsufMem
rsnAuthDenied
rsnFata1
rsnInfoRequestError

rsnCompatError

Value
0x00
0x01
0x02
0x03
0x04
0x05

0x06

Sender Description
ISO/IEC 138 18-6 reserved

Server, Client Timer tCDownloadScenario expired
Server, Client Insufficient memory
Server Download authorization denied
Server, Client Fatal error
Server The Download Server cannot accommodate the

requested maximum blocksize or buffersize.
Server The Download Server cannot determine an

appropriate image from the

rsnUnreliableNetwork

rsnInvalidData

rsnInvalidBlock

rsnInvalidVersion

rsnAbort

rsnRetrans

rsnBadBlockSize

rsnBadWindow

rsnBadAckPeriod

rsnBadWindowTimer

rsnB adScenarioTimer

rsnBadCapabilities

rsnBadModuleTable

compatibilityDescriptor provided by the Client.
0x07 Server The Client indicated protocol settings for a

reliable download (maximumBlockSize and
buffersize set to 0 in DownloadInfoRequest) bu
Download Server has determined that the level
of service provided by the network layer is
unreliable.

0x08 Client The Client received data which did not match
the description in the moduleInfoByte fields in
the DownloadInfoResponse/
DownloadInfoIndication message.

0x09 Client The Client received a block with an invalid
moduleId or blockNumber; i.e., the value of the
moduleId and/or blockNumber are not defined
in the DownloadInfoResponsel
DownloadInfoIndication message.

OxOA Client The Client received a block with an unexpected
value of the moduleVersion field; i.e. the value
of the moduleVersion field is not equal to the
value defined in the DownloadInfoResponse!
DownloadInfoIndication message.

OxOB Client The Client aborts the download scenario in
progress

oxoc Server, Client The sender has reached the maximum number of
allowed re-transmissions.

OxOD Client The Client can not support the selected value for
blocksize.

OxOE Client The Client can not support the selected value of
windowsize.

OxOF Client The Client can not support the selected value for
a&Period.

0x10 Client The Client can not support the selected value for
tCDownloadWindow.

0x11 Client The Client can not support the selected value for
tCDownloadScenario.

0x12 Client The Client can not parse the
CompatibilityDescriptor.

0x13 Client The Client can not parse the module table.
0x14 - OxEF ISO/IEC 13 8 18-6 reserved
OXFO - OXFF Private use

The reserved field is reserved by ISO/IEC 138 18-6 and shall be set to OxFF.

262

0 ISO/IEC ISO/IEC 1381$-6:1998(E)

The privateDataLength field defines the length in bytes of the following privateDataByte fields.

The data in the privateDataByte field is carried from the Client to the Download Server or from the Download Server
to the Client transparently. For example, this message may provide more detailed, implementation-specific information
on why the download is being canceled.

7.3.6 DownloadServerlnitiate
The DownloadServerInitiate message shall be sent from the Download Server to the Client. In the flow-controlled
download scenario, it is a request to the Client to initiate a download by sending the DownloadInfoRequest message. In
the non-flow-controlled download scenario and the data carousel scenario, the DownloadServerInitiate message may be
used to inform the Client about the connection on which the DownloadInfoIndication messages are located.

Table 7-12 DownloadServerInitiate message

Syntax Num. of Bytes
DownloadServerInitiate() {

dsmccMessageHeader()
serverId 20
compatibilityDescriptor()
privateDataLength 2
for(i=O;i<privateDataLength;i++) {

privateDataByte 1
~
I 1

The serverId is the globally unique OS1 NSAP address of the Download Server to which the Client sends a
DownloadInfoRequest, if appropriate. Note the OS1 NSAP format enables the use of many different types of lower level
network addresses. Therefore, this field is used for the same purpose even when the Download protocol is used outside
the context of a User-Network session.

The compatibilityDescriptor as defined in clause 6. The Download Server may use this structure to indicate for which
Clients the message is appropriate. This field is used by the Client to determine whether subsequent actions are
appropriate. This structure may also be used to inform Clients that they should listen for the DownloadInfoIndication
message or send a DownloadInfoRequest.

The privateDataLength field defines the length in bytes of the following privateDataByte fields.

The data in the privateDataByte field is carried from the Download Server to the Client transparently. For example,
this message could provide implementation-specific information on why the Download Server wishes the Client to
initiate a download. Alternatively, this field may contain information about where the associated
DownloadInfoIndication messages are located.

7.4 Message Sequence for Flow-Controlled Download Scenario
Figure 7-5 illustrates the message exchanges for the flow-controlled download scenario.

263

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Client Server

Figure 7-5

DownloadInfoRequest

DownloadInfoResponse
. 2

DownloadDataRequest

DownloadDataBlock

4

DownloadDataRequest

DownloadDataBlock

6

DownloadDataRequest (rsnEnd)

Iessage sequence for flow-controlled download scenario.

7.4.1 Getting Download Protocol Parameters
Step 1 (Client):

As the first step in the flow-controlled download scenario, the Client and Download Server exchange basic parameter
information to be used during the download. The Client initiates this information exchange by sending the
DownloadInfoRequest.

The Client provides a maximumBlockSize and the buffersize available for receiving download data without requiring
the Download Server to pause while waiting for an acknowledgment.

Step 2 (Server):

The Download Server sends a DownloadInfoResponse message that includes downloadId, blocksize, WindowSize,
a&Period, tCDownloadScenario, and the module table. The downloadId shall be used to correlate the subsequent
DownloadDataBlock messages to this download. The Download Server shall select a blockSize and windowsize that
meet the requirements:

1. blocksize <= maximumBlockSize
2. windowsize * blocksize <= buffersize

The a&Period shall be less than or equal to the windowsize. An a&Period less than the windowsize allows the Client
to send an acknowledgment before the Download Server stalls due to a full window. A larger a&Period reduces the
acknowledgment traffic back to the Download Server. Two suggestions for choosing windowsize and a&Period are:

1. (windowsize - a&Period) < (a&Latency * transferRate / blocksize)
2. a&Period > (ackLatency * transferRate / blockSize)

The a&Latency represents the delay (seconds) to send an acknowledgment through the network and the Client and
Download Server protocol stacks. The transferRate is the expected average delivery rate (bytes/second) that the
Download Server would provide if it did not have to wait for acknowledgments. The term (a&Latency * transferRate /
blocksize) is the expected number of blocks that the Download Server could send during the period that an
acknowledgment is delivered. The first suggestion says that an acknowledgment may be sent in advance of the window
being filled such that the acknowledgment may be received before the Download Server stalls because the window shall
be full. The second suggestion says that acknowledgments are not sent any more often than the period that it takes to

264

0 ISQ/IEC ISO/IEC 13818=6:1998(E)

deliver an acknowledgment. There are other reasons, such as burden on the Download Server and network to handle
acknowledgments, to make the a&Period even larger than the second suggestion.

The module table is a list of modules. The table is needed to know how many modules are in the image and the number
of blocks that are in each module. This information is needed to interpret the moduleId and blockNumber fields in the
DownloadDataBlock and DownloadDataRequest messages. In particular, this information is needed to know when the
download is complete.

tCDownloadScenario shall be selected by the Download Server such that it is larger than the longest period required for
a successful download. The expected download time is the expected bit rate times the image size if transmission errors
are not accounted for. The Download Server shall use some conservative estimate of bit rate such that the download will
not time-out needlessly during an otherwise successful download.

7.4.2 Starting Download
Step 3 (Client):

Once the Client receives the DownloadInfoResponse message, the Client typically would allocate memory for each of
the modules in the image. Since in some systems the allocation of memory can take a substantial amount of time, the
Download Server shall not start the download until the initial DownloadDataRequest with the downloadReason set to
rsnstart is sent by the Client and received by the Download Server.

Step 4 (Server):

Upon receiving the DownloadDataRequest with the downloadReason set to rsnstart from the Client, the Download
Server starts with the transmission of the first block of the image. The Download Server shall send the modules in the
order in which the modules are described in the module table in the DownloadInfoResponse message. The Download
Server shall send the data blocks within a module in order, with the first block having blockNumber set to 0. Therefore,
the first block of the image shall be the first block of the first described module in the DownloadInfoResponse message,
followed by the second block of the first described module in the DownloadInfoResponse message. The Download
Server will stall the transmission of the blocks when it has filled the transmission window.

7.4.3 Acknowledgments
Step 5 (Client):

If the Client has successfully received and stored a&Period blocks, it transmits an acknowledgment to the Download
Server. An acknowledgment shall be sent at least once per windowsize blocks. The acknowledgment is implemented by
the DownloadDataRequest message with the downloadReason set to rsnAckCont and the moduleId and blockNumber
fields set to point to the next block to be received. Note the importance of having stored the blocks before sending an
acknowledgment, since the acknowledgment implies that the Client is ready to receive windowsize blocks beyond the
acknowledged block. In other words an acknowledgment advances the window to windowsize blocks beyond the
acknowledged block. Figure 7-6 shows a simple example of DownloadDataRequest messages used in a flow-controlled
download with a&Period equal to 3. The example uses shorthand of ack(0,3) indicating a DownloadDataRequest
message with downloadReason rsnAckCont, moduleId of 0, and blockNumber of 3.

Modules

01234012010012 Blocks

I I I I
ack(0,3) ack(1,l) ack(2,l) ack(4,l)

start(O,O) end(O,O)

Figure 7-6 Example flow-controlled download

265

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

A negative acknowledgment shall be sent by the Client to the Download Server if a block is received that is not the next
expected in sequence block of the image. The negative acknowledgment is implemented by the DownloadDataRequest
message with the downloadReason set to rsnNakRetransBlock and the moduleId and blockNumber fields point to the
next expected block of the image. This negative acknowledgment indicates that the block pointed to has not been
received correctly and needs to be retransmitted.

A negative acknowledgment shall also be sent by the Client to the Download Server if the tCDownloadWindow timer
expires as described in subclause 7.4.4. The negative acknowledgment is implemented by the DownloadDataRequest
message with the downloadReason set to rsnNakRetransWindow and the moduleId and blockNumber fields point to the
next expected block of the image.

The Download Server, upon receiving a DownloadDataRequest with downloadReason set to rsnNakRetransWindow or
rsnNakRetransBlock, shall resume sending at the block that is pointed to by the moduleId and blockNumber in the
DownloadDataRequest. A negative acknowledgment implicitly is an acknowledgment for the block just before the block
pointed to in the negative acknowledgment.

Step 6 (Server):

Upon receiving the DownloadDataRequest message from the Client, the Download Server advances the window to
windowsize blocks beyond either the explicitly acknowledged block from a positive acknowledgment or the implicitly
acknowledged block from a negative acknowledgment. It then resumes the transmission of the blocks starting from the
block that was pointed to by the DownloadDataRequest message. The Download Server will stall the transmission again
when the updated transmission window is full.

Step 7 (Client):

When the last block of the last module has been successfully received, the Client shall immediately, regardless of the
a&Period, send a DownloadDataRequest message with the downloadReason set to rsnEnd. The moduleId and
blockNumber fields of this message shall point to the first block of the image.

7.4.4 Timers and Re-transmission
The Download protocol employs two classes of re-transmission schemes. All of the download control messages use the
DSM-CC message header and are therefore able to take advantage of the standard timer/i-e-transmission schemes like all
other U-N messages. The download data messages, however, require an additional timer/re-transmission scheme since
the message flow is more than just a single request and response message pair.

The Client uses two timers for the download data messages; tCDownloadWindow and tCDownloadScenario. The
Download Server uses one timer for the download data messages; tSDownloadScenario.

The tCDownloadScenario timer shall be used to time-out the entire download procedure. The Download Server shall
provide the value of the timer in the DownloadInfoResponse message. This timer is useful for the Client to detect severe
failures, such as the Download Server not responding during the download. When the Client sends the initial
DownloadDataRequest message, the Client starts the tCDownloadScenario timer. If this timer expires, the Client shall
abort the download, and send a DownloadCancel message with the downloadCancelReason set to rsnScenarioTimeout
to the Download Server, and cancel the tCDownloadWindow timer. After the download has timed out, the Client, shall
discard any download messages from the Download Server that have the downloadId equal to the canceled download.
The Client may retry the download by sending a DownloadInfoRequest message.

Upon receipt of the initial DownloadDataRequest message, the Download Server shall start the tSDownloadScenario
timer. This timer shall be used to time-out the entire download procedure. Similar to the corresponding timer on the
Client, if this timer expires the Download Server shall send a DownloadCancel with the downloadCancelReason set to
rsnScenarioTimeout to the Client. The Download Server may then flush any state associated with this download and
discard any further messages received with the downloadId equal to the canceled download.

The tCDownloadWindow timer shall be used to time-out acknowledgments. The Download Server shall provide the
value for this timer in the DownloadInfoResponse message. This timer is useful for the Client to detect that an
acknowledgment was not received by the Download Server. When the Client sends the DownloadDataRequest message
with a downloadReason equal to rsnstart, rsnAckCont, rsnNakRetransBlock, or rsnNakRetransWindow, the Client starts
or restarts the tCDownloadWindow timer. If this timer expires, then the Client shall send a DownloadDataRequest with
downloadReason set to rsnNakRetransWindow to the Download Server, and also restart the tCDownloadWindow timer
again. The timer can time-out repeatedly, and each time the DownloadDataRequest with downloadReason set to

266

0 ISO/IEC ISO/IEC 13818=6:1998(E)

rsnNakRetransWindow would be resent. Eventually, however, this process will end because time will exceed the
maximum value of the tCDownloadScenario timer. This timer shall be used to detect severe failures. After a number of
If the Client ends the download by sending the DownloadDataRequest with downloadReason set to rsnEnd, the Client
shall stop the tCDownloadWindow timer.

7.4.5 Abort
Either the Client or the Download Server can abort the download scenario in progress by sending a DownloadCancel
message. Some potential reasons for an abort are:

1. Download Server responds with an invalid blocksize, windowsize or a&Period in DownloadInfoResponse.
2. Client runs out of memory during download.
3. Client receives modules which are inconsistent with the module table in the DownloadInfoResponse either because

the moduleId, blockNumber, or moduleVersion fields are not equal to their counterparts in the
DownloadInfoResponse message, or because the received data does not match the description given by modulesize
and the data in the moduleInfoByte fields.

4. The end-user at the Client side decides to abort the download procedure.

7.4.6 Flow-Controlled Scenario over Reliable Transport
The download protocol may be implemented on top of either a reliable or unreliable network transport layer. In the
scenario of a reliable network, certain optimizations may be made. For a definition of a reliable transport layer, see
clause 1 and clause 9. These optimizations rely on the underlying reliable protocol providing acknowledgments and flow
control. In this scenario, when the Client sends a DownloadInfoRequest message, the maximumBlockSize and
buffersize fields shall be set to 0. In turn, the Download Server shall set the windowsize and a&Period fields to 0 in the
DownloadInfoResponse message. If these fields are set to 0, the Client shall not send DownloadDataRequest messages
to the Download Server.

7.5 Message Sequence for Data Carousel Scenario
Figure 7-7 illustrates the message exchanges for the data carousel scenario.

Client Server

DownloadInfoIndication
1

DownloadDataBlock

DownloadDataBlock

Figure-7-7 Message sequence for data carousel scenario,

7.5.1 Getting Data Carousel Parameters
Step 1 (Server):

The Download Server sends periodic DownloadInfoIndication messages on the ControlDown flow. In the
DownloadInfoIndication message, the transactionId in the dsmccMessageHeader shall be used as a versioning
mechanism. The Download Server shall set the transactionId field to an arbitrary value, and continue to use that value
for each transmission of the DownloadInfoIndication, as long as the entire DownloadInfoIndication message remains
unchanged. If any field of the DownloadInfoIndication message is modified, then transactionId shall be incremented,

267

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

modulo the field size of transactionId. The downloadId correlates the DownloadInfoIndication messages with their
corresponding download scenario in progress.

The data in the DownloadInfoHndication message may be used by the Client to determine which, if any, of the described
modules are appropriate for the Client. The downloadId shall be used to associate the subsequent DownloadDataBlock
messages with the data carousel. The Download Server shall select a value of downloadId that is unique within the scope
of the ANetwork. The tCDownloadScenario field shall be set to a value greater than or equal to the time for one full
rotation of the carousel. The modules described in one DownloadInfoIndication message may be a subset of all the
modules that are cyclically transmitted by the Download Server.

Step 2 (Client):

The Client receives basic information about the data carousel from the Download Server through a
DownloadInfoIndication message on the ControlDown flow. Once the Client has acquired the DownloadInfoIndication
message, it may discard future DownloadInfoIndication messages with the same transactionId. When the Server updates
the content of the data carousel, it will send a new DownloadInfoIndication message with a new transactionId, which
may invalidate previous DownloadInfoIndication messages.

The data in the DownloadInfoIndication message may be used by the Client to determine which, if any, of the described
modules are appropriate for the Client. The algorithm by which this determination is made is outside the scope of this
part of ISO/IEC 13818.

7.5.2 Starting Acquisition and Module Re-Assembly
Step 3 (Client):

Clients will typically retrieve only a subset of the described modules from the data carousel. Upon receiving the
DownloadInfoIndication message, the Client typically would allocate memory for each of the desired module. To
acquire a particular module, the Client shall look for the DownloadDataBlock messages on the DataDown flow.

The fixed blocksize and the module table in the DownloadInfoIndication message enable the Client to start receiving
data out of sequence during a non-flow-controlled or data carousel download. The Client may even begin receiving data
if it starts listening in the middle of a module. To do so, the Client may choose to track which blocks from the desired
modules have been received using a scoreboard or a similar method.

7.5.2.1 Pseudo-Code Example of Module Re-assembly
Below is some simple pseudo code that demonstrates how a scoreboard may work. This code does not show all the
detail of a full implementation and is not normative.

Fields from DownloadInfoIndication used in the pseudo code example:
blocksize
numberOfModules
moduleId[]
moduleSize[]
moduleInfoByte[]

268

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Variables:
m-4
Wml

ml
SB b-4
Nml
w-ml [bl
SBI
RBI

moduleId of module m (in array of size numberOfModules)
Boolean for each module to indicate whether the Client needs to download
this module

size in bytes of module with moduleId m
size in blocks of module with moduleId m
address in memory where block is to be stored
Boolean for each block of image to indicate if received yet
total number of blocks in the image
number of received unique blocks

Initialization:
SBI=RBI=O;
for(m=O; m<numberOfModules; m++) {

Mb1 = moduleId[ml;
if(CLIENT WANTS MODULE(moduleInfoByte[m])) { - -

W[m] = 1;
S [ml = moduleSize[m];
Ah--d = ALLOCATE-MEMORY(S[m]);
SB [ml = (S[m] + blocksize - 1) / blocksize;
SBI += SB[m];
for(j=O; j<SB[m]; j++)

Rhl [jl = 0;
1
else {

W[m] = 0;
>

1

‘or each block received (moduleId, blockNumber):
RECEIVE~BLOCK(moduleId,blockNumber);
b= blockNumber;
m = MODULEID~TO~INDEX(moduleId, M[I);
if(W[m] &&!R[m][b] > {

R[m][b] = 1;
STORE BLOCK(A[m] + b * blocksize); -
RBI++;
if(RB1 == SBI)

DOWNLOAD-DONE;
1
else {

DISCARD-BLOCK;
1

The array SB[m] used in the example above is also useful for the flow-controlled download scenario to track which
blocks have been received to generated an acknowledgment.

7.5.3 Timers
Step 3 continued (Client):

The tCDownloadScenario shall be used in the data carousel scenario to time-out the acquisition of a module. The timer
shall started when the Client first starts looking for the DownloadDataBlock messages of the module.

269

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

7.5.4 Module Coherency
Step 4 (Server):

The Download Server shall cyclically transmit the blocks of all modules in the data carousel on the DataDown flow. The
Download Server may transmit the modules and blocks in arbitrary order.

Note that the downloadId field of the DownloadDataBlock messages is not intended to enable multiplexing. It is
assumed that some other method exists for the Client to efficiently filter the blocks of the from the desired image from
the connection. If MPEG-2 Transport Streams are used, then all the blocks of one data carousel shall be carried in
Transport Stream packets with the same PID (see clause 9).

Each module has a version associated with it. This version shall be carried in the version fields of the module table in
the DownloadInfoIndication message. The version provides Clients a means to detect module coherency problems. Such
problems may happen when a module is updated while a Client has a download scenario in progress. If the Client
detects that the version of a particular block does not correspond with the version of the module received in the
DownloadInfoIndication message, then a coherency problem has been detected and the acquisition shall be aborted.

7.5.5 Data Delivery Rate
In the case that the DownloadDataBlock messages are not encapsulated in an MPEG-2 Transport Stream, the method of
controlling rate is outside the scope of this part of ISO/IEC 138 18.

In the case that the DownloadDataBlock messages are encapsulated in an MPEG-2 Transport Stream, the message
delivery shall be regulated by the Transport Stream System Target Decoder (T-STD) model defined in subclause 2.4.2
of ISO/IEC 138 18- 1 (MPEG-2 Systems). The specification of the leak rate from the Transport buffer is outside the
scope of this part of ISO/IEC 138 18, but implementations may use the target values tabulated in Table 7-13.

Table 7-13 Download Leak Rates assignments
\

Leak Rate Class Download T-STD Leak Rate (Rx~) I
A 0.10 Mbit/s
B 0.40 Mbit/s
C 0.80 Mbit/s
D 1.60 Mbit/s
E 3.20 Mbit/s
F 6.40 Mbit/s
G 9.60 Mbit/s
H 12.80 Mbit/s
I 25.60 Mbit/s /

The communication of the leak rate class from the Download Server to the Client is outside the scope of this part of
ISO/IEC 138 18. A typical implementation may convey this parameter in the compatibilityDescriptor defined in clause 6.

7.6 Message Sequence for Non-Flow-Controlled Download Scenario
The message sequence for the non-flow-controlled download scenario is similar, but not identical, to the message
sequence of the data carousel scenario. There are small differences between these scenarios because the non-flow-
controlled download scenario is dedicated to downloading a complete image to the Client, where the data carousel
scenario merely involves the cyclic transmission and reception of modules. Figure 7-8 illustrates the message exchanges
for the non-flow-controlled download scenario.

270

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Client Server
DownloadInfoRequest 1 ,.___._.._________....------.-- ---*----------*---*--- ---a--.

DownloadInfoResponse or
DownloadInfoIndication 1 2

3
I DownloadDataBlock I

DownloadDataBlock

111111. Indicates optional message flow

Figure 7-8 Message sequence for non-flow-controlled download scenario.

7.6.1 Getting Download Protocol Parameters
The non-flow-controlled scenario may start with the DownloadInfoRequest message sent from the Client to the
Download Server on the ControlUp flow. In this case, the Download Server replies with the DownloadInfoResponse
message to the Client on the ControlDown flow.

Alternatively, the Client need not issue the DownloadInfoRequest message. Instead, the non-flow-controlled scenario
may start with the Client’s receiving of a DownloadInfoIndication message on the ControlDown flow.

The DownloadInfoResponse/DownloadInfoIndication message contains valid downloadId, blocksize,
tCDownloadScenario fields and describes all the modules of the image. The message may contain a
compatibilityDescriptor, which the Client may use to determine if the described image is appropriate.

The Download Server cyclically transmits the blocks of all the modules of the image. The Download Server may
transmit the modules and blocks in arbitrary order.

7.6.2 Image Assembly and Coherency
Upon receiving the DownloadInfoResponse/DownloadInfoIndication message, the Client typically would allocate
memory for each of the modules in the image. Subsequently, it will look for DownloadDataBlock messages on the
DataDown flow.

The fixed blocksize and the module table in the DownloadInfoResponse/DownloadInfoIndication message enable the
Client to start receiving data out of sequence. The Client may even begin receiving data if it starts listening in the middle
of a module. To do so, the Client may choose to track which blocks from the desired modules have been received using
a scoreboard or a similar method. A pseudo-code example of such an algorithm is shown in subclause 7.5.2.1.

7.6.3 Timers
The tCDownloadScenario shall be used to time-out the acquisition of the image. The timer shall be started when the
Client first starts looking for the DownloadDataBlock messages.

7.7 Protocol State Machines for flow-controlled download scenario
This subclause defines the protocol state machines for the Download Server and the Client for the flow-controlled
download scenario. State machines are not specified for the non-flow-controlled download scenario and the data
carousel scenario; however, part of the state machine for the flow-controlled download scenario shall be used when the
DownloadInfoRequest message is used within the non-flow-controlled download scenario (see subclause 7.6).

271

ISO/IEC 13$18=6:1998(E) 0 ISO/IEC

7.7.1 State Variables common to Client and Download Server

7.7.1 .I Service Type: reliableService, unreliableService
These are predicate variables whose values are known a priori. Only one may be TRUE for any flow-controlled -
download.

7.7.1.2 Download configured buffersize: buffersize
This is the buffersize as reported by the Client in the DownloadInfoRequest message.

7.7.1.3 Download configured maximumBIockSize: blocksize
This is the maximumBlo&Size as reported by the Client in the DownloadInfoRequest message.

7.7.1.4 Download Identifier: Did
This is the downloadId allocated by the Server. For a Client this value is obtained from the downloadId field as reported
by the Download Server in the DownloadInfoResponse message.

7.7.1.5 Download negotiated blocksize: Did.blockSize
This is the negotiated blocksize for this download session.

7.7.1.6 Download negotiated windowsize: Did.windowSize.
This is the windowsize as reported by the Download Server in the DownloadInfoResponse message.

7.7.1.7 Download negotiated Acknowledgment Period: Did.ackPeriod.
This is the a&Period value as reported by the Download Server in the DownloadInfoResponse message<

7.7.1.8 Download negotiated Window Timer: Did.tWindow
This is the window timer. Its value is reported by the Download Server in the DownloadInfoResponse message as
tCDownloadWindow.

7.7.1.9 Download negotiated Scenario Timer: Did.tScenario
This is the scenario timer. Its value is reported by the Download Server in the DownloadInfoResponse message as
tCDownloadScenario.

7.7.1 .I 0 Download negotiated compatibilities: Did.compatibilities
This is the compatibilities structure for the Download image.

7.7.1 .I 1 Download Number of Modules: Did.numModules
The number of modules in the module list as reported by the Download Server in the DownloadInfoResponse message.

7.7.1 .I 2 Download Module Identifier: Did.moduleld
There is one Did.moduleId variable for each moduleId value in the module list as reported by the Download Server in
the DownloadInfoResponse message.

272

0 ISO/IEC ISO/IEC 13818=6:1998(E)

7.7.1 .I 3 Download Module Version: Did.moduleld.version
The moduleVersion for the corresponding moduleId in the module list as reported by the Download Server in the
DownloadInfoResponse message.

7.7.1 .I4 Download Module Size: Did.moduleld.moduleSize
The size, in bytes, of the module for the corresponding moduleId in the modules list as reported by the Download Server
in the DownloadInfoResponse message.

7.7.1 .I 5 Download Expired downloadld Holding timer: Did.tHold
This is the holding timer used to retire downloadIds once they are moved to the DSExpire or DCExpired state. The
purpose of this timer is to prevent premature reuse of downloadId values.

7.7.2 Client-only State Variables

7.7.2.1 Download Lower Receive Window Edge: Did.Nmoduleld, Did.NblockNum.
These two variables work in conjunction to indicate the block to be received next. It is understood that all blocks before
the indicated block have been received and loaded into memory.

7.7.2.2 Number received blocks: Did.Nblock.
The Client maintains this variable to count the number of received blocks after it has send a DownloadDataRequest
message. The Did.Nblock variable is used to determine when the next DownloadDataRequest message has to be send.

7.7.2.3 Acknowledgment threshold: Did.AckThreshoId.
This variable is the threshold value used by the Client to determine when a new block has to be send. The Download
Server provides a hint for this variable in the form of Did.AckThreshold.

7.7.3 Server-only State Variables

7.7.3.1 Lower Transmit Window Edge: Did.Lmoduleld, Did.LblockNum
These two variables work in conjunction to identify the block to be sent next by the Download Server

7.7.3.2 Upper Transmit Window Edge: Did.Umoduleld, Did.UblockNum
For an unreliableService, these two variables work in conjunction to identify the upper credit window on a send. The
Server may send up to this window edge without receiving an acknowledgment.

7.7.3.3 Data Sending Rate Timer: Did.tSend
This variable is used to model the periodic sending of blocks at some given rate. In actual implementations this
functionality may be performed using another method.

7.7.4 Client Conditions

7.7.4.1 Invalid Serverld
The Client could not parse or understand the ServerId field.

273

ISO/IEC 1381S=6:1998(E) 0 ISO/IEC

7.7.4.2 Number of re-transmission exceeded
The Client has reached the maximum allowed number of re-transmissions for the DownloadInfoRequestMessage.

7.7.4.3 Unacceptable blocksize
For an unreliableService, blocksize has to be smaller than or equal to maximumBlockSize sent in the
DownloadInfoRequest message. For a reliableservice, blockSize shall be 0. Otherwise, blocksize is unacceptable.

7.7.4.4 Unacceptable WindowSize
For an unreliableService, windowsize shall be larger than or equal to the a&Period. For a reliableservice, windowsize
shall be 0. Otherwise, windowSize is unacceptable.

7.7.4.5 Unacceptable Acknowledgment Period
For an unreliableService, a&Period shall be smaller than windowsize. For a reliableservice, the a&Period shall be 0.
Otherwise, a&Period is unacceptable.

7.7.4.6 Unacceptable Window Timer
For a reliableservice, the tCDownloadWindow field shall be 0. Otherwise, it is unacceptable.

7.7.4.7 Unacceptable Scenario Timer
For an unreliableservice, the value of the tCDownloadScenario field shall be larger than or equal to
tCDownloadWindow. Otherwise, it is unacceptable for an unreliableservice.

7.7.4.8 Unacceptable Compatibilities
The compatibilities field could not be parsed by the Client or the Client did not match the description in the
compatibilityDescriptor.

7.7.4.9 Unacceptable Module Table
The module table fields in the message are either improperly formatted or contain modules whose version, size or
module information is unacceptable to the Client.

7.7.4.10 Acknowledgment period full
The acknowledgment period full condition becomes true when the Did.Nblock variable is equal to or exceeds the
Did.AckThreshold variable: Did.Nblock >= Did.AckThreshold.

The value of the threshold is a local Client matter but the value shall not be larger than Did.windowSize. The Download
Server provides a hint for the threshold by means of the a&Period field in the DownloadInfoResponse message. If this
value is used the threshold shall be Did.ackPeriod.

7.7.4.11 Download complete
The last block of the last module of the image has been received and therefore the download is complete.

7.7.5 Download Server Conditions

7.7.5.1 Unacceptable maximumBlockSize
For a reliableservice, the maximumBlockSize shall be 0. For an unreliableservice, the maximumBlo&Size shall not be
0. Otherwise, it is invalid.

274

0 ISOIIEC ISO/IEC 13818=6:1998(E)

7.7.5.2 Unacceptable buffersize
For a reliableservice, the buffersize shall be 0. For an unreliableservice, the buffersize shall not be 0. Otherwise, it is
invalid.

7.7.5.3 Unacceptable Compatibilities
The compatibilities structure of the DownloadInfoRequest message could not be interpreted by the Server.

7.7.6 Client Procedures

7.7.6.1 Initial Setup of State Variables
Prior to sending the DowloadInfoRequest message to the Download Server:
l blocksize is set to the maximum allowed block size for the Client.
a buffersize is set to the buffer size allowed by the Client before flow control.
0 If this is a reliableService, then blocksize and buffersize shall be set to 0.

Upon receipt of a valid DownloadInfoResponse message from the Download Server:

0

0

0

Did is set to the downloadId field.
Did.blockSize is set to the blocksize field.
Did.ackPeriod is set to the a&Period field.
Did.tWindow is set to the tCDownloadWindow field.
Did.tScenario is set to the tCDownloadScenario field.
Did.compatibilities is set to the Compatibilities field.
The Module Directory is setup:
0 Did.numModules is set to the numberOfModules field.
0 A Did.moduleId is set to the moduleId field for each module in the Message.
a A Did.moduleId.version is set to the moduleVersion field for each module in the Message.
0 A Did.moduleId.moduleSize is set to the modulesize field for each module in the Message.
The lower receive window edge is initialized:
0 Did.NmoduleId is set to the first module of the module list.
0 Did.NblockNum is set to 0.
Did.Nblock is set to zero.
Did.AckThreshold is set to a value less than or equal to windowsize (preferably Did.ackPeriod).

7.7.6.2 Sending DownIoadDataRequest Messages
When sending a DownloadDataRequest message:

0 the value of the downloadReason field is indicated as DwnDataReq:reason.
0 the value of the moduleId field is Did.NmoduleId
a the value of the blockNumber field is Did.NblockNum

Did.tWindow is restarted once the message is sent.

7.7.6.3 Sending DownloadCancel Messages
When sending a DownloadCancel message the value of the downloadCancelReason field is indicated
DwnCancel:reason.

7.7.6.4 Increment Lower Receive Window Edge
Incrementing the Lower Receive Window Edge is done as follows:

Did.NblockNum = Did.NblockNum + 1

275

ISOJIEC 13818-6:1998(E) 0 ISOIIEC

if Did.NblockNum == number of Blocks in Did.NmoduleId then

1 Did.NmoduleId = next module of module list

Did.NblockNum = 0

where number of blocks in module = (Did.moduleId.moduleSize + (Did.blockSize - l))/Did.blockSize.

When a DownloadDataBlock message is received which has moduleId and blockNumber fields that point to a block
after the expected block (as indicated by Did.NmoduleId and Did.NblockNum), then this is an out of sequence block
and a DownloadDataRequest message with reason of rsnNakRetransBlock shall be sent to the Download Server. If a
DownloadDataBlock message is received which has moduleId and blockNumber fields that point to a block before the
expected block then this is a duplicate message and it shall be discarded without error and without updating the lower
receive window edge.

When the lower receive window edge is equal to the last block of the last module and this block is received then the
download of the image is complete.

7.7.6.5 Increment block counter
For unreliableService, incrementing the received Block Counter is:

Did.Nblock = Did.Nblock + 1

7.7.6.6 Transition to DCExpire State
Whenever the state machine transitions to the DCExpire state the following actions shall automatically be performed in
addition to any other actions that may be listed in the Actions section of the table:

0 All timers shall be stopped.
0 All unneeded memory shall be de-allocated.
0 Did.tHold timer is set. The value is a local matter.

7.7.7 Download Server Procedures

7.7.7.1 Initial Setup of State Variables
The state variables shall be setup according to the following criteria:

0 A unique downloadId value shall be allocated and assigned to Did.
0 Did.blockSize is set from the calculated blocksize value.
0 Did.bufSize is set from the received buffersize value.
0 Did.compatibilities is set from the calculated compatibilities value.
0 Did.windowSize is set from the calculated value.
0 Did.ackPeriod is set from the calculated value.
0 Did.tScenario is set from tSDownloadScenario.
0 Did.numModules is set from download image information.
0 Each Did.moduleId is set from the download image information.
0 Each Did.moduleId.version is set from the download image information.
0 Each Did.moduleId.moduleSize is set from the download image information.
0 Did.LmoduleId is set to the first module of the module list and Did.LblockNum is set to 0. ’
0 Did.UmoduleId and Did.UblockNum are set in accordance with the procedures stated in this subclause.

After receiving the DownloadInfoRequest message the Server shall calculate blocksize, windowsize, a&Period,
compatibilities, and tCDownloadScenario values based upon the received maximumBlockSize, buffer-size, and possibly
compatibilities information. The actual methods used to calculate these values is a local matter and beyond the scope of
this recommendation.

If this is a reliableservice, windowsize, a&Period, tCDownloadWindow and tCDownloadScenario shall all be 0.

276

0 ISOIIEC ISO/IEC 13818=6:1998(E)

The blocksize shall be smaller than or equal to maximumBlockSize.

7.7.7.2 Increment Lower Transmit Window Edge
The lower transmit window edge is set upon receipt of a valid DownloadDataRequest message as follows:

Did.LmoduleId = moduleId

Did.LblockNum = blockNumber

To increment the lower transmit window edge:

Did.LblockNum = Did.LblockNum + 1

If Did.LblockNum == number of blocks in module Did.LmoduleId then

DidLmoduleId = next module of module list

Did.LblockNum = 0

where number of blocks in module = (Did.moduleId.moduleSize + (Did.blockSize - l))/Did.blockSize.

7.7.7.3 Set Upper Transmit Window Edge
The upper transmit window edge is set upon receipt of a valid DownloadDataRequest message by adding
Did.windowSize to the newly received lower transmit window edge values and adjusting this to the appropriate
moduleId and blockNum value accounting for the number of blocks in each module. If this edge exceeds the end of the
image then Did.UmoduleId is set to the last module of the image Did.UblockNum is set to 0.

7.7.7.4 Sending DownloadDataBlock Messages
Each DownloadDataBlock message is constructed from the block at the current lower transmit window edge, i.e.
Did.LmoduleId, Did.LblockNum.

If this is an unreliableservice, up to the full credit window may be sent at a time (i.e. from lower transmit window edge
to upper transmit window edge) depending upon local implementation decisions. The number of blocks sent is then
added to the lower transmit window edge. The state variable Did.tSend is used to initiate and clock the sending of data
blocks in this state machine. It should be noted that this is simply a formal abstraction of the actual process and
implementations may perform this action using other methods as long as they comply to the behavior of this protocol.

7.7.7.5 Sending DownloadCancel Messages
When sending a DownloadCancel message the value of the reason field is indicated as DwnCancel:reason.

7.7.7.6 Transition to DSExpire State
Whenever the state machine transitions to the DSExpire state the following actions shall automatkally be performed in
addition to any other actions that may be listed in the Actions section of the table:

a All timers shall be stopped.
0 All unneeded memory shall be de-allocated.
0 DidtHold timer is set. The value is a local matter.

7.7.8 State Machine SDL
State machines are described using the Specification and Description Language, in Normative Annex A.

7.8 Partial Protocol State Machines for non-flow-controlled download scenario
When the DownloadInfoRequest message is used within the non-flow-controlled download scenario, then the following
state machines are mandatory for the Client and the Server. The Client state-machine shall be equal to the flow-
controlled scenario, except that the DCActiveUnr and DCActiveRel states may and should be replaced by

277

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

implementation specific states that acquire the blocks from the non-flow-controlled DataDown flow. The Server state-
machine shall be equal to the state-machine for the flow-controlled case, except that the states WFStart and DSActive
may and should be replaced by implementation specific states that transmit the blocks to the Clients.

If the DownloadInfoRequest message is not used for the non-flow-controlled download scenario, both the state machines
for the Client and the Server may be implementation specific.

278

0 ISO/IEC ISO/IEC 13818=6:1998(E)

8. Stream Descriptors
Stream descriptors may be used to provide DSM-CC information that is correlated with a MPEG-2 Transport Stream or
Program Stream. These descriptors are in the format of Program and Program Element Descriptors as defined in
ISO/IEC 138 18- 1. Four DSM-CC stream descriptors are defined within the MPEG-2 Systems descriptor tag table.
Table 8-1 contains the descriptor tag assignments and, for reference purposes, lists the assignment space-for the MPEG-
2 Systems defined values. For details of the MPEG-2 Systems defined values, see ISO/IEC 13818-1, Table 2-39,
Program and program element descriptors. Note also that DSM-CC defines other descriptor tags in this space.

Table 8-l MPEG-2 Systems descriptor - tag assignments for DSM-CC
\ \

descriptor tag descriptor - tag TS TS PS PS DSMCC Section Type DSMCC Section Type
O-18 -

1 1 1
n/a n/a ITU-T Rec. H.222.0 1 ISO/IEC 13818-1 defined O/IEC 13 8 18- 1 defined

19 19 X X X X DSM-CC carousel-identifier-descriptor (see clause 11, Object Carousel) DSM-CC carousel-identifier-descriptor (see clause 11, Object Carousel)
20 20 X X X X DSM-CC association-tag-descriptor (see clause 11, Object Carousel) DSM-CC association-tag-descriptor (see clause 11, Object Carousel)
21 21 X X X X DSM-CC deferred association DSM-CC deferred association - - - - tags-descriptor tags-descriptor

(see clause 11, Object Carousel) (see clause 11, Object Carousel)
3’) 22 X V v X rSn/rFC 138 18-6 reserved ISO/IEC 138 18-6 reserved
23 X X NPT Reference descriptor erence descriptor
24 X X NPT Endpoint descriptor
25 X X Stream Mode descriptor
26 X X Stream Event descriptor

27-63 n/a n/a ITU-T Rec. H.222.0 1 ISO/IEC 138 18- 1 defined
64-255 n/a n/a User Private per ITU-T Rec. H.222.0 1 ISO/IEC 138 18-1

8.1 Normal Play Time
Normal Play Time (NPT) is a continuous timeline over the duration of an event. An event is defined in ISO/IEC 138 1%
1 as a collection of elementary streams with a common time base, an associated start time, and an associated end time. A
typical, but not normative example, is a single television show including the audio and the video.

The NPT refers to the real time of the event. For example, when an event is presented in reverse, the NPT counts down
rather than up, and when an event is presented at 10 times the normal rate, the NPT progresses at 10 times the normal
rate. In this way, NPT increases and decreases in a way similar to a counter on a video tape recorder. The NPT provides
an absolute timeline to which references can be made for operations such as jumping to a particular point in the event.

The System Time Clock (STC) of a stream, recovered from the MPEG-2 Transport Stream Program Clock Reference
(PCR), alone does not provide an adequate mechanism to determine the NPT of an event. One problem is that the STC
always moves forward at the normal rate regardless of the presentation direction and speed of the event. A second
problem is that the STC may be discontinuous over the course of the event, leading to possible situations where a given
STC time occurs at more than one point in an event.

8.1 .I NPT Reference Descriptor
To enable the determination of the NPT time of an event, the NPT Reference Descriptor is defined. The format of the
NPT Reference Descriptor is shown in Table 8-2.

279

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table S-2 NPT Reference Descriptor

Syntax Number of Bits Mnemonic
E\TPTReferenceDescriptor() (

descriptorTag
descriptorLength
postDiscontinuity Indicator
contentId
reserved
STC Reference -
reserved
NPT Reference -
scaleNumerator
scaleDenominator

8 uimsbf
8 uimsbf
1 bsblf
7 uimsbf
7 bsblf

33 uimsbf
31 bsblf
33 tcimsbf
16 tcimsbf
16 tcimsbf

The descriptorTag field is an 8 bit field that identifies the type of stream descriptor. The value of the descriptorTag
field for the NPT Reference Descriptor is 23.

The descriptorLength field is an 8 bit field specifying the number of bytes of the descriptor immediately following
descriptorLength field.

The postDiscontinuityIndicator field is a 1 bit field. A value of 0 indicates that the NPT Reference Descriptor is valid
upon reception. A value of 1 indicates that the NPT Reference Descriptor will become valid at the next system time base
discontinuity as defined in ISOIIEC 138 18-l.

The contentId field is a 7 bit field that identifies which of a nested set of content is being presented. The contentId field
may be used to indicate a transition to a different NPT time base within an existing NPT time base. For example, this
field may be changed when a commercial is presented within a television show, and then changed back when the
television show is resumed.

The STC Reference field is a 33 bit unsigned integer that indicates the STC value for which the NPT equals the value -
given in the NPT Reference field. The value of the STC Reference field is specified in units of the period of the system - -
clock frequency, as defined in ISOIIEC 138 18-1, divided by 300, yielding units of 90 kHz. The STC-Reference is
derived from the system clock frequency as shown in Equation 8- 1.

Equation S-l

STC Referencek = (STCNPT(kJ / 300) % 233 -

where STCNPTck) is the value of the System Time Clock when the NPT equals the value of the NPT-Reference.

The NPT Reference is a signed 33 bit integer indicating the NPT value at the STC value given in the STC Reference
field. -

-

The scaleNumerator is a signed 16 bit integer used with the scaleDenominator, a 16 bit unsigned integer, to define the
rate of change of the NPT in relation to the STC. A value of 1 for scaleNumerator with a value of 1 for
scaleDenominator indicates that the NPT is changing at a rate equivalent to the STC, yielding the standard presentation
rate. A value of 0 for scaleNumerator with a non-zero value for scaleDenominator indicates that the NPT is not changing
in relation to the STC, yielding a constant value of the NPT. A value of 0 for scaleNumerator with a value of 0 for
scaleDenominator indicates that the scaleNumerator and scaleDenominator fields are not provided in the NPT Reference
Descriptor. A non-zero value for scaleNumerator with a value of 0 for scaleDenominator shall not be used.

8.1.2 Reconstruction of NPT
A Client receiving the NPT Reference Descriptor is able to reconstruct the value of the NPT for any point in the
segment of the stream where the relation indicated by the NPT Reference Descriptor is valid. The reconstructed value of
NPT may be used by the Client as a jump point or as the basis of a display to a user.

To reconstruct the value of NPT, the scaleNumerator and scaleDenominator fields must be determined. If these fields
are not provided in the NPT Reference Descriptor, they may be calculated utilizing two instances of the NPT Reference

280

0 ISOIIEC ISO/IEC 13818-6:1998(E)

Descriptor, i and j, using Equation 8-2 and Equation 8-3. The value of NPT, NPT k, for a given value of the STC, STCk,
within the interval over which the NPT Reference Descriptor is valid, or the interval over which both descriptors are
valid in the case the scaleNumerator and scale&nominator are calculated, can then be determined using Equation 8-4.

Equation S-2

scaleNumerator = NPT Referencej - NPT Referencei - -

Equation S-3

scaleDenominator = SCR-Referencej - SCRBeferencei

Equation S-4

NPTk = ((ScaleNumerator x ((ST& / 300) - STC-Reference)) / scaleDenominator) + NPT Reference -

8.1.3 NPT Conversion to Seconds and Microseconds
The unit of the NPT is the period of the System Clock Frequency divided by 300. At times, it may be necessary to
convert this value to a corresponding number of seconds and microseconds. This can be accomplished utilizing Equation
8-5 and Equation 8-6.

Equation S-5

NPT-seconds = NPT / (System-Clock-Frequency / 300)

Equation S-6

NPT-microseconds = ((NPT x 1000000) / (System-Clock-Frequency / 300)) - (NPT-seconds x 1000000)

The formula for converting a value of NPT given in seconds and microseconds back to the NPT in the proper units is
shown in Equation 8-7.

Equation S-7

NPT = (NPT-seconds x (System-Clock-Frequency / 300)) + ((NPT microseconds x -
(System-Clock-Frequency / 300)) / 1000000)

8.1.4 NPT Uncertainty
Situations are possible where the receiver may not have the information necessary to correctly reconstruct the NPT. One
case is when a stream is joined and an NPT Reference Descriptor has not yet been received. At that point, a receiver can
not be certain of the values for NPT-Reference, scaleNumerator, and scaleDenominator for the stream. In this case, if
the values of NPT-Reference, scaleNumerator, and scaleDenominator are not available by other means, the receiver
shall set NPT-Reference to 0, scaleNumerator to 1, and scaleDenominator to 1.

Another case of uncertainty is the period after an STC (PCR) discontinuity and before reception of an NPT Reference
Descriptor providing the new value of STC-Reference. The stream may reduce the risk of this period by providing an
NPT Reference Descriptor in advance of the discontinuity, ,with the values valid for after the discontinuity by using the
postDiscontinuityIndicator field. If no advanced reception of a valid NPT Reference Descriptor occurred, the receiver
may approximate the new value of STC-Reference by interpolating from before the discontinuity.

8.1.4.1 Frequency of NPT Reference Descriptor
As described in subclause 8.1.4, periods of uncertainty exist in the NPT value while the receiver waits for an NPT
Reference Descriptor. To reduce these periods of uncertainty when NPT Reference Descriptors are carried within an
MPEG-2 stream, at least one NPT Reference Descriptor shall occur in a period of one second.

281

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

8.1.5 NPT Endpoint Descriptor

The NFT Endpoint Descriptor contains information allowing the Client to maintain the NPT for a specific event. The
format of the NFT Endpoint Descriptor is shown Table 8-3.

Table S-3 NPT Endpoint Descriptor

Syntax
NPTEndpointDescriptor() {

. descriptorTag
descriptorLength
reserved
startNPT
reserved
stopNPT

1

Number of Bits Mnemonic

8 uimsbf
8 uimsbf

15 bsblf
33 uimsbf
31 bsblf
33 uimsbf

The descriptorTag field is an 8 bit field that identifies the type of stream descriptor. The value of the descriptorTag
field for the NPT Endpoint Descriptor is 24.

The descriptorLength field is an 8 bit field specifying the number of bytes of the descriptor immediately following
descriptorLength field.

The startNPT field is a 33 bit unsigned integer whose value is the value of the NPT at the beginning of the current
event.

The stopNPT field is a 33 bit unsigned integer whose value is the value of the NPT at the end of the current event.

8.2 Stream Mode Descriptor
The Stream Mode Descriptor contains information about the mode of the stream state machine, allowing Clients to
better synchronize their actions with stream state changes. The format of the Stream Mode Descriptor is shown in Table
8-4.

Table S-4 Stream Mode Descriptor

Syntax
StreamModeDescriptor() (

descriptorTag
descriptorLength
streamMode
reserved

Number of Bits Mnemonic

8 uimsbf
8 uimsbf
8 uimsbf
8 bsblf

The descriptorTag field is an 8 bit field that identifies the type of stream descriptor. The value of the descriptorTag
field for the Stream Mode Descriptor is 25.

The descriptorLength field is an 8 bit field specifying the number of bytes of the descriptor immediately following
descriptorLength field.

The streamMode field is an 8 bit field whose value indicates the current state of the stream state machine. The values
for streamMode are shown in Table 8-5. The stream state machine states are defined in clause 5, U-U Interfaces.

282

0 ISOIIEC ISO/IEC 13818=6:1998(E)

Table S-5 streamMode field values

8.3 Stream Event Descriptor
The Stream Event Descriptor contains information allowing the transmission of application-specific events as defined in
clause 5, so that they may be synchronous with the stream. Note that the definition of event in this context is not the
same as event as it relates to NPT. The format of the Stream Event Descriptor is shown in Table 8-6.

Table S-6 Stream Event Descriptor

Syntax
S treamEventDescriptor() (

descriptorTag
descriptorLength
eventId
reserved
eventNPT
for (i=O; i < N; i++) {

privateDataByte
1

Number of Bits Mnemonic

8 uimsbf
8 uimsbf

16 uimsbf
31 bsblf
33 uimsbf

8 uimsbf

The descriptorTag field is an 8 bit field that identifies the type of stream descriptor. The value of the descriptorTag
field for the Stream Event Descriptor is 26.

The descriptorLength field is an 8 bit field specifying the number of bytes of the descriptor immediately following
descriptorLength field.

The eventId field is an 8 bit field whose value is the type of the application specific event.

The eventNPT field is a 33 bit unsigned integer whose value is the value of the NPT when the event occurred, or the
value of the NPT when the event will occur.

The privateDataByte fields allows inclusion of application specific data in the Stream Event Descriptor,

283

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

9. Transport

9.1 DSM-CC Requirements on Lower-Level Network Transport Protocol

9.1 .l U-N Message Categories
The DSM-CC U-N Message categories

1. U-N Configuration
2. U-N Session Messages
3. U-N Download
4. Switched Digital Broadcast Channel Change Protocol
5. U-N Pass-Thru Messages

are designed to be transport protocol (e.g., UDP/IP) independent. The transport mechanism includes the transport layer
and all underlying layers. The table below summarizes the minimum level of service that the transport layer shall
provide.

Table 9-1 U-N and Download Transport protocol requirements

Transport Function
Reliability of Data

Reliability of Delivery
Flow Control
Fragmentation and Re-assembly

Requirement
Error detection shall be provided. Corrupted messages should be
discarded.
The delivery of the message need not be guaranteed.
Transport need not regulate the rate of transmission of messages.
Transport is responsible for any required fragmentation and re-
assembly. As such, the maximum U-N message size may be limited
bv the transport protocol chosen.

Delivery Order of Messages
Addressing

Transport need not be responsible for in order delivery of messages.
Transport shall be able to deliver a message to its intended recipient.

9.1.2 U-U Interface Categories
The DSM-CC U-U interface categories are:

1. U-U RPC Library
2. Session Objects
3. Download Objects
4. U-U Object Carousel
5. Application Local Objects
6. Stream Descriptors

U-U RPC Library requires the use of a remote procedure call (RPC) mechanism. Different RPC protocols have specific
requirements on their transport layers; therefore, these requirements are beyond the scope of this part of ISO/IEC 138 18.

Session Object structures may be carried within the uuData field in U-N Session Messages. U-U Object Carousel Object
structures and Download Object structures may be carried in Download messages. Therefore, from a transport point of
view, each of these are subject to U-N category requirements if carried within Download messages.

Stream Descriptors provide a mechanism for the U-U Interface to provide additional stream information about a MPEG
program. Therefore, they are subject to ISO/IEC 138 18-l requirements with additional constraints described in this
clause.

Application Local Objects are used by a Client application and do not have an external interface. Therefore, there are
not covered in this clause.

284

0 ISO/IEC ISO/IEC 13818=6:1998(E)

9.2 Encapsulation within MPEG-2 Transport Streams

9.2.1 Role of MPEG-2 Transport Stream in the Protocol Stack
None of the DSM-CC messages or interfaces are required to be carried within an MPEG-2 Transport stream. However,
if MPEG-2 Transport Streams are used to deliver DSM-CC protocols, then the encapsulation of these messages as
defined in this section shall be used.

MPEG-2 Systems, ISO/IEC 138 1% 1, defines a private-section structure which DSM-CC uses to provide re-assembly of
Transport Stream Packets into DSM-CC messages. This part of ISO/IEC 138 18defines additional semantics on
private sections to support additional DSM-CC requirements. Called DSMCC - section, the structure is compatible with -
the private-section syntax so that compliant MPEG-2 Systems decoders may be used.

9.2.2 DSM-CC Sections
When DSM-CC U-N and Download messages are encapsulated in MPEG-2 Transport Streams, the DSMCC section -
syntax shall be used. Other data payloads may also use this syntax. This structure inherits all of the Private-section
syntax as defined in ISO/IEC 138 18- 1. Special semantics apply to the encoding of particular fields in the
DSMCC section header. The mapping of the DSMCC-section into MPEG-2 Transport Stream Packets and the
maximum length of a DSMCC section are governed by the semantics for Private sections defined in ISO/IEC 13818-l. - -

In some implementations, it is desirable to use the CRC-32 available in Private-sections. Because some systems may
have difficulty calculating a CRC - 32, the DSMCC section syntax defines an alternative to using CRC 32. To be - -
consistent with ISO/IEC 138 18-1, if the section-syntax-indicator is set to ‘l’, then the CRC-32 shall be present and
correct. In the case where the section-syntax-indicator is ‘O’, the syntax of the section is the same as when the
section-syntax-indicator is ‘ 1’) except that the CRC-32 field is replaced with the checksum field. The resultant syntax is
still compliant to ISO/IEC 138 18- 1, since the payload following the section-length field shall be treated as private data.

Since the section - syntax - indicator bit itself may be subject to a bit error, the private indicator field shall be set to the -
complement of the section-syntax-indicator value. If the section-syntax-indicator is ‘O’, then the private indicator shall
be verified to be ‘l’, and if it is not, the section has suffered an error. Similarly, if the section syntax indicator is ‘1’ - -
then private indicator shall be ‘0’. -

When section syntax indicator is ‘0’ (CRC is not used) and the checksum field has been set to 0, another form of error
detection shalTbe provided at a different layer. This requirement is imposed to ensure the DSMCC section maintains the -
minimal requirements this part of ISO/IEC 138 18 imposes on its transport protocol (see Table 9- 1 U-N and Download
Transport protocol requirements).

For syntax and semantics related to the carriage of private sections (and therefore DSMCC sections) within the MPEG
Transport Stream, see ISO/IEC 138 18-l section 2.4.4 Program specific information. This includes the setting of the
payload unit start - - - indicator, the presence of the pointer - field in the Transport Stream packet payload, and the use of
packet stuffing bytes.

Unless otherwise restricted, DSM-CC tables (i.e., one or more DSMCC-sections with the same table-id) may be
contained in Transport Stream packets with the same value PID as other private-section formatted tables (e.g., in
ISO/IEC 138 18-l stream - type 0x05), if table id parsing is done. -

285

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Syntax
DSMCC-section0 (

Table 9-2 DSM-CC Section Format

No. of bits Mnemonic

table id -
section-syntax-indicator
private indicator -
reserved
dsmcc section length - -
table id extension - -
reserved
version-number
current next indicator - -
section-number
last section number -
if(table-id == Ox3A) (

LLCSNAP()
1
else if (table-id == Ox3B) (

userNetworkMessage()
I
else if (table id == Ox3C) (

doinloadDataMessage()
1
else if (table-id == Ox3D) (

DSMCC-descriptorJist()
>
else if (table-id == Ox3E) (

for (i=O;i<dsmcc-section-length-9;i++) {
private data - - byte

1
1
if(section-syntax-indicator == ‘0’) (

checksum
1
else {

CRC 32 -

8 uimsbf
1 bslbf
1 bslbf
2 bslbf

12 uimsbf
16 uimsbf

2 bslbf
5 uimsbf
1 bslbf
8 uimsbf
8 uimsbf

32 uimsbf

32 rpchof

Note: For LLCSNAP, see subclause 9.2, Encapsulation within MPEG-2 Transport Streams.

9.2.2.1 Semantic definition of fields in DSMCC section -
table id -- This is an 8 bit field which, in the case of a DSMCC-section, shall be set to identify the type of data in the -
DSMCC section payload. This field defines particular encoding rules for the table id - - - extension, version - number,
section-number, and last-section-number fields.

Table 9-3 contains the MPEG-2 Systems table id assignments for DSM-CC and, for reference purposes, lists the -
assignment space for the MPEG-2 Systems defined values. For details of the MPEG-2 Systems defined values, see
ISO/IEC 138 18- 1, Table 2-26, table-id assignment values.

286

0 ISO/IEC ISO/IEC 1381%6:1998(E)

Table 9-3 DSM-CC table id assignments -

table id -
0x00 - 0x37
0x38 - 0x39

Ox3A
Ox3B
ox3c
Ox3D
Ox3E
Ox3F

0x40 - OXFE
OXFF

DSMCC Section Type 1
ITU-T Rec. H.222.0 1 ISO/IEC 13818-l defined
ISO/IEC 138 18-6 reserved
DSM-CC Sections containing multi-protocol encapsulated data
DSM-CC Sections containing U-N Messages, except Download Data Messages
DSM-CC Sections containing Download Data Messages
DSM-CC Sections containing Stream Descriptors
DSM-CC Sections containing private data
ISO/IEC 138 18-6 reserved
User private
forbidden

Multi-protocol encapsulated data shall include U-U RPCs, if transported over MPEG-2 Transport Streams, and may
include private multi-protocol encapsulated data.

section-syntax-indicator -- This is a 1 bit field. When set to ‘1’ it indicates the presence of the CRC 32 field. When -
set to ‘0’ it indicates the presence of the checksum field.

private indicator -- - This is a 1 bit flag. It shall be set to the complement value of section-syntax-indicator flag.

reserved -- This 2 bit field shall be set to ‘ 11’.

dsmcc-section length -- This 12 bit field specifies the number of remaining bytes in the DSMCC-section immediately
following this field up to the end of the DSMCC-section. The value in this field shall not exceed 4093 (indicating a
section maximum data length of 4084 bytes, following the last-section-number field and up to the CRC_32/checksum
field).

table id extension -- - - This is a 16-bit field. If the value of the table-id field equals Ox3B, this field conveys a copy of
the least significant 2 Bytes of the transaction-id field in the dsmccMessageHeader of the conveyed U-N Message. If the
value of the table-id field equals Ox3C, this field conveys a copy of the moduleId field of the conveyed
DownloadDataBlock or DownloadDataRequest Message. If the value of the table id field is not equal to either Ox3B or -
Ox3C, then the value and use of this field are defined by the user.

version-number -- This field is a 5-bit field. If the value of the table id field equals Ox3A or Ox3B, this field shall be
set to zero. If the value of the table id field equals Ox3C and a DowniadDataBlock Message is conveyed, this field -
shall have the value of the least significant 5 bits of the moduleVersion field of the conveyed DownloadDataBlock
Message. If the value of the table id field equals Ox3C and a DownloadDataRequest Message is conveyed, this field -
shall be set to zero. If the value of the table-id field is not in the range of Ox3A to Ox3C, then the value and use of this
field are defined by the user.

current-next-indicator -- This is a 1 bit flag. If the value of the table id field has a value in the range of Ox3A to -
Ox3C, this bit shall be set to ‘1’. Otherwise, the value and use of this field are defined by the user.

section-number -- This field is a 8-bit field. If the value of the table-id field equals Ox3A or Ox3B, this field shall be
set to zero. If the value of the table-id field equals Ox3C, this field shall have a value of the least significant 8 bits of the
blockNumber field of the conveyed DownloadDataBlock or DownloadDataRequest Message. If the value of the table id -
field is not in the range of Ox3A to Ox3C, then the value and use of this field are defined by the user.

last section number -- This field is a 8-bit field. This field shall be set to the maximum value that is encoded in the
section-number field for the same table-id, table-id-extension and version-number field.

CRC 32 -- This field shall be set as defined in ISO/IEC 138 18-l Annex B. This field is only present when -
section-syntax-indicator is set to ‘ 1’ .

checksum -- A 32 bit checksum calculated over the entire DSMCC-section. The checksum shall be calculated by
treating the DSMCC-section as a sequence of 32bit integers and performing one’s complement addition (an Exclusive-
Or or XOR operation) over all the integers, most significant byte first, then taking the one’s complement of the result.
For the purpose of computing the checksum, the value of the checksum field shall be considered 0. If the message length
is not a multiple of four bytes, the message shall be considered to be appended with zeroed bytes for the purpose of

287

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

checksum calculation only. If the computed result is 0, then the result shall be set to Ox- (the alternative value
for a one’s complement representation of 0). In cases where a checksum is not desired, the value of this field shall be set
to 0 to indicate the checksum has not been calculated. This feature is useful for networks where error detection is
provided at a protocol layer lower than the MPEG-2 Transport Stream. This field is only present when
section-syntax-indicator is set to ‘0’.

9.2.3 DSM-CC Stream Types
DSM-CC has defined distinct stream type values so that simple parsing of the ISO/IEC 138 18- 1 Program Map Table
(PMT) may be done to find the PIDsfor each of the different DSM-CC section types (which, in turn, enables parsing by
PIDs). Filtering may also be done on the table id field within the DSMCC section. - -

Table 9-4 contains the MPEG-2 Systems stream type assignments for DSM-CC and, for reference purposes, includes the
assignment space for the MPEG-2 Systems defined values. For details of the MPEG-2 Systems defined values, see
ISO/IEC 138 18-1, Table 2-29, Stream type assignments.

Table 9-4 DSM-CC Stream Types

stream-type Description
0x00-0x09 ITU-T Rec. H.222.0 1 ISO/IEC 13818-l defined

OxOA Multi-protocol Encapsulation
OxOB DSM-CC U-N Messages
oxoc DSM-CC Stream Descriptors
OxOD DSM-CC Sections (any type, including private data)

OxOE - Ox7F ITU-T Rec. H.222.0 I* ISO/IEC 138 18- 1 reserved
0x80 - OxFF User private

Since table id parsing is optional, restrictions on content types shall be placed on stream - - types OxOA-OxOC as follows:

0 Only DSMCC-sections with table-id Ox3A shall be contained within Transport Stream packets of stream-type
OxOA.

a Only DSMCC sections with table id Ox3B and Ox3C shall be contained within Transport Stream packets of - -
stream-type OxOB.

0 Only DSMCC-sections with table-id Ox3D shall be contained within Transport Stream packets of stream-type
oxoc.

If table id parsing is available, stream
packets-of the same PID.

- type OxOD may be used to map all DSM-CC sections to Transport Stream

9.2.4 DSM-CC Multi-protocol Encapsulation
The DSM-CC U-U service inter-operability interface (SSI) requires the use of a remote procedure call (RPC)
mechanism. Different RPC protocols have specific requirements on their transport layers; therefore, these requirements
are beyond the scope of this part of ISO/IEC 138 18.

The SSI uses RPC protocols whose lower layer protocol stacks are outside the scope of this part of ISO/IEC 138 18.
However, if these messages are to be carried over an MPEG-2 Transport Stream, they shall be encapsulated according to
ISO/IEC 8802-2 Logical Link Control (LLC) and ISO/IEC 8802-la SubNetwork Attachment Point (SNAP)
specifications. This encapsulation method may also be used for other payloads to provide a uniform method of data
carriage over MPEG Transport Streams.

The LLC/SNAP structure allows for the encapsulation of a wide selection of OS1 Layer 3 (network) protocols, including
e.g. the Internet Protocol (IP). The selected Layer 3 protocol, in turn, may encapsulate a selected transport Layer 4 z
protocol such as TCP or UDP.

288

0 ISO/IEC ISO/-IEC 13818=6:1998(E)

9.2.5 U-N Message Categories
DSM-CC U-N Messages -- U-N Configuration, U-N Session Messages, Download, Switched Digital Broadcast Channel
Change Protocol, and U-N Pass-Thru -- are defined in clauses 3,4, 7, 10, and 12, respectively. If encapsulated into a
Transport Stream, U-N Messages shall be conveyed directly into the payload of a DSMCC section. A single -
DSMCC section shall contain data from no more than one U-N message. -

When DownloadDataBlock messages are carried in MPEG-2 Transport Streams, only DownloadDataBlock messages
with the same value downloadId shall be contained in Transport Stream packets with the same value PID.

9.2.6 U-U Service Inter-operability Interface using Remote Procedure Call
User-User SSI is defined in clause 5. When these message are to be carried in an MPEG-2 Transport Stream, the DSM-
CC Multi-protocol Encapsulation (subclause 9.2.4) shall be required. The use of this encapsulation method for the
delivery of other user-defined messages is optional. For example, if TCP/IP is encapsulated in this manner to carry U-U
RPC messages, the same method may also be used to deliver IP for other user defined applications. In this example, the
IP packets for both U-U RPC and user-defined purposes may be contained in Transport Stream packets with the same
value PID.

9.2.7 DSM-CC Stream Descriptors
In the cases where DSM-CC Stream Descriptors (e.g., Normal Play Time time stamp, StreamMode and StreamEvent
descriptors) are carried in an MPEG-2 Transport Stream, they shall be carried in a DSMCC - descriptor - list0 (see Table
9-5) within a DSMCC section. Multiple descriptors may be carried in the same descriptor list. -

Table 9-5 DSM-CC Descriptor List

Syntax
DSMCC-descriptor-list0 {

for(i=O;i<N;i++) (
stream-descriptor0

No. of bits Mnemonic

9.2.7.1 Semantic definition of fields in DSM-CC Descriptor List
stream-descriptor0 -- Defined in clause 8, Stream Descriptors.

9.3 Encapsulation within MPEG-2 Program Streams

9.3.1 DSM-CC Stream Descriptors
In the cases where DSM-CC Stream Descriptors are carried in an MPEG-2 Program Stream, they shall be carried in a
DSMCC program-stream-descriptor-list0 (see Table 9-6) as a PES packet as defined in ISO/IEC 138 18- 1. Multiple -
descriptors may be carried in the same descriptor list.

289

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Table 9-6 DSM-CC Program Stream Descriptor List

Syntax
DSMCC-program-stream_descriptorJist() {

packet start code - - - prefix
stream-id
packet length
for(i=O&N;i++) (

No. of bits Mnemonic
24 bslbf

8 uimsbf
16 uimsbf

8 uimsbf

dsmcc discriminator -
stream-descriptor0

1

9.3.1.1 Semantic definition of fields in DSM-CC program stream - - - Descriptor List
packet - start code - - prefix -- This field shall be set to 0x000001, per ISO/IEC 138 18- 1 (PES Packet semantics).

stream-id -- This is a 8-bit field specifying the bit stream identification that takes the value ‘ 1111 0010’ for the
DSM-CC bit stream. Note: the same stream id value as ISO/IEC 138 18- 1 Annex A is used. -

packet length -- A 16-bit field specifying the number of bytes in the DSMCC
following the last byte of the field. The value of 0 shall not be used.

program stream - - - descriptor list -

dsmcc discriminator
DSMC?

-- This is an 8-bit unsigned integer that takes the value 0x80 for the
- program stream - - descriptor - list. Note: this is equivalent to ISO/IEC 138 18- 1 Annex A command id field and -

is used for forward compatibility.

stream-descriptor0 -- Defined in clause 8, Stream Descriptors.

9.3.2 U-N Messages and U-U SSI
The carriage of DSM-CC Messages, other than Stream Descriptors, within Program Streams is not defined by this part
of ISO/IEC 13818.

290

0 ISOIIEC ISO/IEC 13818-6:1998(E)

10. U-N Switched Digital Broadcast -- Channel Change Protocol

10.1 Overview
The Switched Digital Broadcast (SDB) Channel Change Protocol (CCP) is used between a Client and an inter-working
unit (IWU) to enable the Client to remotely switch from channel to channel in a broadcast environment. This is useful in
systems where the interface from the Client to the network provides only limited bandwidth such that Clients are not
able to receive all broadcast programs simultaneously. Annex H provides an example of such a service.

10.1 .l Preconditions and Assumptions
The SDB CCP is assumed to be part of a protocol stack. The CCP messages are designed to be carried on top of various
protocols (e.g., IP, ATM). Constraints on specific lower level protocols are given in clause 9, “Transport”.

Before a Client may use the SDB Channel Change Protocol, a communication path shall have been established between
the Client and the SDB Server, which provides the SDB service. DSM-CC U-N Session Messages may be used to
establish a SDB Service Session (and connections, as resources of this service) between a Client and the SDB Server.
However, other means may be used to establish this communication path (e.g., via provisioning).

In Annex H, an example of the life cycle for a SDB service is given, including a U-N Session Setup scenario.

10.1.2 General Message Format
The SDB CCP messages use a request/response mechanism. Request messages are generated when the Client initiates a
message sequence. The SDB Server responds to a Request message with a Confirm message. Messages which are sent
asynchronously to the Client from the SDB Server are Indication messages. The Client responds to an Indication
message with a Response message.

The SDB CCP messages have a common message format, and share the same header as other U-N Messages. Table lo-
1 defines the general format of DSM-CC SDB Channel Change Protocol messages.

Table 10-l General Format of DSM-CC SDB CCP Messages

Syntax
SDBChannelChangeProtocolMessage() (

DSMCCMessageHeaderO
MessagePayload

Num. of Bytes

The DSMCCMessageHeader is defined in the clause 2 of this part of ISO/IEC 138 18.

The MessagePayload is constructed from resource descriptors and data fields and differs in structure depending on the
function of the particular message. Subclause 10.2 defines the DSM-CC SDB CCP Messages.

10.2 Switched Digital Broadcast Channel Change Protocol Messages
This subclause defines the SDB Channel Change Protocol messages. Each message is identified by a specific messageId
which is encoded to indicate the class and direction of the message. Table 10-2 defines the encoding of the messageId
fields used in the SDB CCP messages.

291

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Table 10-2 DSM-CC SDB Channel Change Protocol messageIds

0x0003 SDBProgramSelectIndication

0x0004 SDBProgramSelectResponse

0x0005 - Ox7FFF Reserved
0x8000 - OxFFFF User Defined

the SDBProgramSelectRequest.
Sent from the SDB Server to a User to indicate that
a new broadcast program will be provided.
Sent from a User to the SDB Server in response to
the SDBProgramSelectIndication message.
ISO/IEC 138 18-6 Reserved.
User Defined SDB message.

10.2.1 Use of Private Data in SDB CCP messages
SDB CCP messages allow private data to be used. Table 10-3 defines the format of PrivateData(), which is transported
in SDB messages.

Table 10-3 DSM-CC SDB Private Data Format

Syntax Num. of Bytes I
PrivateData {

privateDataLength 2
for(i=O;i<privateDataLength;i++) (

privateDataByte 1

The privateDataLength field shall indicate the total number of privateDataBytes.

The privateDataByte fields contain the private data. The format and usage of this data is outside of the scope of this
part of ISO/IEC 13818.

10.2.2 Use of BroadcastProgramld in SDB CCP messages
In SDBProgramSelect messages a broadcastProgramId field is used to specify a single broadcast program at the
interface between Client and SDB Server. Table 10-4 specifies the allowed values for the broadcastProgramId field.

Table 10-4 DSM-CC SDB broadcastProgramIds

broadcastProgramId Broadcast Program Name Description
0x00000000 NoProgram Identifies that a broadcast program has not been

selected or indicated.

0x00000001 - Ox7FFFFFFF Broadcast Program Numbers Uniquely identifies a single broadcast program.

0x80000000 - Ox- User Defined User Defined special purpose SDB
broadcastProgramIds.

10.2.3 SDB CCP message definitions
All of the SDB CCP messages contain a sessionId field. In the case, that the U-N session was set up dynamically by
using the UN Session Setup, this field shall be encoded with the same value as it was negotiated during the SessionSetup

292

0 ISO/IEC ISO/IEC 13818=6:1998(E)

procedure. If the session was set up statically via provisioning, then the encoding of this field has to be mutually agreed
upon between Client and SDB Server.

10.2.3.1 SDBProgramSelectRequest message definition
This message is sent from a Client to the SDB Server to request that a selected broadcast program shall be established.
The SDB Server will respond with a SDBProgramSelectConfirm message. Table 10-5 defines the DSM-CC
SDBProgramSelectRequest message.

Table lo-5 DSM-CC SDBProgramSelectRequest Message

Syntax
SDBProgramSelectRequest() (

sessionId
reserved
broadcastProgramId
PrivateData

1

Num. of Bytes

10
2
4

The sessionId is used to identify a session throughout its life cycle.

The reserved field is reserved ISO/IEC 138 18-6 and shall be set to OxFFFF.

The broadcastProgramId field shall be set by the Client and shall contain a value which identifies the new broadcast
program which shall be provided now to the Client.

The PrivateData structure is defined in Table 10-3. The definition of the content of this field is outside the scope of
this part of ISOfIEC 138 18.

10.2.3.2 SDBProgramSelectConfirm message definition
This message is sent from the SDB Server to a Client in response to a SDBProgramSelectRequest message. Table 10-6
defines the DSM-CC SDBProgramSelectConfirm message.

Table 10-6 DSM-CC SDBProgramSelectConfirm Message

Syntax
SDBProgramSelectConfirm() {

sessionId
response
broadcastProgramId
PrivateData

1

Num. of Bytes

10
2
4

The sessionId is used to identify a session throughout its life cycle.

The response field shall be set by the SDB Server to a value which indicates the SDB Server’s response to the
SDBProgramSelectRequest message. The valid values for the encoding of this field are given in Table lo-10 DSM-CC
SDB Response Codes.

The broadeastProgramId field shall be set to a value indicating the broadcast program that is provided to the Client.

The PrivateData structure is defined in Table 10-3. The definition of the content of this field is outside the scope of
this part of ISO/IEC 13818. However, it is expected that the PrivateData structure contains connection information
necessary for the Client to receive the broadcast program.

293

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

10.2.3.3 SDBProgramSelectlndication message definition
This message is sent from the SDB Server to a Client to indicate that a new broadcast program is provided. The Client
shall respond with a SDBProgramSelectResponse message. Table 10-7 defines the DSM-CC
SDBProgramSelectIndication message.

Table lo-7 DSM-CC SDBProgramSelectIndication Message

! Syntax Num. of Bytes

SDBProgramSelectIndication() {
sessionId 10

reason 2

broadcastProgramId 4

PrivateData

The sessionId is used to identify a session throughout its life cycle.

The reason field shall be set by the SDB Server to a value which indicates why the SDB Server has selected the
broadcast. The valid values for the encoding of this field are given in Table 10-9 DSM-CC SDB Reason Codes.

The broadcastProgramId field shall be set to a value specifying the broadcast program which will be provided by the
SDB Server.

The PrivateData structure is defined in Table 10-3. The definition of the content of this field is outside the scope of
this part of ISO/IEC 138 18. However, it is expected that the PrivateData structure contains connection information
necessary for the Client to receive the broadcast program.

10.2.3.4 SDBProgramSelectResponse message definition
This message is sent from the Client to the SDB Server in response to a SDBProgramSelectIndication message. Table
10-8 defines the SDBProgramSelectResponse message.

Table 10-S DSM-CC SDBProgramSelectResponse Message

Syntax
SDBProgramSelectResponse() {

sessionId
response
PrivateData

1

Num. of Bytes

10
2

The sessionId is used to identify a session throughout its life cycle.

The response field shall be set by the Client to a value which indicates the Client’s response to the
SDBProgramSelectRequest message. The valid values for the encoding of this field are given in Table lo- 10 DSM-CC
SDB Response Codes.

The PrivateData structure is defined in Table 10-3. The definition of the content of this field is outside the scope of
this part of ISOIIEC 13818.

10.3 SDB Channel Change Protocol Command Scenarios

10.3.1 Client Initiated Program Select Command Sequence
Figure 10-l illustrates the procedure for program selection initiated by the Client.

294

0 ISOIIEC ISO/IEC 13818-6: 1998(E)

Client SDB Server

1 , SDBProgramSelectRequest

sessionld, broadcastProgramld,
privateData

3 4
SDBProgramSelectConfirm

sessionld, response,
broadcastProgramId, privateData

- 2

Figure 10-l Scenario for Client Initiated Program Select Sequence

Step 1 Client:

To select a broadcast program to be provided, the Client shall send a SDBProgramSelectRequest to the SDB Server and
start timer Msg. The broadcastProgramId shall be set to a value which identifies the broadcast program the Client wants
to receive.

If timer Msg expires before a SDBProgramSelectConfirm is received, then the Client shall assume the program select
request failed. The Client may repeat the SDBProgramSelectRequest message or it may initiate an audit with the
Network.

Step 2 SDB Server:

On receipt of a SDBProgramSelectRequest, the SDB Server shall verify that the sessionId field refers to an active
session. If the SDB Server determines that the sessionId is invalid, then the SDB Server shall respond with a
SDBProgramSelectConfirm message with the response field set to rspNoSession.

If the sessionId is valid, then the SDB Server shall verify that the SDBProgramSelectRequest message is encoded
correctly, especially the length fields are encoded consistently. If the SDB Server detects encoding errors in the
SDBProgramSelect message, then it shall reply with a SDBProgramSelectConfirm message with the response field set
to rspFormatError.

If sessionId is valid and encoding of the message is correct, then the SDB Server shall verify that the
broadcastProgramId field represents a valid broadcast program. If the requested broadcast program is not available
(either currently or permanently), then the SDB Server shall either reply with a SDBProgramSelectConfirm message
with the response field set to rspBcProgramOutOfService, or redirect to another broadcast program. In the latter case,
the response field in the SDBProgramSelectConfirm message shall be set to rspfiedirect.

If broadcastProgramId is valid, then the SDB Server may verify that the Client is entitled to receive the broadcast
program identified by the broadcastProgramId. If the Client is not entitled to receive the broadcast program, then the
SDB Server shall either reply with a SDBProgramSelectConfirm message with the response field set to
rspEntitlementFailure, or redirect to another broadcast program. In the latter case, the response field in the
SDBProgramSelectConfirm message shall be set to rspRedirect.

If the Client is entitled to receive the broadcast program channel, but the SDB Server does not have enough internal
resources to provide the broadcast program to the Client, then the SDB Server shall reply with a
SDBProgramSelectConfirm message with the response field set to rspNoServerResource.

If the SDB Server has enough internal resources to provide the broadcast program to the Client, then the SDB Server
shall attempt to provide the broadcast program to the Client (the actual means, how this is achieved, are outside of the
scope of this part of ISO/IEC 138 18). If there are not enough network resources available, then the SDB Server shall
respond to the Client with a SDBProgramSelectConfirm message with the response field set to rspNoNetworkResource.

If the SDB Server can provide the requested broadcast program to the Client, then the SDB Server shall send a
SDBProgramSelectConfirm with response field set to rspOk to the Client. The value of the sessionId field shall be set by
the SDB Server to the same value received in the SDBProgramSelectRequest message. The value of the

295

PSO/IEC 13818=6:1998(E) 0 ISOIIEC

privateDataCount field shall be equal to the number of privateDataBytes present in the remainder of the message. It is
assumed that these privateDataByte fields contain a description of the new resources, if needed, to provide the broadcast
program.

Step 3 Client:

On receipt of SDBProgramSelectConfirm, the Client shall verify that the response field is set to rspOk or rspRedirect. If
the response field is set to rspOk or rspliedirect, then this is an indication that the new broadcast program is available.
Otherwise, exception processing shall be performed according to the SDLs (see Normative Annex A).

10.3.2 SDB Server Initiated Program Select Command Sequence
Figure 10-2 illustrates the procedure for program selection initiated by the SDB Server.

Client

SDBProgramSelectlndication

sessionld, reason,
broadcastProgramld, privateData

SDB Server

. 1

2
SDBProgramSelectResponse

sessionld, response, privateData

) 3

Figure 10-2 Scenario for SDB Server Initiated Program Select Sequence

Step 1 SDB Server:

If the SDB Server determines to switch to another broadcast program (e.g., a pre-subscribed Pay-per-View event starts
or the subscriber is no more entitled to receive a broadcast program), then the SDB Server shall provide the new
broadcast program to the Client. If the network resources are not sufficient to new program, then the SDB Server shall
abort the scenario. Otherwise, the SDB Server shall send a SDBProgramSelectIndication to the Client to indicate that a
broadcast program will be provided, and start timer tMsg. The sessionId field shall be set to the same value as it was
negotiated during the UN-Session-Setup. The broadcastProgramId shall be set to a value which identifies the broadcast
program, which is provided to the Client.

If timer tMsg expires before a SDBProgramSelectResponse is received, then the SDB Server may repeat the
SDBProgramSelectIndication message and start timer tMsg again. If tMsg expires repeatedly without a
SDBProgramSelectResponse message being received, then the SDB Server may initiate an audit with the Network.

Step 2 Client:

On receipt of a SDBProgramSelectIndication, the Client shall verify that the sessionId field refers to an active session. If
the Client determines that the sessionId is invalid, then the Client shall respond with a SDBProgramSelectConfirm
message with the response field set to rspNoSession.

If the sessionId is valid, the Client shall verify that the SDBProgramSelectIndication message is encoded correctly,
especially the length fields are encoded consistently and, if needed, the privateDataByte fields contain enough
information to receive the broadcast program. If the Client detects encoding errors in the SDBProgramSelectIndication
message, then it shall reply with a SDBProgramSelectResponse message with the response field set to rspFormatError.

If sessionId is valid and encoding of the message is correct, then the Client shall accept the new broadcast program and
reply with a SDBProgramSelectResponse message with the response field set to rspOk.

Step 3 SDB Server:

296

0 ISO/IEC ISOLIEC 13818=6:1998(E)

On receipt of SDBProgramSelectResponse the SDB Server shall verify that the response field is set to rspOk. The SDB
Server can now consider the new broadcast program to be accepted by the Client.

Note: If the Client does not want to receive the indicated broadcast program, then it may either release the U-N session
with the SDB Server or generate a SDBProgramSelectRequest message after the SDBProgramSelectResponse message.

10.4 SDB Reason and Response Codes

10.4.1 SDB Reason Codes
Table 10-9 gives the list of reason codes used within the SDB Channel Change Protocol.

Table 10-9 DSM-CC SDB Reason Codes

Reason Code
rsnOk

rsnNorma1

I
I rsnSeEntitlementFailure

Value
0x0000

0x000 1

0x0002

I

l reserved
nrivsatp lice

Description
Indicates that a Broadcast Program
has been started as a normal action
(e.g. pre-subscribed Pay Per View
event starts).
Indicates that a Broadcast Program
has been discontinued due to Session
Release.
Indicates that a Broadcast Program
has been discontinued due to
entitlement failure.
ISOIIEC 138 18-6 reserved
For nrivate use

297

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

10.4.2 SDB Response Codes
Table lo-10 gives the list of response codes used within the SDB Channel Change Protocol.

Table lo-10 DSM-CC SDB Response Codes

Response Code Value
rspOk 0x0000
rspFormatError 0x000 1

rspNoSession 0x0002

rspNoNetworkResource 0x0003

rspNoServerResource 0x0004

rspEntitlementFailure 0x0005

rspBcProgramOutOfService 0x0006

Description
Indicates a positive acknowledgment.
Indicates that the condition is due to invalid
format (e.g., missing parameter) detected.
Indicates that the either the Client or the
Server rejects a SDBProgramSelect command
as the referenced session-is not established.
Indicates that the Network does not have
enough resources to support the SDB service
according to the Server’s request.
Indicates that the SDB Server does not have
enough resources to support the SDB service.
Indicates that a Broadcast Program could not
be delivered to a Client due to entitlement
failure.
Indicates that a Broadcast Program cannot be

Id1 e ivered because it is out of service,
rspRedirect

reserved
private use

0x0007

0x0008 - ox7FFF
0x8000 - OxFFFF

Indicates that instead of the requested
broadcast program, an alternate program has
been provided.
ISOIIEC 138 18-6 reserved
For private use

10.5 SDB State Machine
Each SDB service session requires a state machine in the Client and in the SDB Server. This subclause gives a high
level description of both Client and Server state machines. See Normative Annex A for the SDL diagrams which define
the SDB CCP state machines.

10.5.1 SDB State Machine for the Client Side
The following states are defined at the Client side for the Switched Digital Broadcast Service:

Cidle The SDB service session is not established.

CprogramInactive The SDB service session is established, but a broadcast program is not expected.

CprogramActive The SDB service session is established and a broadcast program is expected.

CprogramRequest The Client has requested a broadcast program and is waiting for an acknowledgment from the
SDB Server

The possible state transitions are described in Figure 10-3. The SDL in Normative Annex A provides details on state
transitions.

298

0 ISO/IEC ISOLIEC 13818=6:1998(E)

nSnlcrrtlnrl/ \) UNRelease I \
, ,,,,,,n3elecrw (!UKJ 1

\

-IUyldlll3GlC~lIIIU \U”/
I ’ c Cidle)I initiate_ProgSelRe CI \

Finvalid puk y initiate_ProgSelRe vfl

-/

invalid

ProgramSelectCnf (ok)

Figure 10-3 State-Event Diagram for Client SDB States

The following internal and external events are defined at the Client side for the SDB State machine.

Internal events:

[initiate-ProgSelReq] The application requests the state machine to generate a
SDBProgramSelectRequest message.

[UNSetup] The state machine is informed that a SDB service session has been
established.

[UNRelease] The state machine is informed that the SDB service session has been
released.

[Tmsg-timeout] The state machine is informed that the message response timer tMsg has
expired without a response being received.

External events:

ProgramSelectCnf A SDBProgramSelectConfirm message is received from the SDB Server.

ProgramSelectIndication A SDBProgramSelectIndication message is received from the SDB Server.

299

ISOiIEC 13818=6:1998(E) 0 ISO/IEC

The following conditions are defined for the Client side SDB State Machine:

encoding valid The entire encoding of a received SDBProgramSelectIndication or a
SDBProgramSelectConfirm message is syntactically correct and all
information needed to process the event is available within the message.

response == rspCode The response field in a received SDBProgramSelectIndication or a
SDBProgramSelectConfirm message is equal to rspcode.

noProgram selected The bpId field contained in a SDBProgramSelect message refers to the
“noProgram”, i.e., the release of the current broadcast program is requested.

max. retry exceeded The maximum number of message retransmission attempts has been
exceeded already.

The following reactions are defined for the Client side SDB State machine:

SDBProgSelReq The Client sends a SDBProgramSelectRequest message to the SDB Server.

SDBProgSelRsp: The Client sends a SDBProgramSelectResponse message to the SDB
rspCode Server, which contains the response field encoded to rspcode.

UNStatusReq: rsnCode The SDB state machine triggers the UN Client state machine to send a
UNStatusRequest message to the SRM the reason field encoded to rsncode.

StartTimerTmsg Start the timer tMsg to check for a response from the SDB Server.

StopTimerTmsg Stop the timer tMsg again.

Note that a UNStatusRequest message may be used to determine if there is a state inconsistency between Client and
SDB Server.

10.52 State machine for the SDB Server Side
The following states are defined at the SDB Server side:

Sidle

SprogramInactive

SprogramActive

SprogramIndication

The SDB service session is not established.

The SDB service session is established, but a broadcast program is not being provided.

The SDB service session is established and a broadcast program is being provided.

The SDB Server has requested the Client to switch to a new broadcast program and is
waiting for an acknowledgment from the Client.

The possible state transitions are described in Figure 10-4. The SDL in Normative Annex A provides details on state
transitions.

300

0 ISO/IEC ISO/IEC 13818=6:1998(E)

\ qqqq\ tMsg ,

initiate_ProgSellnd (0)

initiate_ProgSellnd

ProgramSelectRsp (ok)

Figure 10-4 State-Event Diagram for Server SDB States

The following internal and external events are defined at the Server side for the SDB Service State Machine.

Internal events:

[initiate-ProgSelInd]

[UNSetup]

[UNRelease]

[Tmsg-timeout]

External events:

ProgramSelectReq

ProgramSelectRsp

The application requests the state machine to generate a SDBProgram-
SelectIndication message and enter new state accordingly.

The state machine is informed that a UN-Session has been established
for Switched Digital Broadcast Service.

The state machine is informed that the SDB UN-Session has been
released.

The operation system informs the state machine that the message
response timer tMsg has expired without a response being received.

A SDBProgramSelectRequest message is received from the Client.

A SDBProgramSelectResponse message is received from the Client.

301

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

The following conditions are defined for the SDB Server side SDB State machine:

encoding valid The entire encoding of a received SDBProgramSelectRequest or a
SDBProgramSelectIndication message is syntactically correct.

The SDB Server determines that a requested broadcast program is available, i.e. not out of
service.

program available

SDB resources available

net resources available

entitlement failed

response == rspcode

noProgram selected

max. retry exceeded

transactionId valid

The SDB Server has enough internal resources to its disposal to process a
SDBProgramSelectRequest message.

There are enough network resources available to provide a broadcast program on request
of the SDB Server to a Client.

The SDB Server determines that a Client is not entitled to receive the requested broadcast
program.

The response field in a received SDBProgramSelectResponse message is equal to
rspCode.

The bpId field contained in a SDBProgramSelect message refers to the “noProgram”, i.e.,
the release of the current broadcast program is requested.

The maximum number of message retransmission attempts has been exceeded already.

The transactionId value which was contained in a SDBProgramSelectResponse message,
matches the expected value.

The following reactions are defined for the SDB Server side SDB State machine:

SDBProgSelInd The SDB Server sends a SDBProgramSelectIndication message to the Client.

SDBProgSelCnf: rspCode The SDB Server sends a SDBProgramSelectConfirm message to the Client, which
contains the response field encoded to rspcode.

UNStatusReq: rsnCode The SDB state machine triggers the UN SDB Server state machine to send a
UNStatusRequest message to the SRM the reason field encoded to rsncode.

(provide program)

(continue program)

(stop program)

StartTimerTmsg

StopTimerTmsg

The SDB Server initiates providing the broadcast program to the Client.

The SDB Server continues providing the old broadcast program to the Client.

The SDB Server stops providing any broadcast program to the Client.

Start the timer tMsg to check for a response from the Client.

Stop the timer tMsg again.

1) The SDB Server may decide to assign a different channel than the requested one to the Client.
In this case, the bpId field in the SDBProgramSelectConfirm message has to be set accordingly.

2) Optionally, the SDB Server may initiate the exchange of UNStatusRequest messages with the
SRM to determine if there is a state inconsistency between Client and SDB Server.

3) The SDB Server may use the reason code rsnSeEntitlementFailure to indicate that the Client is
no longer entitled to receive the previously displayed BC program channel.

302

0 ISOIIEC ISO/IEC 13818=6:1998(E)

11 n U-U Object Carousel

11 .l Introduction
The U-U Application Portability Interface (API) provides Clients a standardized mechanism to access a collection of
U-U objects (e.g., Directories, Files, and Streams). For interactive networks, the U-U API is closely coupled to the
Service Interoperability interfaces for interoperability purposes. However, the use of the U-U API is not limited to
interactive networks and may be used to access objects broadcast in a broadcast network. In order to do so, the Client
has to implement a subset of the User-to-User functionality locally and has to access the broadcast network for new
object representations when necessary.

By broadcasting U-U objects in a Network, the Broadcast Server may offer simultaneous access to the objects to a large
population of Clients. This functionality may be used to support applications that operate in a pure broadcast
environment, for load distribution of interactive servers, or for the publication of content of interactive servers.

The U-U Object Carousel protocol defines the transmission of U-U objects in broadcast networks, and defines how U-U
objects are encoded on-the-wire so that implementations may offer Clients access to these objects via the U-U API
defined in clause 5. The U-U Object Carousel builds on the Data Carousel scenario of the U-N Download protocol
defined in clause 7. Figure 1 I- 1 shows the position of the U-U Object Carousel protocol in a complete implementation
which includes a Client, the Local Object Implementation, and the protocol stack used to broadcast the objects.

Application __._.______.__...__._-------
“Portability Interface

I

U-U Object Carousel

Download Data Carousel

Lower layer protocols

Broadcast Network
Data from Remote ___.--..__.___.__..__.--------.------.-

Object Implementation

Figure 11-l Location of the U-U Object Carousel in a protocol stack

The U-U Object Carousel protocol is compatible with the User-to-User protocol of clause 5 and with the Object Request
Broker (ORB) framework as defined by CORBA. Within the User-to-User system environment, a single instance of a U-
U Object Carousel represents a particular Service Domain. The Service Domain has a Service Gateway that presents a
graph of services names to the Clients. To support this kind of Service Domain, DSM-CC defines an Inter-ORB
Protocol that is henceforth referred to as the Broadcast Inter-ORB Protocol (BIOP). The BIOP protocol is network
independent and can be applied on top of any type of broadcast network. The network independence is achieved by
using the concept of Taps as defined in clause 5. A Tap facilitates a reference to a particular network connection by
means of an association tag. The BIOP protocol consists of three parts:

1. BIOP Profile Body definition. BIOP defines a Profile Body which is used to construct a unique object reference for
each object that is broadcast in the Network. The BIOP object references use the Inter-operable Object Reference
(IOR) format defined by CORBA. HOP is therefore compatible with any Service Domain that uses the IOR format.

2. BIOP Message Formats. U-U Object Carousels broadcast the U-U objects in so-called BIOP messages. Each
supported U-U object is encoded in a dedicated HOP message which is built from a generic message format. The

303

ISO/IEC 1381$-6:1998(E) 0 ISOIIEC

messages are described using OMG IDL and are converted to bits-on-the-wire by means of a data representation
standard. The default data representation standard for BIOP is Common Data Representation Lite (CDR-Lite) as
specified in clause 5.

3. BIOP Transport definitions. To facilitate Clients access to U-U objects in broadcast networks the BIOP messages
have to be broadcast repetitively in the broadcast network. The U-U Object Carousel protocol is therefore based on
the Data Carousel scenario of the U-N Download protocol, which implements this functionality. The BIOP
messages are carried in the Modules of the Data Carousel. The Modules are fragmented into Blocks (as defined by
U-N Download) and are transported in DownloadDataBlock() messages. The associated delivery parameters of the
Module (modulesize, block&e, Time-outs) are specified in the associated DownloadInfoIndication() messages.
The U-U Object Carousel uses the DownloadServerInitiate() messages of U-N Download to broadcast the IOR of
the Service Gateway of the carousel.

In addition to the BIOP protocol, this clause defines the semantics of the U-U API for U-U Object Carousel. The
semantics of the U-U API differ slightly from the semantics of the U-U API for interactive networks because of the
broadcast nature of the network. These changed semantics include the of a 20 byte identifier that shall be used to
uniquely identify U-U Object Carousels. This identifier is compatible with the E. 164 NSAP addresses used in clause 4,
User-to-Network Session Messages and clause 5, User-to-User Interface.

Finally, the U-U Object Carousel defines three descriptors that may be used if the U-U Object Carousel is implemented
in broadcast networks based on MPEG-2 Transport Streams. The descriptors facilitate the implementation of U-U
Object Carousels using multiple MPEG-2 programs.

11.2 Concepts

11.2.1 Supported U-U Objects and Interfaces
The U-U API is based on a number of interfaces which U-U objects may inherit. Within the U-U Object Carousel, four
U-U Objects are supported that shall support the following READER interfaces: namely

Table 11-l Objects supported within the U-U Object Carousel

U-U Object Supported READER Interfaces
DSM: :Directory Access, Directory
DSM: :File Base, Access, File
DSM::Stream Base, Access, Stream
DSM::ServiceGateway Access, ServiceGateway, Directory, Session

The U-U objects are defined in clause 5. In general the semantics of the U-U API will differ slightly from the semantics
of the U-U API for interactive networks because of the broadcast nature of the network. For example, with the Stream
interface a pause(“now”) command may freeze the image on screen but can not pause the delivery of the (broadcast)
stream. Hence, a subsequent resume(“now”) command will probably imply that part of the stream content is not shown.
Also, the Access interface will return attributes which are set to default values because the broadcast of these attributes
is not defined in BIOP. In particular, the Hist-T, Lock-T, and Perms-T structures shall default to the following values:

0 Hist T: Version and DateTime shall have entries all equal to 0.
0 Lock T: readLock shall be 0 and writeLock shall be 0.
0 Permi T: all permission fields shall indicate read-only permission; the a Password string shall be NULL; -
0 The rAuthData field shall be empty; the allsecure flag shall be zero.

The U-U Object Carousel protocol is extensible to support the broadcasting of general objects. Informative Annex F
illustrates this functionality by showing support for enhanced Stream objects that inherit the Event interface.

11.2.2 Service Domain and Service Gateway
Each instance of a U-U Object Carousel represents a Service Domain. Each Service Domain has a globally unique
identifier that identifies a particular instance of a carousel. Called the Carousel NSAP address, this identifier is
compatible with the E. 164 NSAP serverIds used in clause 4, User-to-Network Session Messages and clause 5, User-to-

304

0 ISO/IEC ISO/IEC 13818=6:1998(E)

User Interfaces. The U-U Object Carousel protocol defines the syntax of this identifier to include a 1 byte AFI field, a l-
byte Type field, a 4 byte carousel id (carouselId) field, a 4byte specifier field, and 10 bytes of private data (see Figure
1 l-2).

AFI Type carouselId
l-byte l-byte 4-byte

specifier
4-byte

privateData
lo-byte

Figure 11-2 Format of Carousel NSAP address

The semantics of the fields of the Carousel NSAP address are as follows:

The AFI (authority and format identifier) shall be set to 0x00. This value is defined in IS0 8348 Annex B as NSAP
addresses reserved for private use. As such, the rest of the NSAP address fields are available for private definition.

The type field shall be set to 0x00 when the Carousel NSAP address points to a U-U Object Carousel. The values in the
range 0x01 to Ox7F shall be reserved to ISO/IEC 138 18-6. The values in the range 0x80 to OxFF shall be user private
and their use is outside the scope of this part of ISO/IEC 138 18.

The carouselId is a 32 bit field that uniquely identifies the carousel with a particular network specific scope.

The specifier field is the composite of the specifierType field and specifierData structure that is defined in clause 6,
User Compatibility. The specifier (that is, the organization uniquely identified by the specifierData structure) shall
specify the syntax and semantics of the private data field in such a way that the Carousel NSAP address becomes an
unique identifier of the carousel within the network of the specifier.

The privateData is a 10 Byte field. Its use is not defined by this part of ISO/IEC 13818.

The Service Domain has a Service Gateway which provides the root Directory of the content that is broadcast by the U-
U Object Carousel. The IOR of the Service Gateway is broadcast by means of DownloadServerInitiate() messages.
Along with the IOR of the ServiceGateway, the DownloadServerInitiate() message may carry download Taps that
indicate that a non-flow-controlled download should occur as part of Session attach().

The network connection on which the DownloadServerInitiate() message is delivered should be either well-known to
Clients (for example, delivered via U-N Config) or Network specific methods should exist that facilitate the resolution
of the Carousel NSAP address to a network connection.

11.2.3 Object References
BIOP uses the Inter-operable Object Reference (IOR) format defined by CORBA. The IOR of an object that resides
inside the U-U Object Carousel contains the mandatory LiteComponents BIOP::ObjectLocation and DSM::ConnBinder.
The syntax of these LiteComponents are defined in clause 5.

The BIOP::ObjectLocation LiteComponent uniquely locates the object in the U-U Object Carousel by means of the
triple carouselId, moduleId, and objectKey. The carouselId provides an identifier of the U-U Object Carousel that is
unique within a Network specific scope. The carouselId provides a context for the moduleId field which identifies the
Module in which the object is broadcast. The objectKey uniquely identifies the object within the Module. Objects can
only belong to one U-U Object Carousel.

The BIOP::ConnBinder Component contains a sequence of Taps that identify the delivery of the object in the broadcast
network. At least one Tap shall point to a DownloadInfoIndication() message that contain the module delivery
parameters of the Module (such as size, version, blocksize, time-outs) in which the object is delivered. The
DownloadInfoIndication() messages point subsequently to the network connections that are used to broadcast the
Modules.

11.2.4 Transport of BIOP Messages
BIOP messages are transported in Modules of DSM-CC Data Carousels. Multiple BIOP messages may be carried in one
Module. The Modules of the Data Carousel are fragmented into Blocks. These Blocks are transported in
DownloadDataBlock() messages (described in clause 7). Figure 1 l-3 illustrates the applied encapsulation and
fragmentation methods.

305

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

BIOP Messages:

Modules:

. DownloadDataBlock
Messages:

Obj- 1 (Directory) Obj-2 (Stream) Obj-3 (File) * .

Module- 1

0 *
. .

Block- 1

.

. 2. L . a. . . . ** “.. . .* ‘. .’ . . .* . .* . . .* . . ’ .* . . . * ’ . . . *I.
’ *. :.

. ’ . . l .
l . ‘... . .

’ . . . ’ . . . *. l *. . .
l . *. l . . .

Block-2 Block-3 Block-4 Block-5.

Figure 11-3 Encapsulation of BIOP Messages in Module

11.2.5 Module Delivery Parameters
Modules are broadcast in the broadcast network. The parameters that describe the delivery of a particular Module in the
broadcast network are called the module delivery parameters. In U-U Object Carousels, the module delivery parameters
are conveyed in DownloadInfoIndication() messages. The module delivery parameters contain all transport parameters
that are necessary to acquire the Module from the broadcast network. This information consists of the size and version
of the Module, the applied block size, and various time-out values. In addition, the DownloadInfoIndication() message
contains the information about the Tap (described below) on which the Modules are being broadcast. Each
DownloadInfoIndication() messages can describe multiple Modules.

11.2.6 Taps
The BIOP protocol is network independent and is thus applicable for any type of broadcast network. The network
independence is achieved by using the concept of Taps as defined in clause 5. A Tap facilitates a reference to a
particular network connection by means of an association tag. BIOP defines the use of the following TapUse values
(TapUse values are defined in clause 5).

1. BIOP DELIVERY PARA USE: The Inter-operable Object Reference (IOR) of an object includes such Taps to - - -
indicate the connections at which the DownloadInfoIndication() messages are broadcast that describe the module
delivery parameters of the Module in which the object is conveyed. The syntax and the semantics of the selector field
of these Taps are specified in this clause.

2. BIOP-OBJECT-USE: Used in the DownloadInfoIndication() messages which convey the module delivery
parameters of the Modules to indicate the connections on which the Modules are broadcast. These Taps are
optionally carried in the IOR of objects to allow fast acquisition procedures. The syntax and the semantics of the
selector field of these Taps are specified in this clause.

3. BIOP PROGRAM-USE, BIOP-ES-USE: The Stream object contains Taps to indicate the stream(s) that are -
associated with the object. The syntax and the semantics of the selector field of these Taps are specified in subclause
11.3.2.4.

4. STR STATUS AND - - EVENT-USE, STR-EVENT-USE, STR-STATUS-USE, NPT USE: The Stream object - -
contains Taps to indicate the various sub-streams that are associated with the object. The syntax and the semantics of
the selector field of these Taps are specified in subclause 11.3.2.4.

5. DOWNLOAD-CTRL-DOWN-USE, DOWNLOADDATA-DOWN-USE: The DownloadServerInitiate()
messages that carry the IOR of the ServiceGateway use these Taps to indicate the various connections at which
DownloadInfoIndication() messages are broadcast that described the Modules that should be download. The syntax
and the semantics of the selector field of these Taps are specified in this clause.

In the course of resolving an object, Clients have to associate the Taps to the connections or to the broadcast network.
Clients need, therefore, an association table that makes the association between the Taps and the connections of the
broadcast network. The syntax and communication of such association tables is outside the scope of this part of ISO/IEC
138 18. However, to support the implementation of U-U Object Carousels in broadcast networks based on MPEG-2
Transport Streams, this part of ISO/IEC 138 18 does define three descriptors that can be inserted into MPEG-2 PSI (as

306

0 ISO/IEC ISO/IEC 13818=6:1998(E)

defined in ISO/IEC 138 18- 1). In other cases, the association tables may be communicated to the Clients by using User-
to-Network messages or by using network specific methods.

11.3 Broadcast Inter ORB Protocol

11.3.1 Inter-operable Object Reference (IOR)

11.3.1.1 Profile Body Definition
BIOP uses the Inter-operable Object Reference format (IOR) defined by CORBA. An IOR contains Profile Bodies that
encapsulate all the basic information that a particular protocol stack needs to identify the object. A single Profile Body
holds enough information to drive a complete invocation of the object using that protocol. The syntax of the IOR is
specified in clause 5.

The Profile Body that shall be used for objects that are broadcast in the U-U Object Carousel is the BIOP Profile Body.
The BIOP Profile Body is defined in clause 5 and consist of the DSM::LiteComponentProfile structure. The BIOP
Profile Body is labeled by the ProfileId TAG BIOP. The syntax of the DSM::LiteComponentProfile and TAG BIOP - -
ProfileId are defined in clause 5.

The BIOP Profile Body shall contain at least the LiteComponents BIOP::ObjectLocation and DSM::ConnBinder. The
semantics of the LiteComponents are described below.

11.3.1 .l .l Object Location Component
The BIOP::ObjectLocation component uniquely locates the object in the broadcast network. The presence of the
LiteComponent BIOP::ObjectLocation in the BIOP Profile Body is identified by the component tag
TAG BIOP data - - - Objectlocation. The BIOP::ObjectLocation structure shall directly be inserted into the component
field of the LiteComponent (i.e., by using the rules for CDR-Lite encapsulations). A BIOP Profile Body shall contain
exactly one component of type BIOP::ObjectLocation.

The semantics of the fields of the BIOP::ObjectLocation structure are described below:

The version describes the version of BIOP::ObjectLocation protocol. The major version for ISO/IEC 138 18-6, IS, is 1;
the minor version is 0.

The carouselId field provides a context for the moduleId field. It uniquely identifies the carousel within the broadcast
network and allows the distributed implementation of the carousel.

The moduleId identifies the module in which the object is conveyed within the carousel.

The objectKey identifies the object within the module in which it is broadcast. This field contains a length field
followed by a series of bytes (see clause 5 for the IDL definition of objectKey). The Server supplies the objectKey field
value.

11.3.1 .1.2 ConnBinder Component
The DSM::ConnBinder component contains a number of Taps. The presence of the LiteComponent DSM::ConnBinder
in the BIOP Profile Body is identified by the component tag TAG-ConnBinder. The DSM::ConnBinder structure shall
be inserted directly into the component-data field of the LiteComponent. A BIOP Profile Body shall contain exactly one
component of type DSM::ConnBinder. The DSM::ConnBinder shall contain at least one Tap (with a TapUse value of
BIOP-DELIVERY-PARA-USE) that points to a DownloadInfoIndication() message that conveys the Module delivery
parameters. Optionally, Taps may be present with a TapUse value of BIOP OBJECT USE. - -

The semantics of the fields of a Tap with a TapUse value of BIOP DELIVERY PARA USE are described below: - - -

0 The use field indicates the use of the Tap. The value of this field shall be BIOP DELIVERY PARA USE. - - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

307

ISO/IEC 1381th6:1998(E) 0 ISO/IEC

a The assocTag identifies the connection on which the DownloadInfoIndication() message is broadcast. The
communication to the Clients of the associations between the used association-tag values and the used connections
is outside the scope of this part of ISOIIEC 138 18.

a The selector field shall contain a selectorType of value 0x01 and the DSM::MessageSelector structure. The
DSM::MessageSelector structure contains a transactionId field and a timeout field as defined in clause 5. The value
of the transactionId field shall be set to the transactionId of the DownloadInfoIndication() message that contains the
module delivery parameters. The timeout field shall indicate the time-out period in microseconds to be used to time
out the acquisition of the DownloadInfoIndication() message.

The semantics of the fields of a Tap with a TapUse value of BIOP-OBJECT-USE are described below:

0 The use field indicates the use of the Tap. The value of this field shall be BIOP OBJECT USE. - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the broadcast channel on which the Modules are broadcast. The communication to the
Clients of the associations between the used association-tag values and the used connections is outside the scope of
BIOP.

0 The selector field shall be of 0 length.

11.3.2 Message Set Definition
BIOP conveys the U-U objects Directory, File, Stream, and ServiceGateway in messages. These BIOP messages are all
derived from a generic object message format. BIOP defines four messages, namely:

1.

2.

3.

4.

a Director-v message. The Directory message is used to convey a U-U object of the type Directory. It contains
references to other Directory, File, Stream, and ServiceGateway objects.

a File message. The File message is used to convey a U-U object of the type File. It just contains just the data of the
file data.

a Stream message. The Stream message is used to convey a U-U object of the type Stream. It contains a reference to
the stream in the broadcast network.

a ServiceGateway message. The ServiceGateway message is used to convey a U-U object of the type
ServiceGateway. It contains references to other Directory, File, Stream, and ServiceGateway objects. There shall be
no more than one ServiceGateway message in one U-U Object Carousel.

11.3.2.1 Generic Object Message Format
The generic object message format is used to encapsulate the data and attributes of a single object. The message consists
of a header, a sub-header, and a message body. The syntax and semantics of the generic object message format are
defined below.

308

0 ISO/IEC ISO/IEC 13818-6:1998(E)

nodule BIOP {
typedef unsigned long ServiceID;
struct ServiceContext {

ServiceID context-id;
sequence<octet,65535> context-data;

> .
sbuct MessageHeader {

char magic[4];
Version biop version;
boolean byte-order; -
octet message-type;
unsigned long message-size;

1 .

sbuct MessageSubHeader (
sequence<octet,255> objectKey;
sequence<octet> objectKind;
sequence<octet,65535> objectInfo;
sequence <ServiceContext,255> serviceContextList;

I .
i
struct GenericObjectMessage {

MessageHeader messageHeader;
MessageSubHeader messageSubHeader;
sequence<octet> messageBody;

1 . 9
1. 9

The semantics of the fields of the BIOP::MessageHeader are as follows:

The magic field identifies the BIOP message. The value of this field is always “BIOP” encoded in IS0 Latin-l.

The biop - version field contains the version number of the BIOP protocol used in this message. The version number
applies to the structure and encoding of the message only. Therefore it is not equivalent with the version of the
BIOP::ObjectLocation, though it has the same structure. The major version of this specification is 1; the minor version
is 0.

The byte-order field indicates the byte ordering used for the following subsequent elements of the message (including
message-size). A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates little endian ordering.

The message type field indicates the type of the message. The value of this field shall be set to 0x00. The values in the
range from 0x01 to OxFF are reserved for ISO/IEC 138 18-6.

The message - size field contains the length of the message following the message header in bytes. This count includes
any alignment gaps that may be introduced by the data encoding standard.

The semantics of the fields BIOP::MessageSubHeader are as follows:

The objectKey field identifies the object that is conveyed in this message. It is identical to the objectKey that is present
in the BIOP::ObjectLocation component of the IOR of the object. The value of the objectKey is only meaningful to the
Broadcast Server and is not interpreted by the Client.

The objectKind field identifies the kind of the object that is conveyed in this message. It is identical to the Kind string
that is present in the IOR of the object. The value of the objectKind defines the syntax and semantics of the objectInfo
field and the messageBody field.

The objectInfo field contains some or all of the attributes of this object. The syntax and semantics of this field are
dependent of the value of the objectKind field.

The service context field contains ORB service data that is passed from the Broadcast Server to the Client. The use of -
this field is outside the scope of this part of ISO/IEC 138 18. This field can be used by emerging specifications that
require service-specific context information to be passed by each acquisition.

309

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Note: The BIOP ServiceId should not be confused with the DSM-CC Server-Id. The ServiceId identifies some
application contextual information, whereas the DSM-CC ServerId is a Server identifier as specified by the U-N
Message protocols.

The semantics of the messageBody field are as follows:

The messageBody field contains the header, sub-header, and file data of the object. The syntax and semantics of this
field are dependent of the value of the objectKind field.

To instantiate the generic object message format into a dedicated object message the semantics of the objectInfo and
messageBody fields have to be defined. The objectInfo field is intended to carry the attributes of the object, while the
messageBody is intended to carry the data of the object. AS described later, the instantiated Directory message has also
an objectInfo field that may be used to carry the attributes of the bound object. By carrying the proper attributes in that
field the quick browsing through Directories and object attributes is supported. Hence the instantiation of the generic
object message format for a particular objectKind should also specify which attributes are carried in the objectInfo field
of the (parent) Directory message.

In the following the generic message format is instantiated for the Directory object, the File object, the Stream Message,
and the ServiceGateway object.

11.3.2.2 Directory Message Format
The BIOP Directory message is an instantiation of the generic object format. The following rules define this
instantiation.

1. The objectKind field shall contain the string “DSM::Directory” or “dir”.

2. The Access attributes of the Directory object are not encapsulated in the objectInfo field of the Directory message
and are neither encapsulated in the objectInfo field of the parent Directory object (if any). Hence, the objectInfo field
shall be empty.

3. The messageBody field shall contain the BIOP::DirectoryMessageBody structure. The syntax and semantics of the
BIOP::DirectoryMessageBody are defined below,

dodule BIOP (
typedef stringc255> Istring;
struct NameComponent (

Istring id;
Istring kind;

1 .
II
typedef sequence<NameComponent,255> Name;
typedef octet BindingType;
const BindingType nobject = 1;
const BindingType ncontext = 2;
const BindingType composite = 3;
I/
struct Binding (

Name bindingName;
octet bindingType;
IOP: :IOR objectRet
sequence coctet,65535> objectInfo;

1 .
typedef sequence cBinding,65535> DirectoryMessageBody};

t . P

The BIOP::DirectoryMessageBody structure consists of a loop of Bindings. A binding correlates an object name (i.e.
bindingName) to an IOR and provides additional information about the object. The IOR must include the BIOP Profile
Body when the referenced object belongs to the Carousel.

310

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The semantics of the fields of the BIOP::DirectoryMessageBody are defined below:

The bindingName field (i.e. id and kind) contains the path specification of the object (as defined by CosNaming).

The bindingType field indicates the type of the object binding. Binding can either be of type ‘nobject’ when the name is
not bound to a Directory or ‘ncontext’ when the name is bound to a Directory object. ‘composite’ is defined for
compatibility with the User-to-User Composite bindings, as described in clause 5.

The objectRef field contains the IOR of the object.

The objectInfo field may contain some of the attributes of the bound object as well as user private information about the
object. If attributes of the bound object are carried in this field they shall be the first structures that are encapsulated in
this field. The use of this field for user private purposes is outside the scope of this part of ISO/IEC 138 18.

11.3.2.3 File Message Format
The HOP File message is an instantiation of the generic object format. The following rules define this instantiation.

1. The objectKind field shall contain the string “DSM::File” or “fil”.

2. The Access attributes and the DSM::File::Content attribute of the File object are not encapsulated in neither the
objectInfo field of the File message or the objectInfo field of the (parent) Directory message. The
DSM::File::ContentSize attribute shall be inserted at the beginning of both the objectInfo field of the File message
and the objectInfo field of the (parent) Directory message.

3. The messageBody field shall contain the BIOP::FileMessageBody structure. The syntax and semantics of the
BIOP::FileMessageBody are defined below.

module BIOP (
typedef sequence <octet> FileMessageBody;

-1 . 7

The FileMessageBody contains the file data as an octet stream.

11.3.2.4 Stream Message Format
The BIOP Stream message is an instantiation of the generic object format. The following rules define this instantiation.

1. The objectKind field shall contain the string “DSM::Stream” or “str”.

2. The Access attributes of the Stream object are not encapsulated in either the objectInfo field of the File message nor
the objectInfo field of the (parent) Directory message. The DSM::Stream::Info-T attribute shall be inserted at the
beginning of the objectInfo field of the File message.

3. The messageBody field shall contain the BIOP::StreamMessageBody structure. The syntax and semantics of the
BIOP::StreamMessageBody are defined below.

module BIOP (
struct StreamMessageBody (

sequence <Tap,255>
1 . 9

stream;

The BIOP::StreamMessageBody consists a sequence of Taps that are associated with the stream object. The semantics
of the stream field are defined below.

The stream field contains one or more Taps that are associated with this stream object. Regarding the content of the
stream, either one or more Taps are present with a TapUse value of BIOP-ES-USE or one Tap is present with a TapUse

311

ISO/IEC 13818-6:1998(E) 0 ISOIIEC

value of BIOPJ?ROGRAMJJSE. In the first case, the stream consists of a number of elementary streams, while in the
second case the stream consists of an MPEG-2 program.

The semantics of the fields of a Tap that point to an elementary stream are described below:

0 The use field indicates the use of the Tap. The value of this field shall be BIOP ES USE. - -

0 The value of the id field is not defined by this part of ISOIIEC 138 18.

0 The assocTag identifies the connection on which the elementary stream is broadcast. The communication to the
Clients of the associations between the used association-tag values and the used connections is outside the scope of
this part of ISO/IEC 138 18.

0 The selector field shall be empty.

The semantics of the fields of a Tap that point to an MPEG-2 program are described below:

0 The use field indicates the use of the Tap. The value of this field shall be BIOP PROGRAM USE. - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the MPEG-2 Program Map Table is broadcast.

0 The selector field shall be empty.

The stream field may also contain one or several additional Taps referring to NPT, Event and Mode descriptors.

The semantics of the fields of a Tap pointing to a NPT descriptor are described below:

0 The use field indicates the use of the Tap. The value of this field shall be STR NPT USE. - -

0 The value of the id field is not defined by this part of ISOLEC 138 18.

0 The assocTag identifies the connection on which the NPT descriptor is broadcast.

0 The selector field shall be empty.

The semantics of the fields of a Tap pointing to Stream Mode and Stream Event descriptors are described below:

0 The use field indicates the use of the Tap. The value of this field shall be STR STATUS AND EVENT USE. - - - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the Stream Mode and the Stream Event descriptors are broadcast,

0 The selector field shall be empty.

The semantics of the fields of a Tap pointing to a Stream Event descriptor are described below:

0 The use field indicates the use of the Tap. The value of this field shall be STR EVENT USE. - -

l The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the Stream Event descriptor is broadcast.

0 The selector field shall be empty.

The semantics of the fields of a Tap pointing to a Stream Mode descriptor are described below:

0 The use field indicates the use of the Tap. The value of this field shall be STR STATUS USE. - -
0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the Stream Mode descriptor is broadcast.

0 The selector field shall be empty.

312

0 ISO/IEC ISO/IEC 138184:1998(E)

11.3.2.5 Service Gateway Message Format
The BIOP Service Gateway message is an instantiation of the generic object format. The following rules define this
instantiation.

1. The objectKind field shall contain the string “DSM::ServiceGateway” or “srg”.

2. The Access attributes of the Service Gateway object are not encapsulated in the objectInfo field of the
ServcieGateway message.

3. The messageBody field shall contain the BIOP::DirectoryMessageBody structure. The syntax and semantics of the
BIOP::DirectoryMessageBody are defined in subclause 11.3.2.2.

11.3.3 Transport Definitions

11.3.3.1 BIOP Messages
BIOP messages are transported in Modules of a DSM-CC Data Carousel. Modules may convey multiple non-fragmented
BIOP messages. The start of a HOP message shall coincide with the start of the Module. The Modules of the Data
Carousel are fragmented into Blocks. These Blocks are transported in DownloadDataBlock() messages.

The following semantics and constraints are imposed on the transport of the Blocks in the DownloadDataBlock()
messages:

The downloadId field of the DownloadDataBlock() messages shall have the same value as the carouselId field of the U-
U Object Carousel.

The moduleId field of the DownloadDataBlock() messages shall have the same value as the moduleId field of the U-U
Object Carousel.

The moduleVersion field of the DownloadDataBlock() messages shall have the same value as the moduleVersion field
of the DownloadInfoIndication() message that describes this Module.

11.3.3.2 Module Delivery Parameters
The delivery parameters of the module in the broadcast network are conveyed in a DownloadInfoIndication() message.
One DownloadInfoIndication() message can convey the module delivery parameters of multiple Modules of the same U-
U Object Carousel. The following semantics apply on the fields of the DownloadInfoIndication() message:

The transactionId field shall have the same value as the transactionId value encapsulated in the selector of the
BIOP-DELIVERY-PARAJJSE Taps of the IORs of the objects that are carried in Modules described in this message.

The downloadId field shall have the same value as the downloadId field of the DownloadDataBlock() messages which
carry the Blocks of the Modules described in this message. Consequently, the value of this field shall be equal to the
carouselId of the U-U Object Carousel.

The blocksize field contains the block size of all the DownloadDataBlock() messages which convey the Blocks, of the
Modules described in this message.

The window&e, ackperiod, tCDownloadWIndow, and tCDownloadScenario fields are not used and are set to zero.

The compatibilityDescriptor() field is not used and has a zero length.

The moduleId, modulesize, and moduleVersion fields have the same semantics as with the Download Data Carousel
scenario as described in clause ‘7.

The moduleInfoLength field defines the length in bytes of the moduleInfo field for the described module.

The moduleInfoBytes field shall contain the BIOP::ModuleInfo structure. The BIOP::ModuleInfo structure provides
additional delivery parameters and the Taps that are used to broadcast the Modules in the network. The syntax and
semantics of the BIOP::ModuleInfo structure are shown below.

module BIOP (L

313

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

struct ModuleInfo {
unsigned long moduleTimeOut;
unsigned long blockTimeOut;
unsigned long minBlockTime;
sequence <DSM::Tap,255> Taps;
sequence coctet,255> userInf0;

1 . 7
1 . 9

The moduleTimeOut field gives the time out value in microseconds that may be used to time out the acquisition of all
Blocks of the Module.

The blockTimeOut field gives the time out value in microseconds that may be used to time out the reception of the next
Block of the after a Block has been acquired.

The minBlockTime field indicates the minimum time period that exists between the delivery of two subsequent Blocks
of the described Module. Clients may use this value to adjust their acquisition procedures for optimization purposes.

The Taps field of BIOP::ModuleInfo shall contain at least one Tap with the TapUse value of BIOP OBJECT USE.
This Tap shall point to the network connection on which the Modules are broadcast. The semantic&f the fields of this
Tap are described below.

The userInfo field of BIOP::ModuleInfo is not specified by this part of ISO/IEC 138 18. In general, this field may
encapsulate additional information that is necessary to describe the delivery of the Module in the network.

The privateDataLength and privateDataByte fields have the same semantics as the Download Data Carousel scenario
does, as described in clause 7.

11.3.3.3 IOR of Service Gateway
The IOR of the Service Gateway is broadcast by means of DownloadServerInitiate() messages. The use of the
DownloadServerInitiate() messages for the carriage of the IOR of the ServiceGateway is such that U-N Download (non-
flow controlled) can be employed as a part of the Session attach0 functionality. In particular, the
DownloadServerInitiate() messages may also contain Taps (with TapUse values set to either
DOWNLOAD CTRL DOWN USE or DOWNLOAD DATA DOWN - - - - - - USE) that point to network connections on
which the DownloadInfoIndication() and DownloadDataBlock() messages are broadcast. that contains the descriptions
of the modules and modules themselves that have to be downloaded.

The following semantics apply on the fields of the DownloadServerInitiate() message:

The serverId field shall contain the 20 byte Carousel NSAP address of the U-U Object Carousel. The Carousel
Specifier is defined in subclause 11.2.2.

The compatibilityDescriptor() field is not used and has a zero length.

The privateDataLength field of the DownloadServerInitiate() message defines the length in bytes of the
privateDataByte fields that follow this field.

The data in the privateDataByte field of the DownloadServerInitiate() message shall contain the
BIOP::ServiceGatewayInfo structure. The syntax and semantics of the BIOP::ServiceGatewayInfo structure are defined
below:

module BIOP (
struct ServiceGatewayInfo {

IOP: :IOR objectRef;
sequence cDSM::Tap,255> Taps;
sequence <ServiceContext,255> servicecontextlist;
sequence <octet,65535> userInf0;

1 . 9
I . 9

314

0 ISO/IEC ISO/IEC 13818-6:1998(E)

The objectRef field contains the IOR of the ServiceGateway.

The Taps field shall contain zero or more Taps which have either a DOWNLOAD CTRL DOWN USE value or a
DOWNLOAD DATA DOWN USE value. The Taps with a TapUse of DOWNLkD C?XL D6WN USE shall
point to the network connectionson which the DownloadInfoIndication() messages are broadcast that describe the
modules that should be download before proceeding with the ServiceGateway attach0 functionality. The Taps with a
TapUse of DOWNLOAD DATA DOWN USE shall point to the network connections on which the -
DownloadDataBlock() messages are broadcast that carry the Modules that should be downloaded before proceeding.

The semantics of the fields of a Tap with a TapUse value of DOWNLOAD CTRL DOWN USE are described below: - - -

0 The use field indicates the use of the Tap. The value of this field shall be DOWNLOAD CTRL DOWN USE. - - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the DownloadInfoIndication() messages are broadcast. The
communication to the Clients of the associations between the used association-tag values and the used connections
is outside the scope of this part of ISO/IEC 138 18.

0 The selector field shall contain a selectorType of value 0x01 and the DSM::MessageSelector structure. The
BIOP::MessageSelector structure contains a transactionId field and a timeout field as defined in clause 5. The value
of the transactionId field shall be set to the transactionId of the DownloadInfoIndication() message that contains the
module descriptions. The timeout field shall indicate the time-out period in microseconds to be used to time out the
acquisition of the DownloadInfoIndication() message.

The semantics of the fields of a Tap with a TapUse value of DOWNLOAD CTRL DOWN USE are described below: - - -

0 The use field indicates the use of the Tap. The value of this field shall be DOWNLOAD DATA DOWN USE. - - -

0 The value of the id field is not defined by this part of ISO/IEC 138 18.

0 The assocTag identifies the connection on which the DownloadDataBlock() messages are broadcast. The
communication to the Clients of the associations between the used association-tag values and the used connections
is outside the scope of this part of ISO/IEC 138 18.

l The selector field shall be empty.

The userInfo field of BIOP::ServiceGatewayInfo is not defined in this part of ISO/IEC 138 18 and is user-private.

11.4 MPEG-2 Descriptors
The U-U Object Carousel protocol is network independent and is applicable for any type of broadcast network. Network
independence is achieved by using the Tap concept of clause 5. A Tap facilitates a reference to a particular network
connection by means of an association tag. In the course of resolving an object, Clients have to associate the Taps to
broadcast connections of the network. Clients need, therefore, to maintain the associations between the Taps and the
connections of the broadcast network.

When U-U Object Carousels are used on top of broadcast networks which implement the DSM-CC User-to-Network
Session Protocol, the associations can be delivered to the Client by means of the Session Setup sequence.

When U-U Object Carousels are used on top of broadcast networks which use MPEG-2 Transport Streams, but do not
provide the association capability of a DSM-CC U-N session, additional functionality is required. In particular,
mechanisms are necessary that facilitate

1. the association of a MPEG-2 program, via the Transport Stream Program Map Table (PMT), with a U-U Object
Carousel,

2. the association of a DSM-CC Tap with the Transport Stream packet identifier (PID) of the MPEG-2 bit stream
which is transporting the Service Gateway,

3. Client local object mapping of the PID on which the IOR of the Service Gateway is broadcast, and
4. the distributed implementation of a U-U Object Carousel on top of multiple MPEG-2 programs.

In order to provide the above mechanisms, three U-U Object Carousel descriptors are defined within the MPEG-2
Systems descriptor tag table. Table 1 l-2 contains the DSM-CC descriptor - tag assignments and, for reference purposes,
lists the assignmentspace for the MPEG-2 Systems defined values. For details of the MPEG-2 Systems defined values,

315

ISO/IEC 1381%6:1998(E) 0 ISO/IEC

see ISO/IEC 138 18-1, Table 2-39, Program and program element descriptors. Note also that DSM-CC defines other
descriptor tags in this space.

Table 11-2 MPEG-2 Systems descriptor-tag assignments for DSM-CC

descriptor tag
O-18 -

19
. 20

21

TS PS DSMCC Section Type
n/a n/a ITU-T Rec. H.222.0 1 ISO/IEC 138 18- 1 defined
x X carousel-identifier-descriptor
X X association-tag-descriptor
X X deferred association tags - - - descriptor

22 X X ISOIIEC 13 8 18-6 reserved
23 X X DSM-CC NPT Reference descriptor (see clause 8, Stream Descriptors)
24 X X DSM-CC NPT Endpoint descriptor (see clause 8, Stream Descriptors)
25 X X DSM-CC Stream Mode descriptor (see clause 8, Stream Descriptors)
26 X X DSM-CC Stream Event descriptor (see clause 8, Stream Descriptors)

27-63 n/a n/a ITU-T Rec. H.222.0 1 ISO/IEC 13818-1 defined
64-255 1 n/a 1 n/a 1 User Private per ITU-T Rec. H.222.0 1 ISO/IEC 138 18-l

These program descriptors may be used when U-U Object Carousels are implemented on top of broadcast networks
which use MPEG-2 Transport Streams and implement the DSMCC-section syntax (defined in clause 9), a backwards
compatible extension to the MPEG-2 Transport Stream private-section syntax (specifically, that DownloadDataBlock()
messages and DownloadInfoIndication() messages are transported by means of DSMCC-sections).

11.4.1 Carousel identifier descriptor
The carousel identifier descriptor facilitates the association between a MPEG-2 program and a U-U Object Carousel.
The intended location of the carousel identifier - descriptor0
program. The syntax and semantics of the carousel identifier

is the first descriptor loop within the PMT of the MPEG-2
- - descriptor0 are described below:

Table 11-3 carousel identifier - - descriptor

Syntax No. of bits Mnemonic I
carousel-identifier-descriptor0 {

descriptor-tag 8 uimsbf
descriptor length - 8 uimsbf
carousel-id 32 uimsbf
for (n=O;n<N;n++) {

private data-byte - 8 uimsbf
1

The descriptor-tag field is an 8-bit field. For the carousel-identifier - descriptor, the value shall be 19 (decimal).

The descriptor - length field specifies the length of the descriptor in bytes.

The carousel id field is a 32 bit field. Its value shall be identical to the carouselId of the U-U Object Carousel. -

The private data - - byte field is user private and is not specified by this part of ISO/IEC 138 18.

11.4.2 Association tag descriptor
The association tag descriptor facilitates the association between an association - tag and an MPEG-2 elementary/PSI bit
stream. In the case of the U-U Carousel, it may be used to identify the streams on which download data (e.g.,
ServiceGateway) are transported. To relate a bit stream (and hence its PID) to a particular association - tag value, the
Broadcast Server may insert the association - tag descriptor in the program descriptor loop of the bit stream.

The syntax and semantics of the association - tag - descriptor are described below:

316

0 ISOAEC ISO/IEC 13818-6:1998(E)

Table 1 l-4 association - tag - descriptor

Syntax No. of bits Mnemonic
association-tag-descriptor0 (

descriptor-tag 8 uimsbf
descriptor-length 8 uimsbf
association-tag 16 uimsbf
use 16 uimsbf
selector byte length 8 uimsbf
for (n=O><Nl&-r++) {

selector-byte 8 uimsbf
I
for (n=O;ncN2;n++) {

private-data-byte 8 uimsbf
I

,I

The descriptor - tag field is an 8-bit field. For the association-tag-descriptor, the value shall be 20 (decimal).

The descriptor - length field specifies the length of the descriptor in bytes.

The association - tag field contains a 16-bit value that identifies uniquely a related group of resources in order to assist
in end-to-end correlation of these resources. In the case of the U-U Carousel, it may be used to identify the PID of a bit
stream which is transporting download data. The Broadcast Server shall ensure the uniqueness of the association-tag
within the scope of the MPEG-2 programs that are used to implement the U-U Object Carousel.

The use field indicates the contents of the bit stream in which the association - tag descriptor is contained. The value of
the use field shall specify the syntax and semantics of the selector-byte field which follows. Table 1 l-5 contains the
assigned values of the use field. If the use value equals 0x0000, this indicates that DownloadServerInitiate messages
which carry the IOR of the Service Gateway are contained in the bit stream identified by this PID. In this case, the data
in the selector-byte fields shall contain the fields that are shown Table 1 l-6. If the use value equal 0x0001, this indicates
that general object carousel data are contained in the bit stream, and selector-byte shall be set to 0.

Table 11-5 assigned values for the use field

value of use field Description
0x0000 ServiceGateway
0x000 1 General Object Carousel Data

0x0002-OXOOFF reserved for ISO/IEC 13 8 18-6
0x0100-OXFFFF user private

selector-byte field content
transaction-id, timeout

0
reserved for ISO/IEC 138 18-6

user private

The selector byte length field defines the length in bytes of the following selector - - - byte fields.

The meaning of selector byte field is dependent upon the value of the use field. In the case when the use field has the
value of 0x0000, the datain the selector-byte fields shall contain the fields that are shown Table 1 l-6.

Table 11-6 transaction id and timeout fields -

transaction-id 32 uimsbf
timeout 32 uimsbf \

The semantics of the transaction id and timeout fields are as follows. -

The value of the transaction-id field shall correspond to the transaction-id of the DownloadServerInitiate() message
that conveys the IOR of the Service Gateway of the U-U Object Carousel. If this value is set to Ox-, then this
indicates to the receiver that the transaction-id value is not known.

317

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

The timeout field shall indicate the time-out period in microseconds that may be used to time out the acquisition of the
DownloadServerInitiate() message. If this value is set to OxFFFFFFf;f;, then this indicates to the receiver that the timeout
value is not known.

The private data - - byte fields is user private and is not specified by this part of ISO/IEC 138 18.

11.4.3 Deferred association tags descriptor
A U-U Object Carousel may use multiple bit streams (therefore, multiple PIDs), programs, and Transport Streams to
broadcast the objects and associated control information. To facilitate Clients with the local mapping of all
association-tags that are used in the different MPEG-2 programs for the U-U Carousel, a descriptor is defined that may
be inserted in the first descriptor loop of the PMTs of the MPEG-2 programs that implement the U-U Object Carousel.
The deferred assocation tags descriptor0 contains all association-tags that are used within the U-U Object Carousel
but that are nit associated with a PID in the PMT in which the descriptor resides. The
deferred association - - tags - descriptor0 contains, therefore, a forward reference to a MPEG-2 program that does contain
the PID to which the association tag is linked. Multiple deferred-assocation-tags-descriptor()’s may be inserted in a
PMT if necessary.

The syntax and semantics of the deferred association - - tags - descriptor0 are described below:

Table 1 l-7 deferred-association - tags - descriptor

Syntax
deferred-association-tags_descriptor() (

descriptor-tag
descriptor length
association-tags-loop-length
for (n=O;n<N 1 ;n++) (

association-tag
1
transport stream id - -
program number
for (n-O;n<N2;n++) (

No. of bits Mnemonic

8 uimsbf
8 uimsbf
8 uimsbf

16 uimsbf

16 uimsbf
16 uimsbf

private data - - byte 8 uimsbf
1

The descriptor-tag field is an 8-bit field. For the deferred-association - tags - descriptor, the value shall be 21 (decimal).

The descriptor-length field specifies the length of the descriptor in bytes.

The association - tags - loop - length field defines the length in bytes of the loop of association tags that follows this field.

The association - tag field contains the association-tag that is part of the U-U Object Carousel, but not associated with a
PID in the PMT in which the descriptor resides (i.e., not associated with this MPEG-2 program).

The transport - stream id field indicates the Transport Stream in which the MPEG-2 program resides that contains the -
PIDs that are associated with the enlisted association tags.

The program - number field indicates the program-number of the MPEG-2 program that contains the PIDs that are
associated with enlisted association tags.

The private data - - byte field is user private and is not specified by this part of ISO/IEC 138 18.

318

oi ISOLEC ISO/IEC 13818=6:1998(E)

12. User-to-Network Pass-Tkru Messages

12.1 Overview and the General Message Format
The User-to-Network (U-N) Pass-Thru messages are used for sending messages between Users. These messages are
assumed to be part of a larger protocol stack and are designed to be carried on a lower layer transport protocol (e.g.,
UDP/IP, TCP/IP, AALS, Serial). Constraints on specific lower level protocols are given in clause 9.

All U-N Pass-Thru messages are sent from a User (either a Client or a Server) through the Network which delivers the
message to the User (either a Client or a Server) specified by the sender of the message. This clause describes which
messages are available, the format of these messages, and scenarios describing how these messages are used.

The syntax of these messages is extensible beyond those defined in this part of ISO/IEC 138 18. Additional messages for
a specific implementation are outside of the scope of this part of ISO/IEC 138 18. If any of the messages or scenarios
defined in this part of ISO/IEC 138 18 are used, then they shall be implemented exactly as defined in this part of
ISO/IEC 13818.

All Pass-Thru messages have a common message format. Table 12-1 defines the User-to-Network Pass-Thru Message
format. This format is called the unPassThruMessage 0.

Table 12-l General Format of DSM-CC User-Network Pass-Thru Message

Syntax
unPassThruMessage () {

dsmccMessageHeader()
MessagePayload

The dsmccMessageHeader is defined in clause 2. For Pass-Thru messages, the dsmccType field shall be set to 0x05.

The MessagePayload is constructed from data fields and differs in structure depending on the function of the particular
message. Subclause 12.2 defines the DSM-CC User-to-Network Pass-Thru Messages.

12.2 Pass-Thru Messages
Table 12-2 lists the message id’s which have been defined for the User-to-Network Pass-Thru messages:

319

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Table 12-2 DSM-CC U-N Pass-Thru messageIds

the Network deliver PassThruDat
User. There is no response to this

PassThruData() from another User. There is no
response to this message from the recipient.

contains PassThruData() sent from the recipient of

PassThruReceiptIndication message
contains PassThruData() which will
to the originator of the PassThruMessage
sequence.

0x0007 -
ox7FFF

Reserved ISO/IEC 138 18-6 Reserved.

0x8000 -
OXFFFF

User Defined User Defined U-N Pass-Thru message.

12.2.1 Use of PassThruData() structure in Pass-Thru messages
Pass-Thru and Pass-Thru Receipt messages contain a PassThruData() field which contains privateData. The definition of
this data is outside of the scope of this part of ISO/IEC 138 18. Table 12-3 defines the format of the PassThruData()
which is transported in Pass-Thru messages.

Table 12-3 DSM-CC U-N PassThruData format

Syntax
PassThruData() (

PassThruDataLength
for(i=O; icpassThruDataLength; i++) (

passThruDataByte
1

Num. of Bytes

2

1

The PassThruDataLength field defines the total number of passThruDataBytes.

320

0 ISO/IEC ISO/IEC 13818=6:1998(E)

The passThruDataBytes contain private data. The format and usage of this data is outside of the scope of this part of
ISOIIEC 13818.

12.2.2 Pass-Thru message definitions

12.2.2.1 PassThruRequest
This message is sent from a User to the Network to request that the network deliver a message to the requested User.
Table 12-4 defines the syntax of the PassThruRequest message.

Table 12-4 DSM-CC U-N PassThruRequest message

Syntax
PassThruRequest() {

dsmccMessageHeader()
userId
passThruType
PassThruData()

Num. of Bytes

20
2

The userId field indicates the User to which the message is being sent. This value is supplied by the sending User.

The passThruType field shall be used to indicate the type of PassThruData() that is being sent. This value is supplied
by the sending User.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data is supplied by the sending User.

12.2.2.2 PassThrulndication
This message is sent from the Network to a User to deliver a message from the indicated User. Table 12-5 defines the
syntax of the PassThruIndication message.

Table 12-5 DSM-CC U-N PassThruIndication message

Syntax
PassThruIndication() {

dsmccMessageHeader()
userId
passThruType
PassThruData()

Num. of Bytes

20
2

The userId field indicates the User from which the message was sent. This value is set by the Network.

The passThruType field shall be used to indicate the type of PassThruData() that is being sent. This value is supplied
by the sending User.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data is supplied by the sending User.

12.2.2.3 PassThruReceiptRequest
This message is sent from a User to the Network to send a message to the indicated User and request a receipt message
from that User. Table 12-6 defines the syntax of the PassThruReceiptRequest message.

321

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Table 12-6 DSM-CC U-N PassThruReceiptRequest message

Syntax
PassThruReceiptRequest() (

dsmccMessageHeader()
sourceUserId
destinationUserId
passThruType
PassThruData()

Num. of Bytes

20
20

2

The sourceUserId field indicates the User which is sending the message. This value is supplied by the sending User and
is the address to which the Network will send the response.

The destinationUserId field indicates the User to which the message is being sent. This value is supplied by the sending
User.

The passThruType field shall be used to indicate the type of PassThruData() that is being sent. This value is supplied
by the sending User.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data is supplied by the sending User.

12.2.2.4 PassThruReceiptConfirm
This message is sent from the Network to the sending User in response to a PassThruReceiptRequest message. Table 12-
7 defines the syntax of the PassThruReceiptConfirm message.

Table 12-7 DSM-CC U-N PassThruReceiptConfirm message

I Syntax Num. of Bytes
PassThruReceiptConfirm() {

dsmccMessageHeader()
response 2
PassThruData()

The response field shall be used to indicate the status of the Pass-Thru message. If a receipt message is received from
the receiving User, the Network shall set this field to the value received from that User. If a receipt message is not
received or the message scenario is terminated by the Network, the Network shall set this field to indicate the reason for
the failure.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data is supplied by the receiving User. If the Network
terminates the scenario, as indicated by the response field, then the PassThruData() fields shall be set to 0 to indicate
that no data is present.

12.2.2.5 PassThruReceiptlndication
This message is sent from the Network to a receiving User to deliver a message from the indicated sending User and
request a receipt message from the receiving User. Table 12-8 defines the syntax of the PassThruReceiptIndication
message.

322

0 ISO/IEC ISOIIEC I3818=6:199S(E)

Table 12-S DSM-CC U-N PassThruReceiptIndication message

passThruType
PassThruData()

The userId field indicates the User which sent the message. This value is supplied by the Network.

The passThruType field shall be used to indicate the type of PassThruData() that is being sent. This value is supplied
by the sending User.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data is supplied by the sending User.

12.2.2.6 PassThruReceiptResponse
This message is sent from the receiving User to the Network in response to a PassThruReceiptIndication message. Table
12-9 defines the syntax of the PassThruReceiptResponse message.

Table 12-9 DSM-CC U-N PassThruReceiptResponse message

Syntax
PassThruReceiptResponse() (

dsmccMessageHeader()
response
PassThruData()

Num. of Bytes

2

The response field shall be set by the receiving User to indicate the status of the Pass-Thru message.

The PassThruData() structure contains private data which is outside of the scope of this part of ISO/IEC 138 18. Refer
to subclause 12.2.1 for more information on this data. This data shall be supplied by the receiving User.

12.3 User-to-Network Pass-Thru Message Field Data Types
Table 12-10 defines the data fields used in the User-to-Network Pass-Thru Messages.

Table 12-10 User-to-Network Session Message Field Data Types

Field Name 1 Length (Bytes) 1 Range I Description

passThruType 2 0x0000 - OXFFFF This field is used to indicate the type of - -
PassThruData(). Table 12- 12 defines the
possible values for this field.

response 2 0x0000 - OXFFFF This field indicates the response to a Pass-
Thru Receipt message. This response is
passed back to the requesting User. Table
12- 11 defines the possible values for this
field.

323

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

User. This address must
ess or be able to be

to a specific address by the

12.4 Pass-Thru Message Scenario
Users may communicate between themselves using the Pass-Thru commands which pass a message payload through the
Network. The Pass-Thru messages may be sent from any User to any other User in a Network. In these scenarios, the
sender of the message shall be considered to be the sending User and the recipient shall be considered to be the
receiving User. The format of the User Data payload of these messages is defined by the Users and is outside of the
scope of this part of ISO/IEC 138 18. Since Pass-Thru messages are not confirmed, these messages shall be considered
to provide unreliable transport at the User-to-Network level.

12.4.1 Pass-Thru Message scenario
Figure 12- 1 describes a Pass-Thru message scenario.

Sending
User

SRM Receiving
User

PassThruRequest
) PassThruIndication

userld
passThruType
PassThruData()

2.
useriD
passThruType
PassThruData()

Figure 12-1 Scenario for Pass-Thru Message

12.4.1 .I The Sending User sends a PassThruRequest
Step 1 (Sending User)

The Sending User creates a PassThruRequest message which contains the userId of the recipient of the message, a
passThruType, and the PassThruData() payload.

Step 2 (SRM)

The Network validates the senders address and the recipients userId. If the receiving userId’s address can be resolved by
the Network it creates a PassThruIndication message and delivers it to the indicated User. The userId field shall contain
the Id of the User which sent the PassThruRequest message. The passThruType and PassThruData() shall be identical to
the data received in the PassThruRequest message.

Step 3 (Receiving User)

The Receiving User validates the message and, if it is applicable, processes the payload.

12.5 Pass-Thru Receipt Message Scenario
The PassThruReceipt messages allow a User to send a message to another User and request that the recipient respond to
the message. The Pass-Thru Receipt commands pass a message payload through the Network. The format of the payload
of these messages is defined by the User and is outside of the scope of this part of ISO/IEC 138 18. The Initiator of a
PassThruReceipt message is considered to be the sending User and the Recipient is considered to be the receiving User.

324

0 ISO/IEC

12.5.1 Pass-Thru Receipt Message scenario
Figure 12-2 describes a Pass-Thru Receipt message scenario.

ISO/IEC 13818=6:1998(E)

Sending
User SRM

Receiving
User

PassThruReceiptReauest
userld
passThruType
PassThruData()

+
2

I
PassThruReceiptlndication

userld
passThruType
PassThruData()

, PassThruReceiptResPonse
response
PassThruData() PassThruReceiptConfirm

4

response
PassThruData()

Figure 12-2 Scenario for Pass-Thru Receipt Message

12.5.1 .I The Sending User sends a PassThruReceiptRequest
Step 1 (Sending User)

The sending User creates a PassThruReceiptRequest message which contains the userId of the recipient of the message,
a passThruType, and the PassThruData() payload.

The sending User starts timer tMsg. If this timer expires before the PassThruReceiptConfirm message is received, the
scenario terminates. If the PassThruReceiptConfirm message is received after the timer has expired, this response shall
be discarded.

Step 2 (SRM)

The Network validates the sending userId and the recipients address. If the recipient’s address can be resolved by the
Network it creates a PassThruReceiptIndication message and delivers it to the receiving User. The userId field shall
contain the Id of the User which sent the PassThruReceiptRequest message. The passThruType and PassThruData()
shall be identical to the data received in the PassThruReceiptRequest message.

The SRM starts timer tMsg. If this timer expires before the PassThruReceiptResponse message is received, the SRM
shall send the PassThruReceiptConfirm to the sending user to indicate that no response was received and the scenario
terminates. If the PassThruReceiptResponse message is received after the timer has expired, this response shall be
discarded.

Step 3 (Receiving User)

The receiving User validates the message and, if it is applicable, processes the payload. The receiving User generates a
PassThruReceiptResponse message and sends it to the Network. The response field indicates how the message was
handled by the receiving User. The PassThruData() is generated by the receiving User and shall be passed to the sending
User which generated the request. The content of the PassThruData is outside of the scope of this part of ISO/IEC
13818.

Step 4 (SRM)

Upon receipt of the PassThruReceiptResponse message, the Network cancels timer tMsg. The Network generates a
PassThruReceiptConfirm message and sends it to the sending User. The response and PassThruData() fields shall be
identical to the data received in the PassThruReceiptResponse message.

Step 5 (Sending User)

Upon receipt of the PassThruReceiptConfirm message, the sending User cancels timer tMsg and processes the message
according to the response and PassThruData() fields.

325

ISO/IEC 1381&6:1998(E) 0 ISOIIEC

12.6 Pass-Thru Response Codes
Table 12- 11 defines the response codes that are defined for use by the U-N Pass-Thru messages:

Table 12-11 User-to-Network Pass-Thru message response codes

Response
rspOK

rspNoUser

Value
0x0000

0x000 1

rspNoReceipt 0x0002

reserved 0x0003 - ox7FFF
User defined 0x8000 - OxFFFF

Description
May be used the receiving User to
indicate that the message was
accepted.
Indicates that the Network was unable
to deliver the PassThruReceipt
message because the indicated userId
was invalid.
Indicates that the receiving User of a
Pass-Thru message did not respond to
a passThruReceiptIndication message
within tMsg time period.
ISO/IEC 138 18-6 reserved.
These response codes are defined by
the User and are outside of the scope
of this part of ISO/IEC 138 18.

12.7 Pass-Thru Type Codes
Table 12- 12 defines the type codes that are defined for use by the U-N Pass-Thru messages:

Table 12-12 User-to-Network Pass-Thru type values

Value
0x0000
0x0001- 0x0015
0x0016 - Ox7FFF
0x8000 - OxFFFF

Description
ISO/IEC 138 18-6 reserved
ITU-T Rec. T. 120-series reserved
ISO/IEC 138 18-6 reserved
User Defined. The use of these values are
outside of the scope of this part of ISO/IEC
13818

12.8 State Machine
See Normative Annex A for the SDL diagrams which define the Pass-Thru state machines.

326

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Annex A
(normative)

User-Network Protocol State Machines

A.1 Introduction
State machines for the User-to-Network protocols are described using the Specification and Description language. SDLs
are included for the Session, Download (flow controlled scenario only), SDB-CCP, and Pass-Thru protocols.

A.2 U-N Session
The following pages contain the U-N Session protocol SDLs.

Figure A-l U-N Session Specification and Description Language

327

ISWIEC 13818=6:1998(E) 0 ISOIIEC

3’
m

*zr
I

zr’d
!gj %g

“SW $a
2 00,

F @ is!%
83

b a %a”
-- \bq +xg x+ “cd- L”crJ

’ 33% 33
YY

i?!
,i?2 3

~~~p$Jj B 
000 .m .C( .H 0 & 
vIul* s f$c$ pg.2 2 

mvlmvlvlroti 

-2 
ki 

g 
‘$c? ’ 

5 aJ 
d 5 

22 &3 
,, r 1 5% 22 

$3 w /1 
c 

I ‘3 zijcu$ 
8 1 UC3 0 $ 8 z%g .M ..-t ix33 
E I 

GG&2 

23 
m -- 

328 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

329 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

I 
? 
I 

; f'l 
i > 1 I 
I 
I I ; 
P I I -- 

i2 
8 
“0 
2 
.; 

ii 

2 
Er 

p! 
8 
5 
3 
p! 
p! ‘3 
5 

2 G .e 
3 
3 .* 
2” 

8 
2 
0” 
5 
.z 
r 
* ” 
b 
F 

330 



0 ISOIIEC ISO/IEC 13818-6:1998(E) 

z 3 
u’ u 
z 
Ei 
E a, Pi 
2 

iL’1 
I I 
I I 
I I -- 

331 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

‘+ti ’ $2 
&z E .d 

‘r! I -0” 2 - I 2 $3 u ScJ~~ 22 i - . I zr&$,a 
w 2.2 / H$‘i 33 $3 ” g&&g 

6 33gp 

EJ& $ 555s 
g;gs 

uuuu = ;? -22 ‘2 .- 5558 .- 2 s 
‘E ‘E 2 $j GGUU 

f’l ’ 
WC22 

z QJ 
3 24 8 
z I-- 

332 



0 ISBIIEC ISO/IEC 13818=6:1998(E) 

3 
2 
2 
2 8 
‘P-4 3 -~--- 

- - 5 ." 
5 d-- g . E di I - E 5 1 .g 3 

gq 8 
"$g gg g)$ 

J P ?gj 8 p&y--g ul 
g I u i&p% 8 2 03-O P ~ .z g 8 boz 3 3 

M-l 'Z .B 'jc: .'E! q&qQ & ~8~F~.e!32&+ Ma 

333 



ISO/IEC 1381%6:1998(E) 0 ISO/IEC 

s 
3 
Ei 
E c 0 .d z ----- 
4 d-- 

I g 
c - - . . 

% i 
B 8 d 

;f u I 8 
- “p ii5fj & 

2 0 
g I 

Hj ~~-~~y~:@ 
13% 

cf: ..&s> SdG 30 iti -E 33 
yg;qQ 

334 



0 ISO/IEC ISO/IEC l.3818-6:1998(E) 

-- 

I 
a 
3 I 

I 
‘5; P. rn”y 
240 

8 .- 
2 ----- 
6 d--- 

I g 
- - -. 

6 K E di 
z u I f 
z iiwl 8 g-gj$g:p 4 

- #j $25 &i 

8 I ‘E! ODz 
e Lg 

.E!+2~ 
& 

qfp+~ 
. . 91r3>~S”d q %:;3 hi 

335 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

Elrb 

* 
s 3 6 

s 
s z c 

.:“1 5 z ?I “cj- 
,l@i, l 

8 f 
1 

* 2 9 
E ” 

i=.i, l 1 i 

336 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

1 I 
I 

@I l jj I -0 28 2% 1 5 Y 1 -- I -- 

4 
3 5 

~ 

rr !! 2 
s$i 
3z” hd 

% t: 

L4 . O%S / IlOti i *is 

22 8 3 f3s 

; 
$E iz 
f3 

0- 

gj 

I 

GrL3- ,x -lY-1 

g 
I $2 5 

5; @g 
I B9i 

2 I .C 
i 

-3 b 

ii 
$g & 2% 
‘E!bw$ 

3 I 4 2~3~2jw~8$~ %5 g$p 4 .& f%, 
z 
8 

;zu;e,a g2.5af 
03% 2 cl *- c c .g z $ s 3 b ‘;I & 

c ._ Q,~Q)Ua.babO~~ -05 1 x z::Ez OWBc-‘OW-eZZj~ V) c5 ~1 c OU $3 vloull+~~u~ol>u~ i! 

337 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

ii! 
3 ii 7 . . 

I( (y / i 1 / 1 j 1 I1 ~, l__r 
--- d-3- g 1 

g I %!2 
gsg Ii < .- I z 2 .r 

g 
I c .s Q K 92 3 4 

5 I -ii!.E g 
is 

gg 

-3 I ii&j g !i$ -g3$j 95b “If ii 
z I 
i ii 

ZZ &tj &j$jQjj 
8 j@gp. 

8 Q) 0 ocl v1 .C p~o@$gj{jg ~~~OcuOl>U~ ------ % 

338 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

r-J-- 
l 1 I Y MC 
I 1 l;~*$l 
1 g 1 l#;l 

v1 ‘3 .g ‘j; 
I 

zg ~~ 1 ig hL4vI LEE % I -1 - 

I I I 1 I I .g I I I 1 I I 34 !I. 2 
s 

I p &J Ld ‘1 c- I g 1 I ggl 
cd. “2 30 I 3; 1 20 I 8% I 13 -1 - -- -- 

I- - 
w‘ 

2 2-j 2; 

bC_ 

3 
E 

a ‘3 
9 ? 

h3,=i, / I[ 
& 

E 
“8 

4 Y 
83 

- Ed - 
b !! % 

ig - 
&z 
T 

VlP) it 
c?s 

% v1 Id 
& 

/g-q 4 g 0 3” II ‘G c 

I 
8 &3- ‘zi % 

k $2 
*< E g2 e v) ’ 0. 
xwm 

I zz fi &as 8 I 2% 
22 k 5 

1 ~~I~ f / 
2 

ill LJ 
jq 
& 

-- 

339 



ISO/IEC 13818=6:1998(E) 0 ISOIIEC 

- - 

340 



0 ISO/IEC ISOIIEC 13818-6:1998(E) 

I ,.$I 
11 0 3l 

I Gpl 
4 0-m a - .I >i?i G -- 



ISO/IEC 13818-6: 1998(E) 0 ISO/IEC 

r -- 

2 !!?L: 

. 2% 
pi” - 

2 
i!i 

s 2% 
x: e, ‘5; ’ WI 
;; a 2% 

I 
A ------ 

--i-/l 

I 
I 

v 
r &a^ 272 3% WI, 

-I 

r 

342 



0 ISO/IEC ISOLIEC 13818-6:1998(E) 

eE. 
c-” 

~~ 

1 ‘;I 

- 92 
ih 
v, cm 
2 &y 
zig2 

343 



HSOIIEC 138L8-6:1998(E) 0 ISO/IEC 

f --$%l 
g$ i ‘I; -0 gg 71 .- 2: 1 J .3 Y ..x 3 s -- 

3 2 b 

,.‘r @$ iI I Il ~!~~ 

L. 
8 8 
2 5 - 8 I 
2 % 2 5 -0 x 

- I- 

- - 
I 80 I I 

25 
G 

’ q I I 
s s !! 4-l 

_ s! 8 
z a0 ii - $2 - 
,o* Y -v 
2 .z --g 

I I 3 .2 
2 5 0 c* 

$32 1 I iv3 -- 

b)mQJ “cpu ) fi a- 2 
32s d.“s I- 
$g$ wlv 

344 



0 ISOIIEC ISO/IEC 13818=6:1998(E) 

.L 
2 II ;; 

rl 

;a 2 
3 

a .z 
X 7 

b 
2 

gJ 

Q$ 
“Z 

a 
E I 

1 I 3 1 I 1 I c-. g 
c- 1 

I 
.A 1 .d “0 p. aJ %2 I r. 1 I 

2 E 3 ;3 24 !! 
0 k?L 5 

I % 1 I s,cE! 5 i?2- 1 I ;21 g I -3 u 1 I .3 z 2 1 I 
Q -9-s 1 I 

gj 
1 k I- l-L Ig 

1 
L 3 ul - - -- -- -- 

1 ii 

+I-/ 

g 
“Z a 2 

5 II ‘i i.p 
c% 82 
gz a E 

345 



ISO/IEC 13818=6:1998(E) 0 ISOIIEC 

-w 
z ---- - -- 
a, d- . 
2 B 3 E-l 
g I 3 .iz 
k? d I lz ei & 5 . 4 i 2 . . 

-z >r 
Egg $6 $& 

a 72 
g I 6 .H z F;; !Q 
s I 2 Qfjvg 

.g g&g! . 2cd'm d 
2 *g",j g ~~~~~yj~&# . . 

i Lg 
a*2~g;p& 

8 
2 u_ c1.5; " c y ; -z 3 2 &a j 2 g .O o"2 v) s ‘ZE a 2 4 5.” O 2 c p9zY 3 s .2 gEa23 !I .* 3! Y 3% i?2 !G h 2!“0 ul a> ------- o* 

346 



0 ISO/IEC ISO/IEC 13818-6:1998(E) 

-:-~-~~ ” 7 .~ :i x 
-6 z r 

GIi 
2 7 
c .z 

, [ i , ; / ;. 

crf--- k 1 

347 



ISO/IEC 13818-6:1998(E) 0 ISOIIEC 

I 

f I 
2 
s 3 3A 03 / l-1 - z-5 

---- 

5 

2 8 
E 

r 
A 

2 c . z 
II 

&i 

2  

h  ~ ~, :=!~ 
3  

ouyv 

2  

an 
2  

EC 

--- 

- I- 

I 1 P 
4 Q-4 t! b 9 

g % z I 
lg z g 

p ) 2 
.g 
r.3 Sk 2 .* 2 0 244 $4 2 k? ,g J u 

348 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

r- 

II 1 P 
!I. i? 2 iz $3 3 VI .s 
@ fi 88 = 42”: fz ) f? r 0 3b % 20 

zd 

2  

iz 

z 

-2 L3 5  
I WI 

22 
II 

() 
& 

I=& 

I 

2  
‘5; c-. 

8% 2 /- c-u 1 .d 2 SE c% .d 04 
ul Ei 3 
8 

2 $1 
a 1 *-g -33 gl .z 

349 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

3 

2 7  . 
. 

L-I 8  
b  

~~~~~-~,i~l1! 

y

2 I
4 $2 I

$
k = $j 13 I .H

A
i_J

&I3
4$

E I
iz.5 1 E&“u - -

2 zg 2
II .

@ E ~~=tl, A2 1 i I

Y

3

3
2

c3_

- *

~

q

g
c

5 m

350

0 ISO/IEC ISO/IEC 13818=6:1998(E)

E

.

c

d
.

(J $1, i i ~=-q -~ ;4 $, i# i ~

I
I------ -1

1 - I-

P

g - I I
p-ii .?I
gb- 2 . > K” I I

ks p 2 I 1 ; 1 & ,p&

2

\

r .

b L

~ -i i~i;;~~~Ei)i

$g --
f

-q$F i I I I
&a0 ~SW .s L z ” 22 1412 I I 3 I Z:gYQ

I I ljj2 I
rf “oa u

I * 13 2 wi
I I 2.z 2 I I .& s” I

351

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

352

0 ISOfIEC ISOfIEC 13818=6:1998(E)

3
x cd

c-.
c

2
-~-~la~~-I

I
9 I L ‘5 r 2 z a, .- I ,eil >Z v)

!A yzs; WV E 24

3 --

i
3 g g 3 II .g

hi5
_ 2%

II -5
2%

gp

0*
z i3

h-
%

32
w

2 ‘Z

it b G s

VlE 2

2 2 % 2 .

~

geF g Q, *
B ~~, (j / I 1 @ :=‘! -~

23
2%

i ~! ~*‘c

\

p,

%
I % I v &
I I 3 2% I
i B / ldBri

353

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

2 .I
7
6 .r(CA
b
!i
3
? ‘&I z
2
.z
g

ii
P,

I
73
IE Q)
3 CijI a,
iz
24

$I

I
3 22 0 l-5 I

354

0 ISO/IEC ISO/IEC 13818=6:1998(E)

I I
(0
9
xm 82

I m 1 -- -

5f 0 L 2 Q 34
3, 9) P) c -~ > j, I\,:

3

-~. a 3 33% 0 13” 3 ?
*

~jj;, &I c aJ . : & 11~ . 11 ~
V
2 ;t‘ u 5-0 3 2z z

r----a
= 3.2 q

ISWIEC 13818-6:1998(E) 0 ISO/IEC

2 3 6. 5” I - O;? _ = $3 e. . ? . 2 . 5 G 3 ~ 3, r 2
s 20 r----- d)

8% y
G 5;

2
yj i v) L.

L-.-A

3

9

G
2 2 c-

5
g

\F

.[5
‘Z 42

$3 t? 3
Y a> %

rl-Y

/\
iJ
c# d) ‘;; > !$z v,s

8 I I
3 II ‘Z

ki ig

e3 &
I

@ -n. .9 az
E $24 ’ z .s 1;

9
2 !!

pi , iI~~~,

r--

l
I

i

3
II 2
hia

g

c1 Q)
CA
n.
E

k-3 ------

r-
’ -2

;?82
.9 -ii ;
sg 0
Sdi3
zj .T 15

356

0 ISOIIEC ISO/IEC 13818=6:1998(E)

I
I

I C.
72

1 i3f’ --

357

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

.C s” !! iii 2

L
j ; 2 X

I I I I
Cc-
2
E .” z
.r(
; I --

c- g 1 I I .w 2 3 1 c* I 5 .e z 1 I M B 1
2 I -- 1 $ I -- I I

2 !! -g i?h
i r-

&g e;‘e

!!
24x

4
@ c/J;3

b 2

-3 rc

!! i

7

2%
c Q) WC0 Ea r

358

0 ISO/IEC ISOAEC 13818=6:1998(E)

5 d G 2
x 3 !! ‘T:

@,iq

.

1 ii

I I a 2
2 s I

Li I
4 cc !! 0 gs

z _ ig _ % &$ F .d
‘Lf! I %? 1 2” -2 $ 3 $3 g 3 m Q) ‘Z 1 2~0 a” 3 s!d! EZ

5x * ? Gi -32
l-3 8 ub i!

!

iti .z 6 UC ‘;j ;gg 3 % .4 *gj %? 72
jgj

~ =!t ,t, i;;)~

Lrg----l
I 5 s? I

359

ISODEC 138P8-6:1998(E) 0 ISO/IEC

8 52
4 2 1 E a’ .4 3 2
3 2: 3 a” i? h 42 $ E z) 2 WI
!2 s 2 5 w

zt20 d z is

\
Q%3 wvl4 5

% C. 4: 3 0 I
1% g

11; ~
.N A& 2

8 ET-----
2 r c

5 -3

-~i~~~~i~~ c- ,II,

4--6 - - - 1

I
6
2 I

360

0 ISO/IEC ISO/IEC 13818=6:1998(E)

3 % sr; s
13 0 r----+u i

$ ti
z

.M g 5 ’ z 0 0 c-.
%id 22 LO ----I - --

361

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

--
I
I I
I g I 2

S-E II 2”v,
. g r.

’ -3; ’ ~;i; 1 ij[1 ,=(i‘:, 1 i ~

B
p!
3

z Q) 8-

II -
g c

. .

~~ pi ~=r, Di , i,

g- 3.
% -;;i

0

2 s

,sg
E c 3

.g 3 z-
; 8

pi, , i i)A

--
1

23

: 3
a

,=‘I, 82
E s. 5

$, se . 5

11,

)A 4

-1

362

0 ISO/IEC ISOAEC 13818-6:1998(E)

c ij u ‘2 .!j z
g-3 2

“, = 22 > ‘S 4 -B & z
%i ta 2

3 2 . *
z

b:,=r, I;‘r

2
2
x

crEk--- g

I 4 ii!? D -0 .
I 72 E 2 I

%- I
r% ‘; T

3 3 8 I
a, s I %ei 8
CD -f r=” d
c 0 ggg bd >-- .r(I f$c-” - a z
si I

@-q&@~ p
~$g~gp~pJ .5i ii 2 8 *G. o&E “,g: cd *4 osm .i P 8

El c-1 *- k+” o%im* & 2
LX ss%sgejgzqs & .*>-** UcubLS91L>~ P

x

363

ISO/IEC 13818=6:1998(E)

A.3 U-N Download - Flow Controlled Scenario
The following pages contain the U-N Download (flow controlled scenario only) SDLs.

0 ISO/IEC

Figure A-2 U-N Download Flow Controlled Specification and Description Language

364

0 ISOIIEC PSO/IEC 13818=6:1998(E)

/

73
8
g I I -3 a 20
‘r!

v

0 3

5 03
8 *z “’ B 2

I

/

g g 1
sg $Q)d %%i 8 84%
1P4 aaa

c I
.

$3 -2

g jgg

p$ &-zJ

m & i

%I c-e%3

gps”

aaaaa

5 ‘r!

L
u

3 6’1
3
4
5 a, I
2 m --

365

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

366

f r1

I I --

0 ISOIIEC ISO/IEC 13818-6:1998(E)

72
9 d-1
s I I
8 I E I
d) z I I h w L--J

.n --
-1%

*yij 0 g
3 02 2
0-2 3”

~

$

‘z! 38 cd
g$ 1%

IY-
g;l&z ’

3 z .g 2 :g m

I

t
1

I

E

.

L
:

t .
s c

1

367

ISOLIEC 13818=6:1998(E)

r- -

0 ISO/IEC

; 42 I
B s3
f&L
a$$:: =zj znu
-z-z% 222 see
3oE ncln

-L- g pi
I

c ‘3 *;;i
t$js

Gag g”

gg%Y
Q a-z-xz
00000 --mm-
c:cecG
~~303030 nnnnnI

//r 1
3 5 3
z I-I

368

0 ISO/IEC ISOAEC 13818=6:1998(E)

.o

”

j 22 z

3 X
a 9

,

Y
0-d

24
X

*-
.p
33
ad jp .3

w - ‘E 8 a d SE
i! e i w ‘2dj
3G=: a . 3a

.i .z
ag 3
VI

iIYml+o

7
8

Q 9 Y .m
g”

6
2

Y X

$j %
g g 8 . -

9 8 1 1 2 9 0 0 8

.z 8

1 =P, 3 O> v, ;e’ 1

G-
*g ‘E *

E ga. :g 3 % c
$

Y law4 g-&g 8 5 fJ- :g 0 g$ d 4

4
z

.o h;
1

% $ i?

K
ef 3
5-g
:a

E ‘L’

369

ISO/IEC 13818=6:1998(E)
0 ISO/IEC

c F
.g

!1

‘3 -
8 3

0

E

Y

0) 3
E

X

$- z L
2 G 8 82%
3 G- 5 $j- 9 ;ii
+s>

:i:;"-;;
ii 3s 2 3
g=u xa a-$-o P Ill

*n p{; X
0% 3.>
n&-S"

t . s3* f;g - 5 Y’” 0 3 p c-g F
254-g iz z 8 .8 E g - = 53&Q! ‘2
-I$$ 0 -

.Y a ‘S 1
Y -2 a u

$58

c
w J

Ld, 2

= 2

-

r
i

L I
.g s \ 3 ‘5 .e > b 2 $B % cn:: 8

6 -c
22 i2-2 F ‘i-2 ‘i’i? Y .e z g X

UC,

r

$

LIr----dei--------

I et=” I

0 ISO/IEC ISO/IEC 1381$-6:1998(E)

g .” .
5”

3 3 7 lx 9

IJ

d .& +
8 gi”;B

%l f.3 a8 ,t?Z
II . . c

d B %
%I 5 -g

B %i __
UT
%
3’

0

1)
. .

28 L

-g

8
63 4

p

0

II _ . . Ed-4

Y g
a *l
iif/
O2
FE _

371

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

i !! A El G
0’
3s

@~

*u

%Y

z”z $

1
-

$2

g%j

3”
-8

j$+

ag$ 1
--

4 gp-
h

_-I

$ 3

I
i23g j as .s ! I

2
$88

egg

f g .s

o$

z .sis

r3-,
vj

0s 6)
9 -E

igg

I&g

c .s a

^

0-
‘S 3

w

5 .g

-

a2

go

$3 2a ‘=Y 0

-

m

0-
‘3 3

w

5

.!i

3

r-

a-2

go

$3

ea
‘;;',o e,

.
& .d E cf QB

8
a;;-

Fi‘$?Q
ZG 5s

;”

; ES
-43 -A= -+.I

z g

-$;x aa 8s AD
a&j X3

!! ; 2 s
za

@3 % 4 I42 2 .g

AIIr:

ge 2 zg$ i-3
gz --0

d 2 X
4 2 "3

as
-2 Q)Q) > s G

"2 z 3 - Zk3Ga 0 ".a l-j -1
3’6OFJ .g /

-
$5@ v

)
k

@Jj
w X

qz 1
1 gi

"u ~-c.c"a ;;i 3 '0 a-c sz tin 0 7 .s c s 33;
02 3>

2 s;
n ES'% H 8 &a3

”
‘.g z

5
$

I

a-2 go
$2 2a ‘=;‘y b)

372

0 ISO/IEC ISOAEC 13818=6:1998(E)

F-7 F-4
t=:
?
kiz
%
ii2
‘r: 3
a”

5 z

j 6’1
g I B

I
% I I
9 E9 l-1

f 2 s;” 1
ay
2q
gg- i %g” Q -a %3$
T?z zaoa

‘si*Ebg ’
iFi3~~
sgg eg
3$&%” u-a -0-a u%m
FE-S aaaaa

J

373

ISO/IEc’ 1 ?Rl SL64 99SMi’,~ 0 TSOITEC * - ---_---

!!I 22 a

I

‘2
I2 LT
a a

g

;c‘ a, .d
:g $

= E- a,> mP) * 3 .* VI

+d-
------ -----------

k3 I ei is g” gg ?!c ^
is

L
c- b

a, L P
M

3 I
CQ K c-x iii i’s

@ .g 3g-g 4
2 g

.p &:I &j 8 tb 6’; iz ‘;H &j
z r 2 is

3 51 g

$ 1
35%

p@

6
w;

#@~QpjQzj-gg ggs ij$ ii& Emg.@gq g
8.

~‘S .s ‘3 ‘3

fj I 5;
’ t$g

*cz 8-&Q%
Q

ark &p@j g&Z& &s$ Q&&@ j
bgqj-8 ~~-~~~gg.~gB~qcz $gc~co. -b3

*& ~?j&~~~~s % @pg & -fi Q i22 g $3&$ i !T&‘g.g”“-~ %gq, 8
i

&&&~ qr;,
& 1 ~~.~.%s.g.5.~x $s;E;as+ s$# z gx EC E g 2.; *g @ @ g @ gpg

b b; b b ~~~~~~~~~~~~s~.~~~~~~ gi “PEQ
YICUL-IC ------- -LI---p-p---

0 ISO/IEC ISOIIEC 1381$-6:1998(E)

z
5
ii 0

_I;

9 ’ z
2
Ei

---__-
J-

n I
z-1

3Q
0 c

2 i g c
$2 ‘&

q3g
1 q.24~

I

@Y&$)

.g

LQ

SE$i 1
z;a$j d

@a.$~ i3
/h&q”

.zJ a,-r:3
if

a
g g -g ,$z

59 stg&

SOOG
I VI .5 4 E A iq

3 7 -3 $2

6 fj,o z-g,

.dr--- -----------____- iti. --I

c
O-2 ‘S
(gj
ea

I

mta Y?u
$2 8:: ZCL!

375

ISOPIEC P3818-6:1998(E) 0 ISO/IEC

a
4 E .$

~

4
8 I---- -I-t-

I I 5-l 2
A I -j bz 81

-&%u 2 2 I
s 3 ‘i$ -g
2 s I 1 q(ij I WI 9 & ‘;: Y - ri

8

2 c I--- I -
@ $

3 FI
; ilt . 0 /-----I I 3r;i 1 11

1 1 yJ

ji ~Iriil- 4 3 .$$.& lx 0

1

r -I
z sg
2.2 P) c-3 c ia c%:E; E

376

0 ISO/IEC

A.4 U-N Switched Digital Broadcast Channel Change Protocol
The following pages contain the U-N SD&-CCP SDLs.

ISO/IEC 13818=6:1998(E)

Figure A-3 U-N SDB-CCP Specification and Description Language

377

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

378 0

1 N 2
22 0= 5 22
u oz.
g aa ii 3
WI fijG?
.g $ $

qj

$ “vl

3 743 $
I

ii
8 m” - xi s=,

Jz 9 Eg$
+ \a “5

0 ISO/IEC ISOAEC 1381S=6:1998(E)

0

A $2
2 Q
.2 G! $2 g&) %&& ! “‘fj 3 3 o”cJ GU cd* S’G g g 23 g&g
;gGJ 12 ovlvl ii@ sgJ$ a.$& *- -1% $pwL 63 “& & - is v1 olo’2s2 0 0 p)uuP)Q)Qp ii Fi 2 &%m2g &f& tj~%.5.5~~D &8& 2

.
ga ii+! 2%
iv :
zms 2 Ea 3 33 3
!-z ;=
Ye, 2
g
3%

2
$3 $Lg
g a II 2 ollb ’ 3 bon
gj c3?6

-CO
c - ‘3

0,i-i
.g g$

85_,,,
sza

gk”“z

5 i ; zzz
53

Q% @Jo00

g &ti==

r+ &%2;

.F+
us
7 e4
P . .
2
5
II
8
2 E:
m 0
‘;
3

4
9

5
8
0

3

5

5

z

379

ISOiIEC 13818-6:1998(E) 0 ISO/IEC
; : 1 i i
T i i I- 4

B
Is 2 I
1 2 g I g&m
l;$El I
I 24% 1
jg@ig 1
I gig I
l@i I
I CdOsI x” G gg I
I .s 8.8 I
lL?$ J

E

t; -cu
22 Gs 9 b!!

~

‘& tag &
Es 2 3 m*g & as&g won La
-2 c) k .r(

cllo

^ 5 9 Q om 2 $ c% &)bo !! .$ WI xg $g
g E

;;i
k-i&- -g ccn 8” Ei g- ’ -3
{.g4 g $5 @a

“z &..a 3
ggjg mz$

WE

9 ‘3 3 E:

Ew?

1
5 5
g

“a u
Ii 5

z g
&

I ;rl u 3 8 2
gJ

hl~~~%!2 3 !gg -3 z 0 l-i 2 cg.z ia 5 is . .
$ag .Q

;‘$ F&g 0. j
2 zl PQ”Q;;8 .s@g,p,acQ
El gg $‘fj eJ.gs . r-hl 81

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

z
0

! !
z

-043

5; !ii

2 kil

g,

u”

382

0 ISO/IEC ISO/IEC 13818=6:1998(E)

!! .B CA %g av) &O i.% “13

$ $ 3 3 Ej Ej

“Y ~,~

ha ha 2 2 3 93 93 z z

Y(), i

vi- vi- z z 9 9 6 3: 3 3 lz;;‘ lz;;‘
Oh Oh

0-~~,~
m .d

= ‘i>
z a

$2 $2 !! ! !
P)A P)A

.r(- - ..+ ..+

~-u K*.
24:

% % 2 & 2 &

;i

iff gs

-2 >

2 2

3
3 ;i

$j $j

!& !& s s

p p

lm lm 0 0 X X

r
@ @
aJ aJ

* .

383

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

384

0 ISO/IEC ISO/IEC 13818=6:1998(E)

El

22
7 ii

a
kil ’ El 5
E

kil

9 sa
i2 a

v) ‘Z 4; v u

3 -
hl

i

I-
v)

il

385

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

2

E

a
;ij

w1 8

8
z w 2

Do

F a
9’

2
3

a ‘r: .d c .r(

% 0 -
2 9

Iw1

j.$, &a 4

~-~,-~-~~

1w1
ii 2 P) 52 3

9 ‘S M E:

EWI
5 1 9
3 k v)

3 g

0 ISO/IEC ISO/IEC 13818=6:1998(E)

.
ii L

Y
%
%

) z
!i 9 5 Pi co

24 2 *
z E E b.4

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

-‘I 2 3
iti -~-~~

\

388

0 ISO/IEC ISO/IEC 13818=6:1998(E)

.Ld

0
k s ‘3 ‘3
W

. .

389

ISO/IEC 13818=6:1998(E)

A.5 U-N Pass-Thru
The following pages contain the U-N Pass-Thru SDLs.

Figure A-4 U-N Pass-Thru Specification and Description Language

0 ISO/IEC

390

0 ISO/IEC ISO/IEC 13818-6:1998(E)

r I
$
E . ‘B

88

B
2%
$z.

/
.

!%3-
9% .C-(.r(-a2

$8 3

I
$2

1

/ %a%

8H

EE% ""v&

cQ$

-2

s
;=: z '3
VVV 6

5
2 cd

8

z
ii

g I I a, z
‘r!

%i a
r i Q)

u r
\A---1 54 3 ka .M .e / ,-8tl m

88
3 I

8 ' BE & I z uJncn$

E I Q) I
';
G -- l I lLl,,

EE zz a"
%%

$@
o)P)o .e .H ." ddd vvv

391

ISO/IEC 13818=6:1998(E) 0 ISOfIEC

E f r
zl
E I
z I aJ
2 m --

4F-l
2 k a Q)+

.r ” ba y Ii
2 g.2 &

an
; .g $j g ;
2P-;aa’+
z.gs 3 . .

1
i. 3%
‘2 siy . 2 c
EEEE *. 2222

; Ezi2 t
iz2zg ‘:
%2& !

?J-- ti p: Eiiz ‘ii*
eLg

c-“W

8 8 . .
CA0
p

W 2
ad

E
E

a$

f cl--z-
II
g ‘3
3 ;;‘n r-u .s ‘G

e Td c SO ‘S “5 cm

392

0 ISO/IEC ISO/IEC 13818=6:1998(E)

frl

%
9 a I - - ..-._ - . .--_-- .-_____~-- - --- - ---.. - __-- --~____

393

ISOLIEC 13818=6:1998(E) 0 ISO/IEC

0 ISO/IEC ISO/IEC 13818-6:1998(E)

* 8 25
B trl
2 I I
E 24 I I
8 z I-- l

395

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

3 53

iz P 5
.-

I
pi,y:

f 2 v
Q)

Y - 253 G P, 1 c z on
b &Z z ,a

5 g .$? m L cn5s i3G
3

--
I

. *

: i

l -a T 9) -. ‘z Pi 3 2-8
Hi! bb

396

0 ISOIIEC ISO/IEC 13818=6:1998(E)

397

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

23 2
2
$ f’g-!I- 4
z a” 1 aq . .
z Q
8 I

$&ilp mbJ/ Ll FJb
g

WHg
,.*gj i)EJ g ---

398

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Annex B
(informative)

Application Examples

B.1 Introduction
This clause contains code examples illustrating the use of the User-to-User Interfaces. It attempts to cover various
functionalities, including Video Stream Play, Building a Multimedia Directory Hierarchy, Movie Information Database,
and View as a Personalized Directory.

The code examples are written in C. In order to be operational, they will need supporting header files and functions. The
header files are generated by the IDL compiler for the interfaces involved. Where supporting functions are needed,
function prototypes and comments are shown.

B.2 Video Stream Play
Here is test code to play a video stream. It begins after the DSM Session - - attach(). The ServiceGateway tree looks like:

DSM: :ServiceGateway

399

ICSOIIEC 13818=6:1998(E) 0 ISO/IEC

Resolve and play a video stream:

I* function prototype to make a PathSpec of 2 NameComponents
* and set process TRUE to return both ObjRefs
* note: this function exists only for simplification of the example
*/

ISM-PathSpec make2StepPath(char *kindl, char *idl,
char *kind2, char *id2);

/* function prototype to get the nth ObjRef out of PathRefs */
XM-ObjRef nthRef(DSM PathRefs *refs, DSM-u-short whichone); -

/* function prototype to make a simple name of one NameComponent */
ZosNaming-Name makeCosSimpleName(char *kind, char *id);

I* prerequisite: resolve gatewayref through DSM-Session-attach0 */

ISM-ObjRef *showHalfOfRaiders(DSM-ObjRef *gatewayref)
L

char *dirkind = ‘dir";
char *strkind = "str";
char *movie1 = "Batman";
char *movie2 = "Raiders";
char *theatre = "VoD";
CORBA Environment *ev; -
DSM-AppNPT = *intermission, *start;
DSM-PathRefs = *refs;
DSM-Scale = *scale;
DSM-ObjRef *str, *vodsvc;
CosNaming Name *nextmovie; -
DSM-PathSpec *path;

/* here allot memory as needed for types above */

400

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Play a video stream, continued:

/* 60*60*60 = 21600 for one hour into the movie
"1

start->aSeconds = 0;
start->aMicroSeconds = 0;
intermission->aSeconds = 216000;
intermission->aMicroSeconds = 0;
scale->aNumerator = 1;
scale+aDenominator = 1;

path = make2StepPath(dirkind, theatre, strkind, moviel);
DSM-Directory-open(gatewayref, ev, DSM-DEPTH, path, refs);

str = nthRef(refs, 1);
DSM-Stream_play(str, ev, start, scale, intermission);

/* insert wait code here
* then change to a different movie */

DSM-Base-close(str, ev); /* close the first movie */
/* here insert code for error checking on ev */

/* get your theatre object reference from the previous open*/
vodsvc = nthRef(refs, 0);

/* resolve and play the next movie */
nextmovie = makeCosSimpleName(strkind, movie2);
str = DSM-Directory_resolve(vodsvc, ev, nextmovie);
/* here insert code for error checking on ev */

DSM-Stream_play(str, ev, start, scale, intermission);
/* here insert code for error checking on ev */

printf("%s intermission will be in one hour. \n", movie2);
t

B.3 Building a Directory Hierarchy
This example illustrates the construction of a Directory Hierarchy with Multimedia objects. Unlike traditional file
systems, each Directory can hold many different types of objects, including Files, Streams, other Directories, and objects
which inherit multiple interfaces. The object’s interfaces define not only the exported attributes and programming
interfaces, but in the case of DSM-Streams, the method of delivery (e.g., continuous MPEG-2 Transport over the
Network to the client).

401

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Build a Multimedia Directory:

/* prerequisite:
* resolve gatewayref through DSM-Session-attach0
*/

Joid *bindMovieDirectory(DSM-ObjRef *gatewayref,
DSM-Directory *vodsvc,
DSM-Stream *strl,
DSM-Stream *str2,
DSM-File *filel)

{
char *dirkind = "dir";
char *strkind = "str";
char *filekind = "fil";
char *theatre = "VoD";
char *movie1 = "Batman";
char *movie2 = "Raiders";
char *button1 = "vcr";
CORBA Environment *ev; -
CosNaming Name *theatrename; -
CosNaming Name *movielname; -
CosNaming Name *movie2name; -
CosNaming Name *buttonname; -

/* here allot memory as needed for types above */

theatrename = makeCosSimpleName(dirkind, theatre);
movielname = makeCosSimpleName(strkind, moviel);
movielname = makeCosSimpleName(strkind, movie2);
buttonname = makeCosSimpleName(filekind, buttonl);

DSM-Directory-bind_context(gatewayref, ev,
vodsvc, theatrename);

/* here insert code for error checking on ev */

DSM-Directory-bind(vodsvc, ev, strl, movielname);
/* here insert code for error checking on ev */

DSM-Directory-bind(vodsvc, ev, str2, movie2name);
/* here insert code for error checking on ev */

DSM-Directory_bind(vodsvc, ev, filel, buttonlname);
/* here insert code for error checking on ev */

1

B.4 Movie Information Database
This code sample describes the creation and usage of a movie attribute database service. Such a service may be used to
search for movies and information about movies using the standard SQL Structured Query Language. In a Movies on
Demand scenario, prior to selecting a movie, the end-user is presented with list boxes of choices for titles, directors and
actors, plus check boxes or radio boxes for other movie attributes. Since the server’s selection of movies changes from
day to day, the information provider will continually update the database with the latest information on available movies.
Without changing the application or requiring recompilation, the database may be updated at the server. When the end-

402

0 ISO/IEC ISO/IEC 13818=6:1998(E)

user browses the database, graphics object selections cause the application to send database queries on the DSM
interface to the database Service. The query reply can return new lists of titles, directors and actors, sorted and filtered,
which are then displayed in the list boxes of the application presentation.

OWNER Procedure:

1. The content OWNER installs an empty database at a Server.
2. The database service is defined using Interfaces define. This object includes the Service, View and Directory

Interfaces in its IDL definition:
3. A reference for the Service is obtained using LifeCycle create. -
4. The Service instance is registered with the ServiceGateway under the name “Movie Info” using

ServiceGateway bind(). At this time it is bound to the ServiceGateway name context.
5. The OWNER attaches to a ServiceGateway using Security-authenticate followed by DSM-Session-attach().

This causes the Security
DSM-Session-attach().-

authenticate0 request body to be placed in the ServiceContextList of the

6. The OWNER opens the database service, then creates and populates the database tables with movie information:

Movie Mov Act Actor -
movie-id actor-id actor-id 1

- Acted By movie-id Acts In
title name
director id

.il.,, By

gender

director id -

name

403

ISO/IEC 1381%6:1998(E) 0 ISOIIEC

Create a Movie Database (Note ev error checking not shown): -
~~

I* prereq
* create a View Interoperable Object Ref using DSM-Lifecycle-create
* resolve a ServiceGateway Ref using DSM-Session-attach
*/

Joid createMovieDatabase(DSM_QbjRef *gatewayref, IOR-IOR *viewref)

char *viewnamekind = "viw";
char *viewnameid = "MovieInfo";
CosNaming Name *viewname; -
char *statement;
CORBA Environment *ev; -

/* here allot memory as needed for types above */

/* Bind the Movie View to the Service Gateway */
viewname = makeSimpleCosName(viewnamekind, viewnameid);
DSM-Directory-bind(gatewayref, ev, viewname, viewref);

/* execute SQL statements to create and populate a movie table */
statement =
'CREATE TABLE movie(movie id char(5), title char(30), director id - -

char(5))";
DSM-View_exec(viewref,ev,statement);

statement =
"INSERT INTO movie VALUES (‘M3', 'Raiders of the Lost Ark', ‘D2')";

DSM-View-exec(viewref,ev,statement);
statement = "INSERT INTO movie VALUES (‘M2', 'BeetleJuice', ‘Dl')";
DSM-View_exec(viewref,ev,statement);
statement = "INSERT INTO movie VALUES (‘Ml', 'Batman', ‘Dl')";
DSM-View-exec(viewref,ev,statement);

404

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Execute SQL statements to create and populate an actor table:

statement =
"CREATE TABLE actor(actor-id char(5), name char(30) J gender char(6))";
DSM-.View-exec(viewref ,ev,statement);

statement =
"INSERT INTO actor VALUES (‘A7', 'Harrison Ford', 'male')";
DSM-View-exec(viewref,ev,statement);
statement =
\\INsERT INTo actor VALUES (‘A6', 'Kim Bassinger', 'female')";
DSM-View-exec(viewref,ev,statement) ;
statement =
'INSERT INTO actor VALUES (‘A5', 'Michael Keaton', 'male')";
DSMView exec(viewref,ev,statement); -
statement =
\\INsERT INTo actor VALUES ('Ad', ‘Alec Baldwin', 'male')";
DSM-View-exec(viewref,ev,statement);
statement =
"INSERT INTO actor VALUES (‘A3” 'Geena Davis" ‘female')";
DSM View - - exec(viewrefJevJstatement);
statement =
\\INsERT INTo actor VALUES (‘A2', 'Karen Allen', ‘female')";
DSM-View-exec(viewref,ev,statement);
statement =
"INSERT INTO actor VALUES ('Al" 'Jack NiChOlSOn', 'male')";
DSM-View-exec(viewref,ev,statement);

Execute SQL statements to create and populate a director table:

statement =
"CREATE TABLE director(director - id char(5), name char(20))";

DSM-View-exec(viewref,ev,statement);

statement = "INSERT INTO director VALUES (‘D2', 'Steven Spielberg')";
DSM-View-exec(viewref,ev,statement);
statement =\\ INSERT INTO director VALUES (‘Dl'J 'Tim Burton')";
DSM-View-exec(viewref,evJstatement);

405

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Execute SQL statements to create and populate a mov act table: -

statement = "CREATE TABLE mov act(movie-id(5)J - actor-id char(5))";
DSM View-exec(viewrefJevJstatement); -

statement = ‘INSERT INTO mov act VALUES (‘M2’J ‘Ad')"; -
DSM-View-exec(viewref,ev,statement);
statement = "INSERT INTO mov act VALUES (‘M2’J ‘A3')"; -
DSM-View exec(viewref,ev,statement); -
statement = "INSERT INTO mov act VALUES (‘M3’J 'A7')"; -
DSMView exec(viewrefJevJstatement); -
statement = "INSERT INTO mov act VALUES (‘M3’J 'A2')"; -
DSM-View exec(viewrefJevJstatement); -
statement = "INSERT INTO mov act VALUES (‘Ml” 'A5')"; -
DSM View - - exec(viewrefJevJstatement) ;
statement = YNSERT INTO mov-act VALUES (‘Ml', ‘Al')";
DSM-View - exec(viewrefJevJstatement) ;
statement = "INSERT INTO mov-act VALUES (‘Ml', ‘A6')";
DSM-View exec(viewrefJevJstatement); -

READER Procedure:

The READER in this example is the client (Set top) application. The READER follows a similar procedure (to Owner
Procedure) for opening the View Service. A client with READER privileges only shall not perform write operations
such as DSM-View-exec(), but may perform read operations such as DSM-View-query0 and DSM-View-read().

406

0 ISO/IEC ISOLIEC 13818=6:1998(E)

Retrieve the name of the director of the movie Batman:

/* prereq: resolve the view with Directory-resolve */

DSM-ObjRef *viewref, *newviewref;
CORBA Environment *ev; -
DSM-u-long numrows = 40;
char *statement;
DSMView-ResultDescribe *describe;
DSMView-Result *result;
DSM-u-short cursor;

/* here allot memory as needed for types above */

statement =
'SELECT name FROM director d, movie m WHERE d.director-id =
m.director id AND m.title = 'Batman'"; -

DSM-View-query(viewref, ev, statement’ numrowsJ describe, result’ newv
iewref)

/* describe will now contain a sequence of one FieldDeSCribe, indicating one
* result column.
* The FieldDescribe will have these member values:
* fieldName = Yxame"
* aType = VTC CHAR
* typeparameters = struct InfoChar
*

e&J InfoChar has length = 15 and nullTerminated = TRUE
*/

cursor = 0:

DSM-View-read(newviewrefJ evJ cursor’ numrowsJ result);

/* result will now point to a char that holds
* the string name of the director
*/

Retrieve the list of actors in Beetlejuice:

statement =
‘SELECT name FROM actor a, movie mJ mov-act ma WHERE a.actor-id =

ma.actor-id AND m.movie-id = ma.movie-id AND m.title =
'BeetleJuice'";

Retrieve the list of female actors in Beetlejuice:

statement =
'SELECT a.name FROM actor a, movie m, mov-act ma WHERE a.actor-id =

ma.actor-id AND m.movie-id = ma.movie-id AND m.title = 'BeetleJuice'
AND a.gender = 'female"'; ,

;

DSM View read can now be used to retrieve the actors from the View. - -

407

0 ISO/IEC ISO/IEC 13818=6:P998(E)

B.5 View as a Personalized Directory
The View interface can be included with a Directory interface to produce a Directory that can sort and filter. This is
useful for personalized Directories, or to front-end file systems that have sort and filter capabilities. In this case the
View is not a database, but rather its syntax is used as a simplified method for producing different ‘views’ of the
Directory binding list. With View, relational queries can be performed using the exported attributes of the objects in a
Directory.

Consider a Service “VIP3::Index” and “‘VIP3::Game” defined by the following IDL:

module VIP3 (
interface Index : DSM::Directory, DSM::View, { };
interface Game : DSM::File {

unsigned short attribute Age;
1 . 9

1 ;

The Index is a Directory with View interface. It is not a Database. The Game is a File with an attribute that identifies the
recommended player’s age. The Game File can be downloaded to the client using DSM-File-read(). But there will be
so many games, it is desirable to filter them when listing the names of the games present in the Directory.

408

0 ISOIIEC ISOAEC 13818=6:1998(E)

Bind and access a Directory with View:

'* prereq
* create an Index Interoperable Object Ref with DSM-Lifecycle-create
* resolve a ServiceGateway Ref using DSM-Session-attach
*/

roid testDirectoryView(DSM-ObjRef *gatewayrefJ IOR-IOR *indexref)
1
.

char *indexnamekind = "VIP3::Index";
char *indexnameid = "Games";
Cos NameComponment *indexname; -

DSM-ObjRef *newidxref;
CORBA Environment *ev; -
DSM-u-long numrows = 40;
char *statement;
DSM-View-ResultDescribe *describe
DSM-View-Result *result;
DSM-u-short cursor;

/* here allot memory as needed for types above */

/* Bind the Games Index to the Service Gateway */
indexname = makeSimpleCosName(indexnamekind, indexnameid);
DSM-Directory-bind(gatewayref, ev, indexname, indexref);
/* here insert code for error checking on ev */

/* here insert code to populate the Directory with many game files
* using DSM-Directory-bind
*/

/* Produce a Directory of games for children 5 years old */
statement =

"SELECT Game FROM * WHERE Age = 5";

DSM-View-qUery(indexref, evJ statement’ numrowsJ describe' result, newidxref);
/* here insert code for error checking on ev */

/* list the contents of the new Directory View, which will
* produce a bindings list of only those games for Age 5
*/

DSM-Directory-list(neWidXref, evJ count’ bindings);
/* here insert code for error checking on ev */

/* here print the bindings for those Games with Age = 5
* which are the results of the Directory-list
*/

409

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Annex C

(informative)
ONC RPC XDR Mappings

Cl Overview
The DSM-CC User-to-User protocol offers a choice of RPC and network stack. The preferred RPC is Universal
Networked Objects (UNO). Some of the more popular alternate industry standard RPCs are Distributed Computing
Environment (DCE) and Open Network Computing (ONC). DCE has defined a protocol within the UN0 Interoperable
Object Reference, called DCE-CIOP. DCE is defining its own On-the-Wire formats that are UN0 compatible. UN0
offers dynamic interoperability, using a generic client stub that can dynamically assemble request and reply message
body from individual arguments. This is called dynamic marshaling. ONC requires pre-compiled request and reply
message body structures (although parameters can be variable length or opaque). ONC compilers are universally
available and public domain, and the ONC specification has been stable for many years. All of the DSM-CC core and
extended operation message bodies can be pre-compiled as ONC structures.

This informative annex describes the DSM-CC On-the-Wire formats for both UN0 and ONC. ONC request and reply
message formats are defined in such a way as to be compatible with UNO. In particular, RPC Request and Reply
Headers are defined for ONC which carry service context, object - key, requesting principal, and reply status. A
Tagged Protocol Profile is defined for ONC that allows ONC program and version information to be carried in the
Interoperable Object Reference (IOR).

C.2 General RPC Message Formats
Please refer to Informative Annex E for the UN0 RPC message definitions.

Please refer to Internet RFC 1057 and 1014 for ONC RPC and XDR definitions, respectively.

The UN0 RPC request message has a three-part format:

*
struct RequestMessage

struct GIOP: :MessageHeader char magic[4];
Version GIOP version;
boolean byte order; - /* CDR boolean */
octet message-type;
unsigned long message-size;

struct GIOP: :RequestHeader IOP::ServiceContextList service - context;
unsigned-long request-id;
boolean response-expected;
CORBA-sequenceoctet object-key;
string operation;
Principal requesting-principal:
1

Request Body <in and inout parameters>

1

410

0 ISO/IEC ISO/IEC 13818-6:1998(E)

The UN0 RPC reply message has a three-part format:

struct ReplyMessage

struct GIOP: :MessageHeader char magic[4];
Version GIOP - version;
boolean byte order; /* CDR boolean */ -
octeet message-type;
unsigned long message-size;

struct GIOP: :ReplyHeader IOP: :ServiceContextList service - context;
unsigned-long request-id;
replyStatusType reply-status;

Reply Body <out and inout parameters>

The DSM ONC RPC request message has the format:

struct rpc-msg

struct call-body

unsigned int xid;

unsigned int rpcvers;
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque-auth cred;
opaque-auth verf;

<struct opRequest> struct DSMJDR-ReqHeader IOP ServiceContextList *service _ - context;
opaque *object-key;
opaque *requesting-principal;

<operation ins and inout parameters >;

The DSM-CC ONC RPC successful reply has the format:

struct rpc-msg
I
unsigned int xid;

struct reply-body opaque-auth verf;

cstruct opZ?epZy> struct DSM-XDR-ReplyHeader IOP ServiceContextList *service - context; -
ReplyStatusType *reply-status;
DSM - XDR-Exception *exception;

I <operation out and inout parameters>

Note: an unsuccessful reply has a different format. Please refer to Internet RFC 1057.

The pre-compiled rpc stub will insert rpcvers for the ONC version and proc for the operation id.

411

ISO/IEC 138184:1998(E) 0 ISO/IEC

The client DSM-CC Library has to supply prog, vers, <struct opRequest>, and cstruct OpReply> for the ONC rpc call.
cstruct opRequest> and cstruct opReply> are structure definitions in .h file, generated by ONC rpcgen from an External
Data Representation (XDR) .x file.

The ONC prog and vers are obtained from the object reference with the DSM ONC Tagged Protocol Profile, defined
below.

Key parameters needed for DSM-CC / ONC operation:

1. In the request message, service - context, object-key and requesting-principal. These are place in the
DSM XDR ReqHeader.

2. In thereply message, service - context, reply - status and exception. These are place in the
DSM XDR ReplyHeader. - -

Authentication structures are carried in the ServiceContextList of request or reply, and not in the ONC header.
Therefore, the ONC request cred, verf and reply verf are all set to AUTH NULL. -

With the above structure a DSM-CC library can have a common application layer API, common structure and routines
for handling authentication, download, network resource bindings, and exception environment. The structures can then
be readily sent/received in either UN0 or ONC messages.

C.3 CORBA IDL C to XDR Mapping
This subclause defines mappings between CORBA IDL C Mappings and XDR input format (.X file format).

C.3.1 Mapping for Integer Data Types

/* machine-independent types */

#if SIZEOF LONG == 64 -
typedef int CORBA-long; /* 32 bits *I
typedef unsigned int CORBA-unsigned-long; I* unsigned 32 bits */
typedef unsigned int CORBA-Status;
typedef unsigned int CORBA-Flags;
typedef long CORBA-longlong;
typedef unsigned long CORBA-unsigned-longlong;
#else
typedef long CORBAJong;
typedef unsigned long CORBA-unsigned-long;
typedef unsigned long CORBA-Status;
typedef unsigned long CORBA-Flags;
struct CORBA-longlong (long v0; unsigned long vl;} ;
struct CORBA-unsigned-longlong (unsigned long v0; unsigned long v 1; } ;
#endif

IDL C Mapping long int must be represented by XDR long.

C.3.2 Mapping for void
IDL C mapping type void is represent by type char in XDR, except in unions.

412

0 ISO/IEC ISOSIEC 138184:1998(E)

C.3.3 Mapping for Constants
Constants are represented by %#define statement with encapsulating ifdef RPC HDR: -

#ifdef RPC HDR -
%#define <rest of statement>
%#define crest of statement>

#endif
. . .

For example, DSM::AccessRole types are defined as follows in XDR:

typedef CORBA-char DSM-AccessRole;
#ifdef RPC HDR
%#define I!%M MANAGER ‘M’
%#define DSM-OWNER ‘0’
%#define DSM-BROKER ‘B’
%#define DSM-WRITER ‘W’
%#define DSM-READER ‘R’
#endif -

C.3.4 Mapping for octet
CORBA::octet is represented by unsigned char.

C.3.5 Mapping for Fixed-length Constructed Types
Fixed length constructed types struct and enum are identical to C struct and enum.

C.3.5.1 Mapping for struct
typedef struct in CORBA IDL or C mapping must be represented by struct in XDR. For example, the correct XDR
form for DSM version is: -

+
struct DSM-Version {

CORBA-char aMajor;
CORBA char aMinor; -

C.3.6 Mapping for sequences
Variable-length structs require special handling to enable proper encoding and decoding. The XDR array angle bracket
c> syntax must not be used. Using XDR array <> syntax will result in non-Inter-operable code.

The XDR mapping for sequences is similar to the CORBA C mapping for sequences, with the following exceptions:

0 An enclosing #ifndef RPC XDR l . . - #endif is used to instruct rpcgen not to produce a function for the type
during the XDR phase.

0 struct is used instead of typedef struct, as described above under ‘Mapping for struct’
0 -maximum and -length members shall be either XDR type u-int or CORBA-unsigned-long.

In addition, an XDR function shall be explicitly defined for the type. This function will cause XDR to directly encode
from the CORBA C mapping and decode to the CORBA C mapping.

C.3.6.1 Example: Mapping for opaque
The XDR DSM opaque type is equivalent to DSM::opaque and CORBA::sequence<octet>. An enclosing #ifndef
RPC XDR is used to instruct rpcgen not to produce a function for the type during the XDR phase. Instead, an XDR -

413

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

function is separately defined for the type, causing XDR to encode from the CORBA C mapping and decode to the
CORBA C mapping.

For example, DSM::opaque is defined in IDL as:

module DSM(
typedef sequence<octet> opaque;

DSM::opaque CORBA C mapping is:

typedef struct (
CORBA unsigned long maximum;
CORBAIunsignedJong Ilength;
CORBA octet * buffer;
) CORBA sequence octet; - -

typedef CORBA-sequence-octet DSM-opaque;

DSM::opaque mapping in XDR is:

#ifndef RPC XDR -

struct DSM-opaque{
u-int -maximum;
u-int -length;
CORBA octet * - - buffer;

#endif

DSM - opaque XDR encode/decode function is:

>ool-t xdr-DSM-opaque(xdrs, objp)
XDR *xdrs;
DSM-opaque *objp;

if (!xdr-int(xdrs, (u-int *)&objp->-maximum)) {
return (FALSE);

I
if (!xdr-u-int(xdrs, &objp->-length)) {

return (FALSE);
1

if (!xdr-array(xdrs, (char **)&objp->-buffer,
(u-int *)&objp->-length, -0, sizeof(CORBA-octet), xdr-CORBA-octet)) (

return (FALSE);
1
return (TRUE);

C.3.6.2 Example: Mapping for PathSpec
For example, DSM::PathSpec is defined in IDL as:

414

0 ISO/IEC ISO/IEC 13818=6:1998(E)

module DSM (
typedef sequence<Step> PathSpec;

1 . ?

DSM::PathSpec mapping in XDR is:

#ifndef RPC XDR -

struct DSM-PathSpec (
u-int -maximum;
u-int -length;
DSM-Step * -buffer;

I I
. 9

#endif

DSM PathSpec XDR encode/decode function is: -

bool-t xdr-DSM-PathSpec(xdrs, objp)
XDR *xdrs;
DSM-PathSpec *objp;

1
if (!xdr-int(xdrs, (u-int *)&objp+-maximum)) (

return (FALSE);
1

if (!xdr-u-int(xdrs, &objp->-length)) (
return (FALSE);

I
if (!xdr-array(xdrs, (char **)&objp->-buffer,

(u-int *)&objp->-length, -0, sizeof(DSM-Step), xdr-DSM-Step)) (
return (FALSE);

I
return (TRUE);

C.3.7 Mapping for string
The XDR syntax is to place angle brackets after the identifier. Maximums within the angle brackets are carried forward.

For example, the following IDL illustrates two strings:
I 1

typedef string password;
typedef string< lO> id;

I I

The corresponding XDR mapping is:
,

string password<>;
string id< lo>;

C.4 DSM-CC ONC Protocol Profile for the Interoperable Object Reference
The DSM-CC ONC Protocol Profile is composed of at least the following tagged components:

415

ISO/IEC 138184:1998(E) 0 ISO/IEC

0 DSM::AddrComponent structure. This contains the IP address and port of the Object Implementation.
0 DSM::ObjectKey. This identifies the unique client/service instance within the context of the IP address and port.
e DSM - 0NC::IntfComponent. This identifies the program and version for the most derived interface supported.

Additionally it may contain:

0 DSM::IntfCode. This identifies the interfaces supported by the object.
0 DSM - 0NC::IntfComponent. Additional IntfComponents can be included to provide program and version for

inherited interfaces.

The Object Reference follows the IDL/XDR mapping rules described above, and is big-endian.

C.5 Exceptions
DSM-CC Exceptions are defined as a union to be carried in the reply header. XDR form:

enum DSM-XDR-ExceptionKind (
- EXSYS = 0,

EXSTRING = 1,
EXAUTH = 2,
EXNOTFOUND = 3,
EXCANNOTPROCEED = 4,
EXVOID = 5

1 . 9

union DSM-XDR-ExceptionValue switch (DSM-XDR-ExceptionKind kind) (
case EXSYS: CORBA-exception-body ex-sys;
case EXSTRING: string ex-string<>;
case EXAUTH: DSM-NO-AUTH ex-auth;
case EXNOTFOUND: DSM-NOT-FOUND ex_notFound;
case EXCANNOTPROCEED: DSM-CANNOT-PROCEED ex_cannotProceed;
case EXVOID: void;

1 . 9

struct DSM-XDR-Exception (
string ido;
DSM XDR - ExceptionValue value; -

If there is no exception value, use the EXVOID case. The resulting DSM XDR - - Exception can be assigned to/from
CORBA Exception. -

416

0 ISO/IEC ISO/IEC 13818=6:1998(E)

C.6 Request and Reply Header Structures
For each RPC, DSM-CC request and reply headers are pre-pended to the message body. XDR Form:

I* DSM Request Header. CORBA Parameters not found in ONC header
* This is placed in the RPC request structure of DSM-CC ONC messages
*/

struct DSM-XDR-ReqHeader {
IIOP ServiceContextList service context; -
DSM-opaque object-key; r* handle of the target object within */

/* host and port scope*/
DSM Principal requesting - principal; /* end user(human) is a sequence of octet*/ -

1 . 9

I* DSM XDR - ReplyHeader. CORBA Parameters not found in ONC header -
* This is placed in the RPC reply structure of DSM-CC ONC messages
*I

struct DSM-XDR-ReplyHeader {
IIOP ServiceContextList service context; - -
CORBA - completion - status reply - status;
DSM-XDR-Exception exception;

1 . 9

IDL in or inout parameters are considered as in parameters. IDL out or inout parameters are considered as out
parameters.

An operation with no in parameters shall send the DSM XDR - - ReqHeader as the request structure.

An operation with one or more in parameters shall send the DSM XDR - - ReqHeader as the first member of the request
structure. The remaining members of the request structure shall be the in parameters, passed as a pointer if they are
constructed types(i.e., cannot be passed as an argument to a function), and passed as a value if they are basic or
enumerated types.

An operation with no out parameters shall send the DSM XDR - - ReplyHeader as the reply structure.

An operation with one or more out parameters shall send the DSM XDR - - ReplyHeader as the first member of the
reply structure. The remaining members of the request structure shall be the out parameters, passed as a pointer if they
are constructed types, and passed as a value if they are basic or enumerated types.

For example, the XDR for File read0 and File write0 is

struct DSM-XDR-File-readReq {
DSM XDR - - ReqHeader reqHeader;
DSM-u-longlong *aOffset;
DSM u long aSize;
CORBA boolean aReliable; -

I . 9

struct DSM-XDR-File-readReply (
DSM XDR - ReplyHeader replyHeader; -
DSM - opaque *rData;

417

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

C.7 DSM-CC RPC Program Numbers
The following DSM-CC program numbers are registered with ONC:

ISO/IEC JTCl/SC29/WGll: 399900 - 399919 [20 numbers] DSM

399900 DSM::Base

39990 1 DSM: : Access

399902 CosNaming::NamingConect
I I

399903 CosNaming: :BindingIterator

399904 DSM: :Directory
I 1

399905 DSM::Stream

399906 DSM::File

399907 DSM: :ServiceGatewaySI

399908 DSM::SessionGateway

399909 DSM::Service

3999 10 DSM::Interfaces

3999 11 DSM::Session

399912 DSM::State

399913 DSM::View

3999 14 DSM::Composite

399915 DSM::DownloadSI

3999 16 DSM: :Event

3999 17 - 399 19 <reserved>

C.7.1 RPC Program Dispatch Tables Mapping
The DSM-CC ONC functions are named according to the IDL C mapping conventions. The functions are numbered in
the program dispatch table as follows:

1. First: the operations in the order they appear in the IDL.
2. Second: the attribute functions, get followed by set for each, in the order they appear in the IDL. A readonly

attribute shall generate only a get operation.

418

0 ISOKEC ISO/IEC 13818=6:1998(E)

For example, The XDR for the Base interface is

#ifdef RPC HDR
%#ifndef DiMBASE P
%#define DSMBASE-P -
#endif

#define DSM BASE PROGRAM 399900
#define DSMBASEVERSION 1 - -

program DSM BASE (
version DSk B ASE-VERS {

DSM XDR ReplyHeader DSM-Base-close(DSM-XDR-ReqHeader) = 1;
DSM-XDRIReplyHeader DSM-Base-destroy(DSM_XDR_ReqHeader) = 2;

} = DSM-BASE VERSION;
} = DSM BASE PROGRAM; - -

#ifdef RPC HDR
%#endif -
#enflif

As another U example, the XDR for the File interface is

#ifdef RPC HDR
%#ifndef DiMFILE P
%#define DSMFILE-P -
Yendif

*define DSM FILE PROGRAM 399906
#define DSMFILE-VERSION 1 - -

;truct DSM-XDR-File-readReq {
DSM XDR ReqHeader reqHeader;
DSM-u longlong -- *aOffset;
DSM u long aSize;
CORBA boolean aReliable; -

1 . 9

struct DSM-XDR-File-readReply (
DSM XDR ReplyHeader replyHeader; -
DSM opaque *rData; -

1 . 9

struct DSM-XDR-File-writeReq {
DSM XDR - ReqHeader reqHeader; -
DSM-u-longlong *aOffset;
DSM-u-long aSize;
DSM - opaque *rData;

1 ;

struct DSM-XDR-File-get-ContentReply (
DSM XDR - ReplyHeader replyHeader; -
DSM opaque *Content; -

1 ;

struct DSM-XDR-File-set_ContentReq (

419

ISOLIEC 13818=6:1998(E) 0 ISO/IEC

DSM XDR ReqHeader reqHeader;
DSM-opaque *Content; -

t .
kuct DSM-XDR-File-get_ContentSizeReply {
DSM XDR - ReplyHeader replyHeader; -
DSM u -- longlong *contentSize;

t . 9

xogram DSM-FILE {
version DSM FILE VERS {

DSM-XDRIFile-readReply
DSM-File-read(DSM-XDR-File-readReq) = 1;

DSM XDR ReplyHeader
&M-&e write(DSM-XDR-File-writeReq) = 2;

DSM-XDR-File-get_ContentReply
DSM-File-get-Content(DSM_XDR_ReqHeader) = 3;

DSM XDR ReplyHeader
DSM-~ile_set_Content(DSM_XDR_File_set_ContentReq) = 4;

DSM-XDR-File-get_ContentSizeReply
DSM File-get ContentSize(DSM-XDR

} = DSM tiLE VERSION;
- ReqHeader) = 5;

I = DsM FILE - PROGRAM; -

fifdef RPC HDR
Wendif -
bendif

420

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Annex D
(informative)

Using DSM-CC U-N Session Messages with ATM

D.1 Methods of using DSM-CC over ATM
This annex presents several example methods of using DSM-CC with ATM, each of which conforms to the DSM-CC
functional model.

From the basic principle of ATM SVC connectivity under the context of a multimedia service session, four methods that
tie the Call Reference (which represents the 4.293 1 call concept) and the sessionId + resourceNum (which represents
the DSM-CC session concept) are discussed. See also Table D-l Methods of using DSM-CC over ATM.

1. Session Method
2. Network Method with AddResource messages between the Server and the SRM
3. Network Method with NO AddResource messages between the Server and the SRM
4. Integrated Method

Physical scenarios using different Access Networks that correspond to each method, are listed in Table D-l. These
different Access Networks that can part of physical scenarios for DSM-CC over ATM are described in DAVIC 1.3 Part
4 VI*
The term Server used in this annex refers to a complex of servers. A server may or may not have a signaling unit front-
end.

Note that Q.293 1 is used generically in this annex to indicate both ATM UN1 and ITU signaling. No difference is made
between the two.

D.l .l Session Method
The Session Method requires that any Server that needs an ATM SVC connectivity must first inform the SRM (using the
ServerAddResourceRequest message). The SRM then initiates a network level signaling procedure (typically 4.2931 in
an ATM network) to establish an ATM SVC connection between the Server and a Client. The network level signaling
message initiated by the SRM to the ATM network includes the resourceId (sessionId+resourceNum) to allow the
association of the DSM-CC resources with ATM connections.

D.1.2 Network Method with AddResource messages between the Server and the
SRM

The Network Method with AddResource messages requires that resources be allocated by the Server prior to sending the
AddResource message. The AddResource messages are thus used to inform the SRM providing it with the opportunity
to request the release of the connection. The 4.293 1 signaling initiated by the Server includes the resourceId
(sessionId+resourceNum). In the case of an IWU, the AddResource messages can be used to inform the IWU of MPEG
characteristics (PID, Pant) necessary to deliver the MPEG program stream to the appropriate Client.

D.1.3 Network Method with NO AddResource messages between the Server and
the SRM

The Network Method allows any Server that needs an ATM SVC connectivity to initiate network level signaling
(typically Q.293 1) to the ATM network. The Q-2931 SETUP message that the Server sends to the ATM UNI, or the
CONNECT message from the SRM, is required to contain a resourceId (sessionId+resourceNum) and the
resourceGroupTag. The resourceGroupTag is required in the signaling messages with this method as it is the only way
to pass it when AddResource messages are not used. The SRM is in the signaling path to allow it to do resource
management within a session. Any additional non-ATM resources must be signaled in DSM-CC messages.

421

ISO/IEC 13818=6:1998(E)

DA.4 Integrated Method

0 ISO/IEC

With the Integrated Method, the DSM-CC messages are mapped into Q-2931 signaling messages. The SRM “sees” the
ATM connection resources via Q.293 1 signaling and thus manages both sessions and resources. Any additional non-
ATM resources must be signaled in DSM-CC messages.

Table D-l Methods of using DSM-CC over ATM

METHOD OF USING DSM-CC WITH
ATM

PHYSICAL SCENARIOS

1) SESSION METHOD l Server Direct:
SRM initiates/releases connection based a) Proxy Signaling for Client and SRM in Access
on exchange of AddResource messages Network

2) NETWORK METHOD with
AddResource messages between the
Server and the SRM
Server initiates/releases connection and
notifies SRM of connection using
AddResource message

3) NETWORK METHOD with NO
AddResource messages between Server
and SRM
Server initiates/releases connection,
SRM learns of ATM connection resources
via 4.293 1 signaling since it is in the
signaling path (no AddResource messages
required between Server and SRM),
Client learns of connection use at the U-U
level

b) Non-ATM Access Network to Core ATM Network
Inter-Working Unit (IWU) and SRM in Access
Network

c) Network Signaling by SRM with “join” capabilities
within the network (potential future)

l Server Proxy with scenarios 1 a, 1 b, lc above
(note that signaling flows remain the same if a Server
Proxy exists)

l Server Direct:
a) Client Direct (Signaling in Client, SRM in Core

Network) (= DAVIC scenario #2 [7])

b) Proxy Signaling Agent (PSA) for Client in Access
Network, SRM in Core Network (= DAVIC scenario
#3 VI)

c) Signaling for Client in Access Network, Non-ATM
Access Network to Core ATM Network IWU, and
SRM in Core Network (= DAVIC scenario #3 [7])

d) Signaling for Client in Access Network, Non-ATM
Access Network to Core ATM Network IWU, and
SRM in Access Network (= DAVIC scenario #l [7])

l Server Proxy with 2a, 2b, 2c, 2d above
(note that signaling flows remain the same if a Server
Proxy exists)

l Server Direct:
a) Proxy Signaling Agent (PSA) for Client in Access

Network, SRM in Access Network (= DAVIC
scenario #l [7])

b) Signaling for Client in Access Network, Non-ATM
Access Network to Core ATM Network IWU, and
SRM in Access Network (B-HLI field used to hold
any resource information required by the IWU (see
H.310 [8])) (= DAVIC scenario #l [7])

c) Network Signaling by SRM with “join” capabilities
within the network (Core and Access Networks are
ATM) (potential future)

422

0 ISO/IEC ISO/IEC 13818=6:1998(E)

l Server Proxy with 3a, 3b, 3c above
(note that signaling flows remain the same if a Server
Proxy exists)

4) INTEGRATED METHOD a) Client Direct and Server Direct, SRM anywhere in
Client or Server initiates/releases
connection, SRM “sees” ATM connection
resources via Q.2931 signaling and thus
manages both sessions and resources

the Network (potential future)

D.2 Association of DSM-CC connection resources to ATM SVCs

D.2.1 DSM-CC resourceld Mapping into Q.2931
To allow DSM-CC Users to associate each ATM SVC connection with a DSM-CC resource and session, a resourceId
needs to be carried along the ATM SVC connection signaling. The current view is that the Generic Identifier Transport
(GIT) Information Element in Q.293 1 [l] is the proper field to carry the resourceId. For this purpose a specific GIT type
for MPEG-2 DSM-CC is assigned in Q.293 1.

Table D-2 defines Generic Identifier fields for DSM-CC.

Table D-2 Generic Identifier fields defined for DSM-CC

Generic Identifier Type
1
2

DSM-CC information
sessionId
resourceNum
associationTag

Maximum field length (in octets)
20
2
2

INTERIM SOLUTION NOTE: Interim BHL-I solution to be used prior to the availability
of the Generic Identifier Transport:

In order to be able to compress the resourceId field of 12 bytes to fit within an g-byte B-HLI
information field, the deviceId values are created with local significance in implementations
using MPEG-2 DSM-CC with ATM SVC, with the consequence that the DSM-CC Networks will
have a relatively limited size. The reduced deviceId will be assigned by the SRM in the
UNConfig command sequence, or will be pre-provisioned in the Client/Server at installation.

In addition the maximum number of sessions is reduced from its normative value in order to
maintain an overall sessionId field size of 5 bytes down from 10 bytes as shown in Table D-2.
The reduced sessionId will be contained in the 5 least significant bytes of the lo-byte sessionId.
The 5-byte reduced sessionId value follows a specific format and is adopted as shown below:

MSb 1,2 = 13818-6 reserved (00)

a) Network assigned
MSb l-2 = Network assigned (11)
MSb 3-40 = reduced sessionId value

b) Server assigned
MSb l-2 = Server assigned (10)
MSb 3-20 = reduced deviceId value of network domain significance.
MSb 2 l-40 = reduced session number value

423

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

c) Client assigned
MSb l-2 = Client assigned (01)
MSb 3-32 = reduced deviceId value of network domain significance.
MSb 33-40 = reduced session number value

sessionld 10 bytes resourceNum

resourceld 12 bytes

reduced sessionld value resourceNum

B-HLI resourceld 7 bytes

Figure D-l Composition of compressed resourceId for interim B-HLI solution

D.3 Session Method Command Sequences

D.3.1 Session Set-Up
This session is either established by a request from the Client (Client Session Set-Up scenario) or from the Server itself
(Server Session Set-Up scenario).

424

0 ISO/IEC ISO/IEC 13818=6:1998(E)

D.3.1.1 Client Session Set-Up
Note 1

CLIENT
SRM or
SRM+IWU or
SRM+PSA or ATM NETWORK SERVER

SRM+IWU+PSA

ClientProceedinglndication
---I---------\

ciientid

--m-m- Indicates message May Be --‘L-I-~-- Indicates Optional Data Flow
Sent Zero Or More Times. Indicates Command May Be

Sent Zero or Only Once.

Note 1:

Note 2:
Note 3:
Note 4:

Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.
Only relevant parameters in each message are shown.
Connection Control messages with Client will be specific to the type of access network.
Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

DSM-CC protocol:

Step 1

Figure D-2 Session Method: Client Session Set-Up

The Client sends a ClientSessionSetUpRequest message to the SRM.

Step 2

The SRM verifies the clientId from the Network provider’s point of view, and if positive, contacts the proper Server
that has the service identified by serverId.

425

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Step 3

Upon receipt of the ServerSessionSetUpIndication message, the Server verifies the clientId from the Server’s point of
view, and if valid, accepts the request. After the Server has accepted the session, the Server can either:

a> immediately send the SessionSetUpResponse, accepting the session, and then add the necessary resources using
ServerAddResourceRequest, or

b) send one ServerAddResourceRequest message to the SRM to request resources, and wait for the
ServerAddResourceConfirm, before sending the ServerSessionSetUpResponse to accept the session.

The Server gathers all resources required from the Network to support the service. If the service needs one or more
ATM SVC connections, the Server embeds the proper number of ATM Connection resource descriptors and a
resourceGroup descriptor in the ServerAddResourceRequest message. These resource descriptors contain sufficient
information for the SRM to later establish a connection between the following, depending on the network architecture
(refer to Table D-l):

0 the Server and the Client (scenario 1 a in Table D- l),
l the Server and the IWU (scenario lb), or
0 the Server and Client using “join” functionality (scenario lc), provided the DSS2 Supplementary signaling required

is available.

Note: The capability to “join” the Client side and the Server side is not available in ITU DSS2
capability set 2 step 1. The scenario lc in method 1 is included in this part of ISO/IEC 138 18 in
order to promote discussion on the use of potential ATM signaling standards with DSM-CC.

Step 4

Upon receipt of the ServerAddResourceRequest message, the SRM can process the ATM Connection and
resourceGroup resource descriptors included in the message. For an “ATM SVC” resource, the SRM can verify the
requested properties (e.g., User Cell Rate and QoS) against what is available in the access network. If the “ATM SVC”
resource descriptor is tagged as MANDATORY BUT NEGOTIABLE and the available value is within the requested
range, then it can be satisfied and will be assigned by the SRM to the session. The resourceGroupTag value from the
resourceGroup descriptor is used to link the non-ATM access Client view with the ATM SVC Server view.

For scenario lc (see Table D-l), the SRM shall then establish the 4.293 1 connection with the Client. Refer to Figure D-
3.

Step 5

For any “ATM SVC” resource not rejected, the SRM shall initiate a connection matching an available access resource
and containing the sessionId+resourceNum in the SETUP message.

4.293 1 protocol:

The SRM shall initiate a Call/Connection procedure by sending a Q.293 1 SETUP message to its ATM User-Network
Interface (UNI), with the following information elements:

l Call reference selected by SRM
0 Calling Party Number = ATM address of the Client (scenario 1 a & lc in Table D- 1) or

= ATM address of the IWU (scenario 1 b in Table D- 1).
l Called Party Number = ATM address of the Server as derived from the serverId field.
l ATM Adaptation Layer Parameters, ATM Traffic Descriptor and Quality-of-Service parameter = values imported

from the “ATM SVC” resource request descriptor.
l Generic Identifier Transport (GIT) = sessionId+resourceNum corresponding to this “ATM SVC” resource.

After the requested connections between the Client and Server are established the SRM shall send a
ServerAddResourceConfirm message indicating the resources which were successfully allocated.

The exact procedure to connect the Client to the ATM SVC being set up depends on the network architecture. For
scenario 1 b in Table D- 1, a pass-band architecture, this procedure may involve the SRM translating the VPCVVCI value

426

0 ISO/IEC ISO/IEC 13818-6:1998(E)

into an RF channel and other multiplexing information (such as MPEG-2 program number) which will be sent to the
Client via the DSM-CC ClientSessionSetUpConfirm message. The details of this procedure is outside the scope of this
annex. For scenarios la and lc in Table D- 1, no special procedure is required, however, in the case of scenario lc, a
“join” signaling must be sent to the network by the SRM.

When the Server is informed of the SETUP on its ATM UNI, it accesses the sessionId+resourceNum from the GIT
information element, and associates the Call Reference with this session information.

Both the SRM and the Server maintain a Call Reference and sessionId+resourceNum association so that one can be
retrieved from the other until the ATM SVC connection is released.

DSM-CC protocol:

Step 6

The ServerSessionSetUpResponse message shall signal the SRM of the Server’s readiness to begin using the
connections.

Step 7

After receipt of the ServerSessionSetUpResponse, the SRM shall inform the Client through the
ClientSessionSetUpConfirm message.

Step 8

Both Client and Server are now ready to exchange User-to-User messages.

If the Client has userDataBytes to be delivered to the Server, it shall send a ClientConnectRequest to the Network. The
value of the sessionId field shall be identical to the value received from the Network, and the value of the userDataCount
shall indicate the number of userDataBytes present.

Step 9

On receipt of the ClientConnectRequest with a valid sessionId, the Network shall send a ServerConnectIndication to the
Server. After sending the message, there is no change of state for the session at the Network.

Step 10

On receipt of the ServerConnectIndication, the Server shall consider the session to be established end-to-end through the
network.

427

ISOPIEC 13818=6:1998(E) 0 ISO/IEC

Note 1

CLIENT ATM ACCESS
NEIWORK

SRM or
SRM+IWU or
SRM+PSA or ATM NETWORK SERVER

SRM+IWU+PSA

loop(userbataCount, userDataByte)
-- --- B-m -

sessionld, userDataCount
loop(userDataCount, userDataByte)

------ Indicates message May Be ---x--L~-- Indicates Optional Data Flow
Sent Zero Or More Times. Indicates Command May Be

Sent Zero or Only Once.

Figure D-3 Session Method: Client Session Set-Up for scenario l(c)

Network Signaling in SRM, with “join” capabilities in SRM (Notes and Step descriptions are the same as for previous
figure (Figure D-2).

D.3.2 Add Resource Request
After a session has been set up between the Client and the Server, either the Client or the Server can later come back to
the SRM to request new resources within the context of the established session.

428

0 ISO/IEC ISO/IEC 13818=6:1998(E)

D.3.2.1 Add Resource Request by the Server
Note 1

CLIENT
SRM or
SRM+IWU or
SRM+PSA or

ATM NETWORK SERVER

SRM+IWU+PSA

Note 4

-
sessionld, looF(resourceCoJnt, resourceDezkriptor)

13 Note 2 Note

i

* this can t/e repeated if there is more thdn one ATM corm
to the se$sion being initiated (repea

I I

pction belonging
ted += resourceCouvt times)

! I i
!
!
!
i
!
!

~6
eCount, resburceDescriptor)

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG TS
Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network. See next figure for the

message flow for scenario l(c).
Note 4: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

Figure D-4 Session Method: ServerAddResourceRequest, SRM initiates connection

DSM-CC Protocol:

Step 1

The Server requests the needed connection resources by sending the ServerAddResourceRequest message to SRM with
a list of resourceDescriptors.

Step 2

If the SRM does not reject the requested “ATM SVC” resources, it proceeds by securing a connection on the access
network portion and initiates an ATM core network connection matching the available access resources through 4.293 1
signaling messages, containing the sessionId + resourceNum in the SETUP message.

Step 3

SRM informs the Client of the requested Client side resources.

Step 4

On receipt of ClientAddResourceIndication message, the Client determines if it is capable of using the additional
resources and if so, sends ClientAddResourceResponse to the network with the response field set to rspOK. At this point
the Client shall consider the additional resources as being committed to the session.

429

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Step 5

After all requested connections are established and a positive ClientAddResourceResponse is received, the SRM sends a
ServerAddResourceConfirm message indicating the additional resources were successfully allocated. After sending the
message, the SRM shall consider the additional resources as being committed to the session.

Step 6

On receipt of the ServerAddResourceConfirm the Server shall consider the additional resources as being committed to
the Session.

Note 1

CLIENT

SRM or
SRM+IWU or
SRM+PSA or
SRM+IWU+PSA

ATM NETWORK SERVER

Figure D-5 Session Method: ServerAddResourceRequest for scenario l(c)

Network Signaling in SRM, with “join” capabilities in SRM (Notes and Step descriptions are the same as for previous
figure).

D.3.3 Resource Deletion
After a resource has been successfully requested, either through the Session Set-Up scenario or the Session Add
Resource Request scenario, the resource can later be requested to be deleted.

430

0 ISO/IEC ISO/IEC 13818-6:1998(E)

D.3.3.1 Resource Deletion by the Server

Note 1
SRM or

CLIENT
SRM+IWU or
SRM+PSA or ATM NETWORK SERVER __-- . -
SRM+IWU+PSA

I I
XentDeleteRe~ourcelndicati~n

;esslonld, loop(r . sourceCount,

Note 2

I
!

Note 1:

Note 2:
Note 3:

Note 4:

* this can be
4

epeated if ther is more

e g

an one AT
being rele sed (repeated = resour Count time 13

connection
)

I

“te 3
Note 4 I

I 5 /Server DeIet :besour c]Con f irrn 4 6

I

I I I I I
t I I I I

Optional role of the IWU is to manage the access network resources for the case of Hybrid ATM Network-
MPEG TS.
Only relevant parameters in each message are shown.
Connection Control messages with Client will be specific to the type of access network. See next figure for the
message flow for scenario l(c).
Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

Figure D-6 Session Method: Resource Deletion Request by Server, ATM SVC connection released by SRM

DSM-CC protocol:

Step 1

The Server shall inform the SRM of its request for deletion of one or multiple assigned resources via the
ServerDeleteResourceRequest message. The resources are identified by their corresponding resourceId

step 2

Upon receipt of a ServerDeleteResourceRequest, the SRM shall verify that the session exists and is associated with the
Server, and that the resourceIds are valid for the session If SO, the SRM shall send a ClientDeleteResourceIndication
message to the Client.

431

ISOIIEC 138184:1998(E) 0 ISO/IEC

Step 3

Upon receipt of a ClientDeleteResourceIndication, the Client shall verify that the session exists and that the resourceIds
are valid for the session. The Client responds by sending a ClientDeleteResourceResponse message to the SRM. At this
point the Client shall consider the resource deletion process completed and shall not use the deleted resources.

Step 4

Upon receipt of the ClientDeleteResourceResponse message, the SRM will process the deletion of the identified
resources on the Client Access Network from the established session. For scenario lc in Table D-l, this requires Q.293 1
release procedures.

If the SRM detects a resourceId identifying an “ATM WC” resource, it shall retrieve the corresponding Call Reference
and initiate a 4.293 1 Call/Connection Clearing procedure at its ATM UNI.

Q.2931 protocol for Server Side Connection Clear:

The SRM sends a 4.293 1 RELEASE message to the UNI, with the following information elements:

Call Reference = Call Reference retrieved from the resourceId.

When the Server receives the corresponding RELEASE message at its UNI, it retrieves the Call Reference from the
message and from the Call Reference, the associated resourceId which is then given to the session in the Server for
housekeeping chores.

4.2931 protocol for Client Side Connection Clear:

For scenario lc, the Q.293 1 protocol for Call/Connection Clearing is repeated here for the Client side.

DSM-CC protocol:

Step 5

After all the resources have been deleted (or as soon as the deletion process has been initiated - it does not have to be
completed), the SRM shall send the Server a ServerDeleteResourceConfirm message. At this point the SRM shall
consider the resource deletion process completed.

Step 6

On receipt of the ServerDeleteResourceConfirm, the Server shall consider the resource deletion procedure completed.

432

0 ISO/IEC ISO/IEC 13818=6:1998(E)

CLIENT

i .
j d ChentDelet ~ Resoul

I

sessionld, re ponse

Note 4
!

Note 1

SRM or
SRM+IWU or
SRM+PSA or

ATM NETWORK SERVER

SRM+IWU+PSA

2 4
ServerDeleJteResomeRequest I 1

sessionld, locpp(resoureCount, resourc

rcelndication
+Num) 1 1 Note 2 f

Num)

:eResponse
44 i i I I I I

ed if there is mole than one ATq connectiin being released
urceCount time

I ! /

5 I
ServerDelefeResourbeResponse 1

b 6

- I sessionld, sponse

f I
I I

Figure D-7 Session Method: ServerDeleteResourceRequest for scenario l(c)

Network Signaling in SRM, with “join” capabilities in SRM (Notes and Step descriptions are the same as for previous
figure).

D.3.4 Session Tear-Down
After a session has been established through the Session Set-Up, either the Client or Server can later come back to the
SRM to request that session is to be torn down. For a session containing an “ATM SVC” resource, the scenarios follow
below.

433

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

D.3.4.1 Session Tear-Down by Server

Note 1

SRM or

CLIENT
SRM+IWU or
SRM+PSA or
SRM+IWU+PSA

ATM NETWORK SERVER

Note 4

ClientReleaseRe

N&e 3

Note 1:

Note 2:
Note 3:

Note 4:

Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.
Only relevant parameters in each message are shown.
Connection Control messages with Client will be specific to the type of access network. See next figure for the
message flow for scenario l(c).
Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

Figure D-S Session Method: Server Session Tear Down

The Steps in Figure D-8 are similar to those for Figure D-10, with Client and Server interchanged.

434

0 ISO/IEC ISO/IEC 13~lS=6:199S(E)

CLIENT

Note 1

SRM or
SRM+IWU or
SRM+PSA or

ATM NETWORK

SRM+IWU+PSA
SetverReleaseRequest

SERVER

f 1

Figure D-9 Session Method: ServerDeleteResourceRequest for scenario l(c)

Network Signaling in SRM, with ‘&join” capabilities in SRM (Notes are the same as for Figure D-10).
The Steps in Figure D-9 are similar to those for Figure D-10, with Client and Server interchanged.

435

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

D.3.4.2 Session Tear-Down by Client
Note 1

1

Note

Note 4

f

CLIENT

SRM or
SRM+IWU or
SRM+PSA or ATM NETWORK SERVER

SRM+IWU+PSA

I I.1
2 ServerReleasblndicatio 7 I

session Id, reasl In -3

4 q ServerRele~seResDdnse
session Id, resr onse

* can be repeate if there is more than o
onging to the se slon beln torn down

$ - . b le ATM connection

Note 3

5

ClientReleaseC onfirm
I I
sessionld, respo 7se

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.

Note 2:
Note 3:

Only relevant parameters in each message are shown.
Connection Control messages with Client will be specific to the type of access network. The message flow for
scenario l(c) is constructed similarly to that shown in Figure D-9.

Note 4: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

Figure D-10 Session Method: Client Session Tear Down

DSM-CC protocol:

Step 1

The Client informs the SRM of its request for session tear-down via the ClientReleaseRequest message.

Step 2

The SRM then informs the Server via the ServerReleaseIndication message.

Step 3

The Server acknowledges the request with a ServerReleaseResponse message. At this point the Server shall consider the
session terminated.

Step 4

Upon receipt of the ServerReleaseResponse message, the SRM shall retrieve all resources allocated to the identified
session and proceed to delete those resources from the Client Access Network and the ATM Core Network.

If the SRM detects an “ATM SVC” resource belonging to the session, it shall retrieve the corresponding Call Reference
from the resourceId and initiate a 4.2931 Call Connection Clearing at its ATM UNI.

436

0 ISO/IEC ISOAEC 13SlS=6:199S(E)

Q.293 1 protocol for Server Side Connection Clear:

The description of this Call/Connection Clearing procedure is similar to the one in the Resource Deletion scenario.

4.293 1 protocol for Client Side Connection Clear:

The Q.293 1 protocol for Call/Connection Clearing is repeated here for the Client side for scenario lc.

DSM-CC protocol:

Step 5

After all the resources have been deleted (or as soon as the deletion process has been initiated - it does not have to be
completed), the SRM shall send the Client a ClientReleaseConfirm message. At this point the SRM shall consider the
resource deletion process completed.

Step 6

On receipt of the ClientReleaseConfirm the Client shall consider the session terminated.

0.4 Network Method with DSM-CC AddResource messages between the Server
and SRM

The Network Method with DSM-CC AddResource messages between the Server and SRM requires that resources be
allocated by the Server prior to sending the AddResource message. The AddResource messages are thus used to inform
the SRM, providing it with the opportunity to request the release of the connection.

Note: The command sequences in 13.4 cover the case of scenario 2a in Table D- 1. The other scenario command
sequences are similar and are obtained by substituting the ATM signaling termination to the Client by a termination to
either the PSA (scenario 3b) or the IWU (scenarios 3c & d)

D.4.1 Session Set-Up
The following subclauses show Client Session Set-Up when the Server sets up the ATM connection.

D.4.1.1 Client Session Set-Up, Server ATM Connection Set-Up
In this command sequence, ATM connections are initiated by the Server. In this scenario the need for
ServerAddResourceRequest and ServerAddResourceConfirm messages is obviated, but the resources are still managed
by SRM through sessionId+resourceNum: when the Server has finished allocating resources, it sends a
ServerSessionSetUpResponse to the SRM.

437

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

CLIENT SRM ATM NETWORK
(in Core ATM Network)

SERVER

Note 5

Note 4

Note 1: Only relevant parameters in each message are shown.
Note 2: End-to-end information needs to be transmitted with the SETUP message associating the connection to the

session resource.
Note 3: Nothing precludes 4.2962 from being used for resource negotiation.
Note 4: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are

assumed.
Note 5: sessionId is assigned by the Client in this figure. If the sessionId is NOT assigned by the Client, ATM

connection set-up, and AddResource messages must occur AFTER the ClientSessionSetUpConfirm.

Figure D-11 Network Method with AddResource message information: Client Session Set-Up, Server initiates
ATM connection

DSM-CC Protocol:

Step 1

The Client shall send a ClientSessionSetUpRequest message to the SRM.

Step 2

The SRM verifies the clientId from the Network provider’s point of view, and if positive, contacts the proper Server
that has the service identified by serverId.

Step 3

The Server shall take note of the sessionId, gather required resources, assign resourceNums to each resource, and
initiate 4.293 1 signaling.

438

0 ISO/IEC ISO/IEC 138184:1998(E)

Step 4

Q.293 1 Protocol (initiated by Server):

The Server shall initiate a Call/Connection procedure by sending a 4.2931 SETUP message across its ATM User-
Network Interface (UNI), with the following information elements:

0 Call reference selected by Server
l Calling Party Number = ATM a&has of the Server.
l Called Party Number = ATM address of the Client as derived from the clientId field
0 ATM Adaptation Layer Parameters, ATM User Cell Rate and Quality-of-Service parameter.
0 Generic Identifier Transport (GIT) = sessionId+resourceNum.

Both the SRM and the Server shall maintain a Call Reference and sessionId+resourceNum association so that one can be
retrieved from the other. This association shall be kept until the ATM SVC connection is released.

DSM-CC Protocol:

Step 5

The Server notes the successful establishment of the connections(s), and generates a ServerSessionSetUpResponse
which includes the resource descriptors for the session. At this point the session is considered established by the Server.

Step 6

The SRM takes note, and generates a ClientSessionSetUpConfirm. At this point the session is considered established by
the SRM.

Step 7

Both Client and Server are now ready to exchange User-to-User messages.

If the Client has userDataBytes to be delivered to the Server, it shall send a ClientConnectRequest to the Network. The
value of the sessionId field shall be identical to the value received from the Network, and the value of the userDataCount
shall indicate the number of userDataBytes present.

Step 8

On receipt of the ClientConnectRequest with a valid sessionId, the Network shall send a ServerConnectIndication to the
Server. After sending the message, there is no change of state for the session at the Network.

Step 9

On receipt of the ServerConnectIndication, the Server shall consider the session to be established end-to-end through the
network.

The Server can now begin to exchange the User-to-User messages with the Client over the established connections.

439

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

D.4.2 Add Resource Request

D.4.2.1 Add Resource Request by Server and ATM SVC Connection Set-Up by
Server

; ”

: .:..

!, _,

:...
1. : :.

..:
:.:

:

‘. : :,

:: .._

‘_’
: ..:...

‘,

.‘.A
” ,-.,:
‘.’ .::..I

“?” “:
.‘_

: :

:__
: ‘.: :

“’

.“““’

‘. :
. . ! ,.,, .q

. .
:

:‘.
‘_’

‘: :: ,.

‘_ .: ;
;. :

::, ;:

‘:‘: “’
:.:.:y:

.:

. ...:..
1.

_:
.’ ._’

:
1:; ,.

CLIENT SRM ATM NETWORK SERVER

resource-descriptor)

Note 1: Only relevant parameters in each message are shown.
Note 2: End-to-end information needs to be transmitted with the SETUP message associating the connection to the

session resource.
Note 3: Nothing precludes Q.2962 from being used for resource negotiation.
Note 4: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are

assumed.

Figure D-12 Network Method with AddResource messages: Server AddResource&qu&, Server initiates ATM

Step 1

connection

4.293 1 Protocol (initiated by Server):

The Server shall initiate a Call/Connection procedure by sending a 4.293 1 SETUP message across its ATM User-
Network Interface (UNI), with the following information elements:

0 Call reference selected by Server
0 Calling Party Number = ATM address of the Server.
0 Party Number = ATM address of the Client as derived from the clientId field
a ATM Adaptation Layer Parameters, ATM User Cell Rate and Quality-of-Service parameter.
0 Generic Identifier Transport (GIT) = sessionId+resourceNum.

440

0 ISOLIEC ISO/IEC 13818=6:1998(E)

Both the SRM and the Server shall maintain a Call Reference and sessionId+resourceNum association so that one can be
retrieved from the other. This association shall be kept until the ATM SVC connection is released.

DSM-CC Protocol:

Step 2

The Server notes the successful establishment of the connection(s), and generates a ServerAddResourceRequest with a
list of the resources actually allocated for the session. Each descriptor contains a field indicating that the connections
have already been established

Step 3

If the SRM accepts the addition of this resource, it shall generate a ClientAddResourceIndication to inform the Client of
the new resource(s) now available. If the SRM decides the resource request is invalid (e.g., QoS exceeds network
guidelines), the SRM generates a ServerClearIndication to both the Client and the Server to clear the resource
connection just established and Steps 4-6 are skipped.

Step 4

The Client shall generate a positive ClientAddResourceResponse if it accepts the new resource(s). At this point the
Client shall consider the new resource(s) set up and ready for use.

Step 5

The SRM shall then generate a ServerAddResourceConfirm. At this point the SRM shall consider the new resource(s)
set up and ready for use.

Step 6

At this point the Server shall consider the new resource(s) set up and ready for use.

441

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

D.4.3 Resource Deletion

D.4.3.1 Resource Deletion Request by Server and ATM SVC Connection Release by
Server

CLIENT SRM
(in core ATM Network)

ATM NETWORK SERVER

I I

Note 2

2.q setverDeieteR&o”rceReq”est :

sessionld, loop(resoutwCount,reswrceNum)
I I
! Note 1 I

I
ClientDeleteResourceIndica ion

sessionid, loop(resourwCount, esourceNum)

CIientDeleteResourceRespo use

session Id, response

I I
I I
I I
I I

I I

I I
I I

I I

I I

I I

I I

session Id, response
I

I

I

1
1 REW
I

8 *l&t. 1
t
1
I
1
1

* This can be repeat& as necessary rbr each ATM
connection belonging fo the session b+ng torn down

I I
I I

I I
I I

1

5

6

Note 1: Only relevant parameters in each message are shown
Note 2: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are

assumed.

Figure D-13 Server Delete Resource, ATM SVC connections released by the Server

DSM-CC protocol:

Step 1

The Server informs the SRM of its request for resource deletion via the ServerDeleteResourceRequest message.

Step 2

The SRM takes note of the request, and then informs the Client via the ClientDeleteResourceIndication message.

Step 3

The Client generates a ClientDeleteResourceResponse for the SRM At this point the Server shall consider the resource
deleted.

Step 4

The SRM passes a ServerDeleteResourceConfirm to the Server. At this point the SRM shall consider the resource
deleted.

Step 5

At this point the Server shall consider the resource deleted.

Step 6

442

0 ISO/IEC ISOAEC 13818=6:1998(E)

Q-293 1 protocol:

The Server sends a Q.293 1 RELEASE message to the UN, with the following information elements:

Call Reference = Call Reference retrieved from the sessionId+resourceNum.

When the Client receives the corresponding RELEASE message at its UNI, it retrieves the Call Reference from the
message and from the Call Reference, the associated sessionId+resourceNum which is then given to the session function
in the Client for housekeeping chores.

0.4.4 Session Tear-Down
After a session has been established through the Session Set-Up, either the Client or Server can later request that session
is to be torn down.

D.4.4.1 Session Tear-Down Request by Server and ATM SVC Connection Release
by Client

This case is symmetrical to the following command sequence Figure D-14 when the session tear-down request is by the
Client and the ATM SVC connection Release is by the Server.

443

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

D.4.4.2 Session Tear-Down Request by Client and ATM SVC Connection Release by
Server

CLIENT SRM
(in core ATM Network)

ATM NETWORK SERVER

ClientReleaseRequest
sessionld, reason

Note 1

Note 2
4

ClientReleaseConfirm

sessionld

*
RELEASE

Catt ref 2
RELEASE COMPLETE

sessionld,reason I I
I I
I I

I

ServerReleaskResponse 1

I
I
I
I I

* This can be repeated as necessary fir each ATM
connection belonging to the session being torn down

I I
I I

I I

I I

I I
I I

I I
I I
I I
I I
. .

1

6

a2931 *

Note 1: Only relevant parameters in each message are shown
Note 2: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are

assumed.

Figure D-14 Client Session Tear-Down, ATM SVC connections released by the Server

DSM-CC protocol:

Step 1

The Client informs the SRM of its request for session tear-down via the ClientReleaseRequest message.

Step 2

The SRM takes note of the request, and then informs the Server via the ServerReleaseIndication message.

Step 3

The Server generates a ServerReleaseResponse for the SRM. At this point the Server shall consider the session released.

Step 4

The SRM passes a ClientReleaseConfirm to the Client. At this point the SRM shall consider the session released.

Step 5

At this point the Client shall consider the session released.

Step 6

444

0 ISO/IEC ISO/IEC 13818=6:1998(E)

If the Server detects an “ATM SVC” resource belonging to the session, it can retrieve the corresponding Call Reference
from the sessionId+resourceNum and initiate a Q.293 I Call Connection Clearing at its ATM UNI.

4.293 1 protocol:

The Server sends a 4.293 1 RELEASE message to the UNI, with the following information elements:

Call Reference = Call Reference retrieved from the sessionId+resourceNum.

When the Client receives the corresponding RELEASE message at its UNI, it retrieves the Call Reference from the
message and from the Call Reference, the associated sessionId+resourceNum which is then given to the session function
in the Client for housekeeping chores.

D.4.4.3 Session Tear-Down Request by Server and ATM SVC Connection Release
by Server

aJENT SRM
(in axe ATM M) ATM NEMDRK SERVER

I LIA- n

I I
I iwte L

2 serverRd&Request I

* sessionId, rea+n
1 I

ClientReleaselndica~ion I

3. I
sessionld, reason I Nate1 I

I I

ClientRekaseRespnse I I
I I

sessionld SefverFkleaseC@ irm I
I

fws&nld I I

I * This can be repeatend as necessaryforeachATM
amection belonging to the session pe’ng tom down

I

Note 1: Only relevant parameters in each message are shown
Note 2: Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are

assumed.

Figure D-15 Server Session Tear-Down, ATM SVC connections released by the Server

DSM-CC protocol:

Step 1

The Server informs the SRM of its request for session tear-down via the ServerReleaseRequest message.

Step 2

The SRM takes note of the request, and then informs the Client via the ClientReleaseIndication message.

Step 3

445

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

The Client generates a ClientReleaseResponse for the SRM At this point the Server shall consider the session released.

Step 4

The SRM passes a ServerReleaseConfirm to the Server. At this point the SRM shall consider the session released.

Step 5

At this point the Server shall consider the session released.

Step 6

4.293 1 protocol:

The Server sends a Q.293 1 RELEASE message to the UNI, with the following information elements:

Call Reference = Call Reference retrieved from the sessionId+resourceNum.

When the Client receives the corresponding RELEASE message at its UNI, it retrieves the Call Reference from the
message and from the Call Reference, the associated sessionId+resourceNum which is then given to the session function
in the Client for housekeeping chores.

D.5 Network Method with NO DSM-CC AddResource messages between the Server
and SRM

To optimize the number of DSM-CC message exchanges, this method allows the DSM-CC AddResource messages to be
skipped. The SRM learns of connections since it is in the signaling path.

Any additional non-ATM resources shall be signaled using DSM-CC AddResource messages.

D.5.1 Session Set-Up
In the Network Method, before a Server can request an ATM SVC connection to the Client or a Client can request an
ATM connection to a Server, a multimedia session must have been previously established. This session is established
via either a Client or Server Session Set-Up scenario as described by the DSM-CC session protocol.

446

0 ISOnEC ISO/IEC 13818=6:1998(E)

D.5.1 .l Client Session Set-Up

Note 1

CLIENT SRM+IWU+Signaling or
SRM+PSA ATM NElWORK SERVER

ZlientSessionSetUpRe

session Id
clientld
serverld
userDataCount
loop(userData)

Note 2

ClientSessionSetUpC(

session Id
response
userDataCount
loop(userData)

est

2

ServerSessionSetUp

session Id
clientld
userDataCount
loop(userData)

ServerSessionSetUF

session Id
response
userDataCount
loop(userData)

irm

dication

esponse

Note 1:

Note 2:

Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.
Connections for the exchange of User-Network messages between Client and SRM and Server and SRM are
assumed.

Figure D-16 Network Method with no AddResource messages: Client Session Set-Up

During this Session Set-Up phase, the Client does not request any ATM SVC resources. Instead, all the ATM SVC
connections will be initiated later from the Server or Client using Q.293 1 associated Call/Connection procedures. In
order to tie these future ATM connections to the session layer protocol, the SRM assigns a sessionId as part of the
session establishment sequence. The sessionId+resourceNum+resourceGroupTag must be included in all subsequent
4.293 1 signaling messages. The Steps for this message flow are the same as corresponding ones in subclause D.3.1.1
Client Session Set-Up.

D.5.2 Add Resource Request

D.5.2.1 Add Resource Request by the Server
Whenever the Server needs an ATM SVC connection, it will initiate a 4.293 1 Connection Set-Up procedure as shown
below.

447

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Note 1

CLIENT
SRM+IWU+Signaling or ATM NETWORK
SRM+PSA SERVER

i i i i i

Note 1: Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network and will notify the Client

of the sessionId, resourceNum and resourceGroupTag. See next figure for the message flow for scenario 3(c).

Figure D-17 Network Method with No AddResource messages: Server-initiated ATM Resource Request

The Server sends a Q2931 SETUP message to its ATM User-Network Interface (UNI), with the following information
elements:

l Call Reference = selected by Server
0 Calling Party Number = ATM address of the Server
0 Called Party Number = ATM address of SRM
0 Generic Identifier Transport (GIT) = sessionId+resourceNum

When the SRM receives the SETUP message on its UNI, it recovers the Call Reference information element and the
sessionId from the SETUP message. From the sessionId, the SRM determines who the Client is, and later establishes a
connection, depending on the scenario (refer to Table D-l):

a the Server and the Client using PSA (scenario 3a),
0 the Server and the IWU (scenario 3b), proceeds to establish a path from the IWU to the Client and connect that path

with the ATM connection that the Server just established or
0 the Server and Client using ‘tjoin” functionality (scenario 3c), provided the DSS2 Supplementary signaling required

is available.

Note: The capability to “join” the Client side and the Server side is not available in ITU-T DSS2
capability set 2 step 1. The scenario1 (c) in method 1 is included in this part of ISO/IEC 138 18 in
order to promote discussion on the use of potential ATM signaling standards with DSM-CC.

448

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Note1

att3v-r SF?M+lWU+Signaling or Am Nm
SRtVWSA SERVER

I
I
I
I I
I
I
I
f
I
I
I I .

I
I
t
I I
I
I
I I
I I
I
I
I I I
I

2ated if there is b ethanoneAlNl
vitiated (repeatq <= resourcecoUnt

ion belorjging to the
I I
I I

Figure D-18 Network Method with no AddResource messages: Server-initiated ATM Resource Request for
scenario 3(c)

Network Signaling in SRM, with “join” capabilities in SRM (Notes and Step descriptions same as for previous figure).

D.5.3 Connection Clearing

D.5.3.1 Connection Clearing by the Server
The Server can delete an established ATM SVC connection by initiating the Q.2931 Connection Clearing procedure:

449

ISO/IEC 13818=6:1998(E) 0 ISOIIEC

Note 1

CLIENT SRM+I WU+Signaling or
SRM+PSA

ATM NETWORK SERVER

Note 1:

Note 2:
Note 3:

Optional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.
Only relevant parameters in each message are shown.
Connection Control messages with Client will be specific to the type of access network. See next figure for
message flow for scenario 3(c).

Figure D-19 Network Method with no AddResource messages: Resource Deletion via Server-initiated
Call/Connection Release

When the SRM receives the RELEASE message on its UNI, it keys off the Call Reference to retrieve the sessionId.

The SRM then releases the access network path and closes the usage record of the resource associated with this Call
Reference.

When the Server receives the RELEASE COMPLETE message on its UNI, it keys off the Call Reference to retrieve the
sessionId.

CLIENT

Note 1
SRM+IWU+Signaling or
SRM+PSA

ATM NETWORK SERVER

I
Note 2

Figure D-20 Network Method with no AddResource messages: Server-initiated Resource Deletion for scenario
3(c)

450

0 ISO/IEC ISO/IEC 138184:1998(E)

Network Signaling in SRM, with “join” capabilities in SRM (Notes and Step descriptions same as for previous figure).

D.5.3.2 Connection Clearing by the Client
The Client can delete an established ATM SVC connection by initiating the Q.293 1 Connection Clearing procedure
through SRM:

Note 1

CLIENT
SRM+IWU+Signaling or ATM NETWORK
SRM+PSA SERVER

Note 1: Opiional role of the IWU is to manage the access network resources in case of Hybrid ATM Network- MPEG
TS.

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network. See signaling part of
Figure D-6 for message flow for scenario 3(c).

Figure D-21 Network Method: Resource Deletion via Client-initiated Call/Connection Release

When the Server receives the RELEASE message on its UNI, it keys off the Call Reference to retrieve the sessionId.

When the SRM receives the RELEASE COMPLETE message on its UNI, it keys off the Call Reference to retrieve the
sessionId.

The SRM then closes the usage record of the resource associated with this Call Reference.

D.5.4 Session Tear-Down
A session can only be torn down through the DSM-CC Session Tear-Down scenario, initiated either by the Client,
Server or SRM. Even if all the ATM SVC connections requested through the Network Method have been cleared, the
session is still up if the Session Tear-Down scenario has not been invoked.

With the Session Tear-Down scenario, the SRM shall delete all the resources associated with the session.

D.5.4.1 Session Tear-Down by Server
The ATM SVC connections that have been established through the Network Method can be cleared through the Session
method. See subclause D.3.4.1 Session Tear-Down by Server.

451

ISO/IEC 13818-6:1998(E) 0 ISO/IEC

Note 1

CLIENT
SRM+lWU+Signaling or
SRM+PSA ATM NETWORK SERVER

ATM connection

Note 1: Optional role of the IWU is to manage the access network resources in the case of Hybrid ATM Network -
MPEG TS

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network. See signaling part of

Figure D-8 for message flow for scenario 3(c).

Figure D-22 Network Method: Server Session Tear-Down using Session Method

Steps are as in subclause D.3.4.1 Session Tear-Down by Server.

D.5.4.2 Session Tear-Down by Client
The ATM SVC connections that have been established through the Network Method can be cleared through the Session
method. See subclause D.3.4.2 Session Tear-Down by Client.

452

0 ISO/IEC

Note 1

ISO/IEC 13818=6:1998(E)

CLIENT
SRM+IWU+Signaling or
SRM+PSA ATM NETWORK SERVER

1

Note 2

Note 4

6

ClientReleaseR quest zml!l

Note 3

*

5
ClientRelease onfirm

~ -

sessionld, resp se

if there is more than o

f

ATM co
sion beind torn down

Note 1: Optional role of the IWU is to manage the access network resources in the case of Hybrid ATM Network -
MPEG TS

Note 2: Only relevant parameters in each message are shown.
Note 3: Connection Control messages with Client will be specific to the type of access network. See signaling part of

Figure D-9 for message flow for scenario 3(c).

Figure D-23 Network Method: Client Session Tear-Down using Session Method

Steps are as in subclause D.3.4.2 Session Tear-Down by Client.

D.6 Integrated Method Command Sequences
Note: Not all the signaling elements to satisfy all scenarios of Integrated DSM-CC operation with
ATM are presently available. The complete set of scenarios will be described however in order to
promote discussion and potential adoption of the appropriate mechanisms in the B-ISDN
signaling standards.

With the Integrated Method, the DSM-CC messages are mapped into 4.293 1 signaling messages. The SRM “sees” the
signaling, and thus manages both the DSM-CC sessions and resources.

Other DSM-CC U-N messages such as ClientStatusRequest that are not naturally coupled with 4.293 1 connection
signals can be handled in Q.2932 facility messages. [2]

453

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

Additional Extensions required to Q.2931 that will allow DSM-CC integration with the ATM network:
1. Use user-to-user Information Element (4.2957 [5]) in the Q-293 1 SETUP message if userData is to be carried in the

message. Optionally the userData field can be conveyed in the ATM connection being set up by the SETUP
message, similar to ITU-T Recommendation H.245 [6].

2. Create a DSM-CC Information Element as part of the FACILITY message in draft recommendation 4.2932 [2] for
DSM-CC status messages and for session release messages

D.6.1 Session Set-Up
The message flows for integrated Session Set-Up are the same those for the Session Method (see subclause D.3.1.1
Client Session Set-Up), with the enhancement that the Q-293 1 signaling messages here contain all information that
previously had to be carried separately, in the DSM-CC SessionSetUp and AddResource messages).

D.6.1 .l Client Session Set-Up

CLIENT

1

SETUP(calledAT
:allingATMaddre!
GIT=resourceId,
user-to-userlE=D

SalI Reference 1

CALL PROCEEE

CONNECT

CONNECT ACK

ATM NETWORK
(Includes SRM Functionality) SERVER

laddress=sewerld,
;=clientld,

IM-CCuserDi ita)

2
L

ING

4
5

SETUP(calledArMaddress=serverld,
CallingATMaddr 3ss=clientld,
GIT=resourceld,
user-to-user1 E= XM-CCuserData)

Zall Reference 2 Notel,2

3

CONNECT
B

ZONNECT ACK

Note 1: The Client uses a standard default QoS for the initial connection set up for the session.
Note 2: SETUP messages carry DSM-CC sessionId+resourceNum in Generic Identifier Transport Information Element
field.

Figure D-24 Integrated Method: Client Session Set-Up

Step 1

The Client allocates a sessionId and requests a session SETUP with one connection. This connection may become the
general end-to-end data connection over which DSM-CC non-Network resources can be managed,. similar to ITU-T
Recommendation H.245 [6]. The serverId is the Q-293 1 Called Party Number and the clientid is the Q.293 1 Calling
Party Number.

Step 2

The Network verifies the clientId from the Network’s point of view, and if positive, allows the SETUP message to be
sent to the Server identified by serverId, which must be in the form of an ATM network address.

454

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Step 3

Upon receipt of the session SETUP the Server verifies the clientId from the Server’s point of view, and if positive
accepts the session and the one connection. By sending the CONNECT signal the Server shall indicate its acceptance of
the session.

Step 4

Through the CONNECT signal the Server will indicate acceptance of the session.

Step 5

The Network notes the start of the session and by passing the CONNECT to the Client it informs the Client of the start
of the session.

D.6.1.2 Server Session Set-Up
The Server Session Set-Up is symmetrical to the Client Session Set-Up described in subclause D.6.1.1 Client Session
Set-Up.

D.6.2 Integrated Method for Adding Resources
The message flows for integrated addition of resources are the same those for the Add Resource Session Method (see
subclause D.3.2 Add Resource Request, with the enhancement that the Q.293 1 signaling messages here contain all
information which previously had to be carried separately, in the DSM-CC Add Resource messages. The figure below
shows the example of an integrated Add Resource request by the Server.

CLIENT ATM NETWORK
(Includes SRM Functionality)

SERVER

3

SETUP(calledATWaddress=sE rverld,
CallingATMaddre ss=clientld,

SETUP(calledA--Maddress=serverld,
callingATMaddrt!ss=clientld,

’ 1
Call Reference 3

Notel,2

CONNECT AC

H ’
Note 1: Q.2962/3 [3,4] may be used for resource negotiation/i-e-negotiation
Note 2: SETUP messages carry DSM-CC sessionId+resourceNum in Generic Identifier Transport Information Element
field.

Figure D-25 Integrated Method: ServerAddResource

Step 1

When the Server wants to add a resource that requires an ATM connection it issues a SETUP message that includes the
sessionId + resourceNum in the Generic Transport Identifier (GIT).

Step 2

455

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

The Network notes the additional connections requested for the Session and proceeds by sending the SETUP message to
the Client.

Step 3

The Client accepts the resource with a CONNECT.

0.6.3 Connection Clearing
The message flows for integrated Connection Clearing are the same those for the Session Method Delete Resource (see
subclause D.3.3 Resource Deletion), with the enhancement that the Q-293 1 signaling messages here contain all
information that previously had to be carried separately, in the DSM-CC Delete Resource messages. The figure below
shows the example of an Connection Clearing request by the Server.

CLIENT ATM NETWORK
(Includes SRM Functionality)

SERVER

RELEASE

RELEASE
Call Reference Z

3 Call Reference 4

RELEASE
COMPLETE

RELEASE
I b COMPLETE

Step 1

Figure D-26 Integrated Method: Connection Clearing

RELEASE clears a connection for the Server.

Step 2

The Network notes the connection clearing and proceeds by sending the RELEASE message to the Client.

Step 3

The Client accepts the connection clearing with a RELEASE COMPLETE message.

D.6.4 Session Tear-Down
All connections can be released while a session may still be maintained. In this case, the message flows to tear down the
session are the same as those for the Session Method, in subclause D.3.4 Session Tear-Down, but will be encapsulated
in 4.2932 Facility messages for the Integrated Method.

456

0 ISO/IEC ISOAEC 13818-6:1998(E)

D.6.4.1 Server Session Tear-Down

CLIENT ATM NETWORK
(Includes SRM Functionality)

SERVER

RELEASE(
GIT=sessionld I

RELEASE(

Call Reference 3

3 Call Reference 4

RELEASE

RELEASE
L b COMPLETE

Figure D-27 Integrated Method: Server Initiated Session Tear-Down

Step 1

RELEASE clears a connection for the Server. To indicate that this RELEASE releases the session, the sessionId is sent
in the GIT of the RELEASE message. At this point the Server considers the session terminated.

Step 2

The Network notes the session clearing and proceeds by sending the RELEASE message to the Client. At this point the
Network considers the session terminated.

Step 3

The Client accepts the session clearing with a RELEASE COMPLETE message. At this point the Client considers the
session terminated.

0.6.4.2 Client Session Tear Down
Client Session tear-down is symmetrical to Server Session tear-down.

D.7 References
[I] ITU-T Recommendation Q-293 1 (02/95), Digital Subscriber SignalZing System No. 2 - User-new& intee&

(UNI) layer 3 specification for basic call/connection control.
[2] ITU-T Recommendation Q.2932.1 (7/96), Digital Subscriber Signding System No. 2 - Genericfinctional

protocol: Core functions.
[3] ITU-T Recommendation Q-2962 (07/96), Digital subscriber signding system No. 2 - Connection characteristics

negotiation during call/connection establishment phase.
[4] ITU-T Recommendation Q-2963.1 (07/96), Digital Subscriber Signding System No. 2 - Connection modification:

Peak cell rate modification by connection owner; and
ITU-T Recommendation Q.2963.2 (O9/97), Digital Subscriber Signalling System No. 2 - Connection modification:
Modification procedures for sustainable cell rate parameters.

[5] ITU-T Recommendation Q.2957 (02/95), Stage 3 description for additional transfer supplementary services using
B-ISL3N digital subscriber Signalling System NO. 2 (DSS 2) - Basic Call.

[6] ITU-T Recommendation H.245 (07/97), Control protocol for multimedia communication.

45.7

ISO/IEC 13818=6:1998(E) 0 ISO/IEC

[7] Digital Audio-Visual Council, DAVIC Specljkation 1.3, Part 4: Delivery System Architecture and Interfaces and
Part 12: System Dynamics, Scenarios and Protocol Requirements, December 1997.

[8] ITU-T Recommendation H.3 10 (1 l/96), Broadband audiovisual communications systems and terminals.

458

0 ISO/IEC ISO/IEC 13818=6:1998(E)

Annex E
(informative)

UN0 INTER-OPERABLE RPC PROTOCOL STACK

E.1 Abstract
The annex recommends an inter-opemble protocol stack for the presentation, session, transport, and network layers of a
the protocol stack. The solution comprises a) a framework which allows nodes to select a protocol stack, or interpose an
object which translates protocol stacks, b) conventions to encode the message payload at the presentation level, c) a
message set for remote procedure call at the session level, and d) a pervasive protocol solution at the transport level and
network layers.

E.2 Motivation
If a client and a service distribute across a network, issues regarding inter-operation arise. A concept which frames these
issues is the notion of a domain. A domain is a collection of nodes - or, at a fine grain, objects - which share consistent
expectations about a convention which affects inter-operation. While multiple distinctions between domains are valid,
the issues addressed within this annex are:

Type Domain: The objective is to encode invocation signatures which are intelligible to multiple domains. The
implication is that a domain which wishes to inter-operate with another domain must provide typecode space
which the domain understands. A typecode is a Interface Definition Language construct which encodes an
interface name into a concrete value. A domain which wishes to inter-operate with another domain must either
adopt the same typecode, or there must be mechanism which can translate the typecode values.

Protocol Domain: Since protocol stacks may be diverse, inter-operation may be difficult. For inter-operation to
be feasible, either a domain must share the same native protocol stack with another domain, or there must be
mechanism to translate the protocol stack. The solution, in the second case, constitutes a protocol gateway.

Before a solution to these issues is discussed, subclause E.3 first explores the solution space. The framework allows
nodes to detect the situation where domains share a common native protocol stack, but still converge if a more subtle
solution exists.

E.3 Solution Space
The spectrum of design options is extensive and is discussed below. Subclause E.4 then describes a framework which,
while it anticipates diverse design centers, also provides the mechanism to converge to an inter-operable solution.

Client Service

~~~~~ 

omain c Domain(s) 
P( c)==P( s) 

In the example above, a client native protocol, P(c), matches the service native protocol, P(s). The solution should allow 
a node to detect that, although the node and another node reside in distinct domains, the nodes share the native protocol, 
and can retain the native protocol to inter-operate. 

459 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

1 
P(c)==P(c) 

In the example above, the native client protocol does not match the native service protocol, but the skeleton can support 
the client native protocol. The solution is for the skeleton to link the client native protocol. The service, from the 
perspective of the client, is indistinguishable from a service in the client protocol domain. The companion solution (not 
shown) is for the stub to link the service native protocol. The client, from the perspective of the service, is 
indistinguishable from a client in the service protocol domain. 

In the example above, the solution is to interpose a protocol gateway, as a distinct object, between the client domain and 
the service domain. The protocol gateway translates the client native protocol into the service native protocol. The 
protocol gateway, from the perspective of the client, resides in the client domain. The protocol gateway, from the 
perspective of the service, resides in the service domain. The framework interposes the gateway. The technique is visible 
to neither the client at the application level nor to the service at the application level. 

In the last example, the solution is to interpose two gateways. The first protocol gateway translates from the client 
protocol to a canonical protocol, while the second gateway translates from the canonical protocol to the service protocol. 
The solution accounts for the situation where a protocol gateway, which directly translates from the client native 
protocol to the service native protocol, is not available. If there is a convention with respect to a protocol which a 
domain supports for inter-domain inter-operation, it is feasible to cascade a gateway which translates into the canonical 
protocol to the gateway which translates from the canonical protocol in order to achieve inter-operation. The solution 
does not mandate that the protocol within either domain adopts the canonical protocol. 

E.4 Inter-operation Framework 
To address the solution for the issues raised above, the use of the Universal Network Object solution of the Object 
Management Group is recommended. Subclause ES, Protocol Selection, describes the framework which allows the 
design options noted above and provides the interface to converge to a solution. Subclause E.6, Common Data 
Representation, describes conventions at the presentation level that encode data structures, which result from the 
compilation of the Interface Definition Language into a concrete message payload. If the client side and a service adopt 
the conventions, the client operation signature and the service operation signature are consistent. Subclause E.7, UN0 
Session Protocol, describes the message set of the session level. It realizes remote procedure call semantics. Subclause 
E.8, Transport and Network Semantics, describes the semantics at the transport and service levels. 

460 



0 ISO/IEC ISO/IEC 13818-6:1998(E) 

ES Protocol Selection 
The inter-operation framework allows a node which resides in some protocol domain to discover the protocol known to 
another domain. The interface adopts the concept of a profile. The profile describes the protocol decisions which the 
native domain must adopt to inter-operate with the remote domain. The interface on which the solution builds is: 

typedef unsigned long ProfileId; 
const ProfileId TAG INTERNET - - IOP=O; 
struct TaggedProfile ( 

ProfileId tag; 

sequencecoctet> profile-data; 
1 . 9 

The structure comprises a) the code which identifies the profile and b) an opaque value which contains profile specific 
data. An example of a profile is the Internet Protocol which is the foundation of certain protocol gateway solutions. The 
fields inside the sequence<octet> for the protocol are: 

struct Version { 
char 
char 

,I . 9 

major; 
minor; 

struct ProfileBody ( 
Version iiop-version; 
string host; 
unsigned short port; 
sequence<octet> object-key; 

_) ; I 
The first field is the version as shown above. The second field, the network address, is the full Internet symbolic address. 
The third field is the target network port. The fourth field specifies the target object behind the network port. 

The figure above illustrates how the elements of the solution integrate. The service domain installs into the client 
domain a profile object which articulates the protocols which the service domain supports. If the client native protocol 
and the service native protocol match, the objects can inter-operate without a protocol gateway. If the client native 
protocol and the service native protocol do not match, the solution requires the interposition of a protocol gateway. The 
client can find the gateway through whatever is the convention for the client domain. In the case of DSM-CC, the client 
should expect to find the gateway in the service gateway. The transport code in the stub, in concept, selects the gateway. 
The interposition of the gateway, however, would not be visible to the client above the stub. 

E.6 Common Data Representation 
The inter-operation solution requires specification of how to translate an operation signature (here the type space of the 
Interface Definition Language) into a message payload. The conventions of the inter-operation solution are known as the 
Common Data Representation. This annex will not describe all the conventions. The objective will be to surface the 
questions which the translation raises, and note that for each question, there is a resolution. 

The message payload can be thought of as an octet stream. The octet stream is a finite sequence of eight-bit values with 
a clear point at which the stream begins The position of an octet in the stream is known as its index. The session 
software must understand the octet index to calculate alignment boundaries. 

461 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

E.6.1 Encapsulation 
The inter-operation solution distinguishes between two octet streams: a) a message and b) an encapsulation. A message 
is the basic unit of data exchange. An encapsulation is an octet stream into which the data structure may be marshaled. 
Once a data structure has been encapsulated, the octet stream can be represented as the opaque data type 
sequencecoctet>, which can be marshaled into a message or another encapsulation. The encapsulation allows complex 
constants to be pre-marshaled. Just as a message contains a field which encodes the byte order, an encapsulation 
contains a field which encodes the byte order. 

E.6.2 Alignment 
The primitive data types are encoded in multiples of octets. The alignment boundary of a primitive datum is equal to the 
size of the datum in octets. The table below presents the alignment conventions: 

TYPE OCTET ALIGNMENT 
char 1 
octet 1 
short 2 

unsigned short 2 
long 4 

unsigned long 4 
float 4 

double 8 
boolean 1 

The alignment is relative to the beginning of the octet stream. The first octet of the stream is octet index zero. The octet 
stream begins at the start of the message header. In the case of encapsulation, the octet stream begins at the start of the 
encapsulation, even if the encapsulation is nested within another encapsulation. 

E.6.3 Primitive Data Types 
The encoding rules of the primitive data types are intuitive and will not be shown. The figure below illustrates a few data 
types. 

Big Endian(char) Octet 
0 

Little Endian(char) Octet 
0 

Big Endian(short) Octet Little Endian(short) Octet 
MSB 0 LSB 0 

LSB 1 MSB 1 

Big Endian(long) Octet Little Endian(long) Octet 
MSB 0 LSB 0 

1 1 
2 2 

LSB 3 MSB 3 

Big Endian(float) 
S El 
E2 Fl 

Octet Little Endian(float) Octet 
0 F3 0 
1 F2 1 

F2 2 E2 Fl 2 
F3 3 s El 2 

Big Endian(double) Octet 
S El 0 

Little Endian(double) Octet 
F7 0 

462 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

E2 Fl 1 F6 1 
F2 2 F5 2 
F3 3 F4 3 
F4 4 F3 4 
F5 5 F2 5 
F6 6 E2 Fl 6 
F7 7 S El 7 

E.6.4 Compound Types 
A constructed type has no alignment restrictions beyond those of its primitive components. The rules which relate to 
constructed type are: 

Struct: The structure consists of its components encoded in the order of their declaration in the structure. 

Union: The union consists of the discriminant tag of the selected type plus the representation of the 
corresponding member. 

Array: The encoding preserves the element sequence. Since the array length is fixed, the length value is not 
encoded. In the case of multiple dimensions, the elements are ordered so that the index of the first dimension 
varies most slowly and the index of the last dimension varies most quickly. 

Sequence: The sequence consists of an unsigned long, which encodes the sequence length, plus the elements, as 
encoded by their type. 

String: The string consists of an unsigned long, which encodes the string length, plus the individual characters. 
The string terminates with the null character. The length includes the null character. The character set is IS0 
Latin- 1 (IS0 88599.1). 

Enum: Each enumeration value is a unsigned long. The companion numeric values reflect the order in which 
the identifier appears in the declaration. The first enum identifier has the numeric value zero. The successive 
enum identifiers ascend in value, in order of declaration from left to right. 

E.6.5 TypeCode 
The rules to encode typecode values build on the assignments shown below: 

TCKIND VALUE 
tk-null 0 
tk-void 1 
tk-short 2 
tk-long 3 

tk-ushort 4 
tk-ulong 5 
tk-float 6 

tk-double 7 
tk-boolean 8 

tk-char 9 
tk-octet 10 
tk-any 11 

tk_TypeCode 12 
tk-Principal 13 

tk-objref 14 
tk-struct 15 

tk-union 16 

tk-enum 17 

TYPE 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
empty 
simple 

complex 

complex 

complex 

PARAMETER 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
none 
string 

string(name) ulong(count) (string(memberName), 
TypeCode(memberType) 

string(name) TypeCode(discrimant) long(default), 
ulong(count) ( discriminant( labelvalue) 

string(memberName) TypeCode(memberType) } 
string(name) ulong(count) { string( memberName) } 

463 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

TCKWD VALUE TYPE 
tk-string 18 simple 

tk-sequence 19 complex 
tk-array 20 complex 

-none- OXFFFFFFFF simple 

PARAMETER 
ulong(maxLength) 

TypeCode(elementType) ulong(bounds) 
TypeCode(elementType) ulong(count) 

{ ulong(dimensionSize) ) 
long( indirection) 

A complete description of the TypeCode conventions is beyond the scope of this annex. For details, refer to the 
Universal Network Object specification of the Object Management Group. 

E.7 UN0 Session Protocol 
The inter-operation solution requires certain semantics for the UN0 session protocol. The premise is that the session 
protocol realizes a remote procedure call. The discussion of this subclause will focus on the message set which a client 
and a service exchange. 

E.7.1 Message Set 
The remote procedure message set shares a common preamble with the fields shown below (while the syntax below is 
identical to the standard, certain semantic names, for example Version below, differ to aid comprehension). 

struct Version ( 
char 
char 

major; 
minor; 

struct MessageHeader { 
char magic[4]; 
Version GIOP version; 
boolean byte order; - 
octet message-type; 
unsigned long message-size; 

1. 

Note that each message describes the byte order. If the source native byte order does not match the target native byte 
order, the receive side is responsible for the translation. 

The table below presents the message set, with the roles of the client and the service. 

Message Source of Message Value 
Request Client 0 
Reply Service 1 

CancelRequest Client 2 
LocateReply Service 3 

CloseConnection Service 4 
MessageError Client+Service 5 

A brief description of each message follows. For a complete description, refer to the Universal Network Object 
specification of the Object Management Group. 

E.7.1 .l Request Message 
The request message includes three elements: a) the standard message header, b) the request header, and c) the message 
body. The request header is: 

struct RequestHeader ( 
IOP: :ServiceContextList service contest; - 

, unsigned long request-id; 

464 



0 ISO/IEC ISO/IEC 13818-6:1998(E) 

boolean response-expected; 
sequence<octet> object-key; 
string operation; 
Principal requestingprincipal; 

The interpretation of each field is: 

ServiceContextList: The signature of an operation allows the inclusion of a context to associate with the 
operation. The service context list accounts for the option. The declaration is: 

struct ServiceContext { 
ServiceID context-id; 
sequence<octet> context-data; 

1 ; 
typedef sequence<ServiceContext> ServiceContextList; 

RequestId: The field allows the remote procedure software on the client side to scoreboard results. 

ExpectRequest: There is a construct in Interface Definition Language which allows the interface to declare if an 
operation does not return results. The field encodes this state. 

ObjectKey: The field identifies the target of the invocation. The description of the Internet Inter-Operation 
Protocol describes the data found in the sequence<octet> field. 

Operation: The field specifies the operation name. 

Principle: The field relates to the Principle concept. A principal is a trusted object on which authentication 
techniques build. 

E.7.1.2 Reply 
The Reply message contains three elements: a) a standard message header, b) a ReplyHeader, and c) a message body. 
The schema for the reply header is: 

enum ReplyStatusType { 
NO EXCEPTION, 
USER EXCEPTION, 
SYSTEM EXCEPTION, 
LOCATION FORWARD - 

I . 9 

struct ReplyHeadrer ( 
IOP: :ServiceContextList service context; - 
unsigned long request-id; 
ReplyStatusType reply-status; 

The interpretation of each field is: 

ServiceContextList: The is the same field as found in the Request message. 

RequestId: The client remote procedure software can exploit the field to scoreboard results. 

ReplyStatusType: The service can indicate that the target object which realizes the operation does not now 
reside at the service object location. The message body then provides the object reference, cast in the inter- 
operable signature, at which the target object resides. The infrastructure on the client side is responsible for 
forwarding the original request to the that target object. The feature anticipates object migration, which 
empowers techniques such as reaction to failures or load balance. 

465 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

E.7.1.3 CancelRequest 
The CancelRequest message contains two elements: a) a standard message header and b) a CancelRequest header. The 
schema for the cancel request header is: 

struct CancelRequestHeader ( 
unsigned long request-id; 

The RequestId specifies the invocation to which the message applies. Because the service could be unable to reverse the 
operation, the service is not required to realize the request. The client could receive a standard reply to the operation. 

E.7.1.4 LocateRequest 
The message allows the client to establish a) whether the object reference is valid, b) whether the current target of the 
operation can realize the request through the object reference, and c) to what address a request for the object reference 
should be sent. The message complements the status found in the Reply message. The client can discover whether the 
target of the operation realizes the operation before it invokes a request. The message contains two elements: a) the 
standard message header and b) the LocateRequest header. The schema for the locate request header is: 

struct LocateRequestHeader ( 
unsigned long request-id; 
sequence<octet> object-key; 

1 . . 

E.7.1.5 LocateReply 
The LocateReply message is the reply to the LocateRequest message. The message contains three elements: a) a 
standard message header, b) a LocateReply header, and c) a LocateReply body. The schema for the locate reply header 
is: 

enum LocateStatusType { 
UNKNOWN OBJECT, 
OBJECT HERE, 
OBJECT-FORWARD - 

1. 

struct LocateReplyHeadrer ( 
unsigned long 
LocateStatusType 

1 . 9 

request-id; 
locate status; - 

E.7.1.6 CloseConnection 
The message allows a service to alert a client that the service intends to close the connection. The client should not 
expect further responses. The message contains just the standard message header. 

E.7.1.7 MessageError 
The conditions which can cause the message include a) an invalid message header, b) an invalid version number, or c) 
an invalid message type. 

E.7.2 Session Semantics 
The session layer, in combination with the transport layer and the network layer, implements a remote procedure call. 
The semantics are roughly those of a subroutine invocation, where the software which calls the subroutine would expect 
the subroutine to a) execute the invocation (rather than fail with no notification), b) execute the invocation just once, and 
c) preserve the order of successive invocations. 

466 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

E.8 Transport and Network Semantics 
The objective of the solution is to be implementakk on a wide range of transport protocols. The inter-operation 
protocol, however, does expect certain semantics at the transport layer and at the network layer as described below. 

l Connection Establishment: The transport is to be “connectionful”. The connection bounds the scope of RequestId. 
0 Byte Stream: The transport is thought to be a byte stream. There are no restrictions on message size, fragmentation, 

or alignment. 
0 Reliable Transport: The transport is to be reliable. The transport is to guarantee that the target of the message 

receives the byte stream in the order in which it was sent, at most once, and that the source of the message receives 
a positive acknowledgment. 

0 Connection Failure: The transport is to provide some reasonable notification of connection failure. The object 
which establishes the connection should receive notification. 

0 Connection Establish: The connection establish phase is to translate to the connection abstraction of Transport 
Control Protocol (version not specified) and Internet Protocol (Version 4.0 to Version 6.0). 

467 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Annex F 
(informative) 

Use of U-U Object Carousel 

F.l Introduction 
Normative clause 11 contains the U-U Object Carousel specification This informative Annex provides additional 
information about the use of U-U Object Carousels. 

F.2 Purpose of U-U Object Carousels 
The U-U Object Carousel specification makes it possible to deliver U-U Objects in a broadcast network in an inter- 
operable way. The specification has been designed in such an way that implementations can easily offer applications a 
U-U API to access the objects broadcast. Consequently, implementations can provide a single API to applications to 
access objects that are delivered to the Client either by interactive networks or by broadcast networks. Figure F-l 
illustrates this functionality by showing the protocol stacks for both kinds of networks. 

Applications 

I Data Carouse1 I 
I/I 

Broadcast 
Network t 

UN0 - CDR 
UN0 - RPC r 

TCP 
IP 

I 
: Lowa Eayer, I 

pmm3ls : A. bmctive 
Network 

Figure F-l Protocol stacks for both Broadcast and Interactive Networks 

Given the protocol stack for interactive networks, the U-U Object Carousel specification was designed in such a way 
that a maximum coherency exists with OMG-UN0 (GIOP and IIOP). In broadcast networks, one Server may serve 
many Clients with different architectures. Therefore, a representation protocol is necessary that specifies how the U-U 
objects are carried on the wire. In Interactive networks, the object data is transported via the Internet Inter ORB Protocol 
(IIOP) on top of TCP/IP. In IIOP, the bits on-the-wire are defined by Common Data Representation (CDR) to make an 
exchange of objects between ORBS with different architectures possible. In order to avoid having two different 
representation protocols in hybrid Clients, U-U Object Carousels should also make use of CDR or related standards such 
as CDR Lite. CDR Lite has been chosen as the default data encoding standard because of efficiency reasons. 

F.3 IDL structures 
In the U-U Object Carousel specification, a number of IDL structures are given. In this subclause, the structure of the 
IOR, the Generic object Message, and the Directory Message are illustrated. 

F.3.1 Inter-operable object Reference 
BIOP uses the Inter-Operable Reference format (IOR) defined by OMG for object References. An IOR contains Profile 
Bodies that encapsulate all the basic information that a particular protocol stack needs to identify the object. A single 
Profile Body holds enough information to drive a complete invocation of the object using that protocol. 

468 



- 
EOP: : 3R 

tring type-id u-long length 
char . . . ..i 

lequence<TaggedProfile> profiles u-long -count 

3P Profile Body tag u low ProfileId , 
\ u-long -length 

uence <octet> profile-data char byte-order 

equence<TaggedComponent,255> octet -count 

0P::ObjectLocation component tag u long ComponentId 
luence coctet,255> component-data octet - length 

I 1  

HOP::ObjectLocation u-long carousel-id 
u-short module-id 
char versionmajor 
char versionminor 

;equence <octet,255> object-key octet -length 

object-key octet cobiect-key> 
0P::ConnBinder Component tag 
juence <octet,255> component-data octet - length 

leqc ace <NetworkTaps,255> octet -count 
Tap id u-short id 

use u-short use 
assocTag u-short assoc-tag 
sequence <octet,255> octet -length 
selector 

selector octet <selector> 
:other taps> 

:other TaggedComponents> 

< :other ProfileBodies> 

0 ISO/IEC ISO/IEC 13818=6:1998(E) 

The Profile Body defined by BIOP has the DSM::LiteComponentProfile structure. The structure of the IOR with the 
BIOP ProfileBody inside is shown below. The right column shows the encoding of the fields using CDR-Lite. The 
shaded fields indicate that the fields are described in clause 11. 

I I 

I 

Figure F-2 The structure of the IOR with the BIOP ProfileBody inside 

The BIOP Profile Body shall contain at least the LiteComponent BIOP::ObjectLocation and the LiteComponent 
DSM::ConnBinder. The BIOP::ObjectLocation component uniquely locates the object within the broadcast network. 
The DSM::ConnBinder component contains a number of Taps that point to DownloadInfoIndication() messages that 
describe the delivery parameters of the Module in which the object is conveyed. Optionally, Taps may be included that 
point directly to the connections on which the Modules are delivered. This option facilitates the use of aggressive 
acquisition procedures that start acquiring Blocks from the network before the actual Module attributes (like size) are 
known. 

469 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

F.3.2 Generic object Message 
The generic object message format consist of a header, a sub-header and a body. The structure of the Generic object 
Message is shown below. The right column shows the encoding of the fields using CDR Lite. The shaded fields indicate 
that the fields are described in clause 11. 

BIOP::Ger CObiectMessage 
IOP: :MessageHeader 

IOP: :MessageSubHeader 

magic141 char magic141 
biop version char version.major - 

char versionminor 
byte order - char byte-order 
message type octet message-type -_ 
message-size u-long message-size 

objectKey octet -length 
octet <objectKey> 

objectKind long length - 
string <objectKind> 

objectInfo short -length 
octet cobjectInfo> 

quence <octet> 

servicecontext octet -length 
List 

Service u - long Service Id - 
Context u-short -length 

octet <context-data> 
messageBody u-long length 

octet <data > 

Figure F-3 The structure of the Generic object message 

F.3.3 Directory Message 
The BIOP Directory message is instantiated from the generic object format. Hence, the Directory message has the same 
format but some fields are further detailed. In particular, the messageBody contains the DirectoryMessageBody structure 
which is shown below. The right column shows the encoding of the fields using CDR Lite. The shaded fields indicate 
that the fields are described in clause 11. 

470 



0 ISOIIEC ISO/IEC 13818=6:1998(E) 

I 3IOP::DirectorvMessageBodv 
Ice <Binding,65535> u-short -length 
sequence cNameComponent,255> octet -length 
nam NameComponent I f 

octet -length 
string; kind 

cother NameComponent> 
I 

binding-type octet binding-type 

object-ref IOP::IOR object ref - 

sequence coctet,65535> object-info u-short -length 

object-info 2 
:other Binding> 

octet <obiectJnfo> 

Figure F-4 BIOP Directory message 

The body of the Directory message consists basically of a loop of ‘Bindings’. A binding links an object name to a 
particular IOR and provides additional information about the Object. 

F.4 Support for New Object Representations 
The generic object message format can be instantiated for any kind of objects. To instantiate the generic object message 
format into a dedicated object message, the semantics of the objectInfo and messageBody fields have to be defined. The 
objectInfo field is intended to carry the attributes of the Object, while the messageBody is intended to carry the data of 
the Object. As described in clause 11, the instantiated Directory message also has an objectInfo field that may be used to 
carry the attributes of the bound object. By carrying the proper attributes in that field, quick browsing through 
Directories and Object attributes is supported. Hence, the instantiation of the generic object message format for a 
particular objectKind should also specify which attributes are carried in the objectInfo field of the (parent) Directory 
message. 

As a illustration, this subclause defines a new object and illustrates how the object message format is created for this 
object. The object is a BIOP::StreamEvent which inherits the DSM::Stream interface and the DSM::Event interface. In a 
similar way, a BIOP::FileEvent object could be defined that inherits the DSM::File inherits and also the DSM::Event 
interface. 

The BIOP::StreamEvent object inherits the standard DSM::Stream interface and the DSM::Event interface. 

module BIOP ( 
interface StreamEvent : DSM::Stream, DSM::Event { 
1 

The resulting BIOP::Stream event message now has the following attributes. From the Stream interface, it has inherited 
the DSM::Stream::Info-T attribute, while from the Event Interface, it has inherited the DSM::Event::EventList-T 
attribute. In addition, it has the Access attributes. To instantiate a message format for this object, it is necessary to 
specify which attributes are transmitted and where. For the StreamEvent object, it is decided that the Access attributes 
are not transmitted and that the other attributes will be encapsulated in the objectInfo field from the object message, 
because there is no real advantage in having these attributes available in the (parent) Directory object. The Object 
representation of the StreamEvent interface consists of the sequence of Taps and the list of eventId’s that are associated 
with the names published in the EventList-T attribute. Hence, the following rules define the instantiation of the 
BIOP::StreamEvent Object: 

471 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

I. The objectKind field shall contain the string “DSM::StreamEvent”. 

2. The Access attributes of the Stream Object are not encapsulated in either the objectInfo field of the File message nor 
the objectInfo field of the (parent) Directory message. The DSM::Stream::Info-T and EventList-T attributes shall be 
inserted at the beginning of the objectInfo field of the Object message. 

3. The messageBody field shall contain the BIOP::StreamEventMessageBody structure. The syntax and semantics of 
the BIOP::StreamEventMessageBody are defined below: 

module BIOP ( 
struct StreamEventMessageBody ( 

sequence cTap,255> 
sequence <unsigned short,255> 

1 . 9 

stream; 
eventIdList; 

The semantics of the stream and eventIdList fields are defined below. 

The stream field contains one or more taps that are associated with this stream object. Regarding the content of the 
stream, either one or more taps are present with a TapUse value of BIOP-ES-USE or one tap is present with a TapUse 
value of BIOP_PROGRAMJSE. In the first case, the stream consists of a number of elementary streams, while in the 
second case, the stream consists of an MPEG-2 Program. 

The eventIdList contains the eventId’s that are correlated to the event names published in the EvenList ‘I attribute. The - 
sequence of the eventId’s shall be equal to the sequence of the EventName’s. 

F.5 How to resolve an object from its IOR 
BIOP uses the Inter-Operable Object Reference format (IOR) defined by OMG for object References. An IOR contains 
Profile Bodies that encapsulate all the basic information that a particular protocol stack needs to identify the object. A 
single Profile Body holds enough information to drive a complete invocation of the object using that protocol. 

The BIOP Profile Body shall contain the LiteComponent BIOP::ObjectLocation and the LiteComponent 
DSM::ConnBinder. The BIOP::ObjectLocation component uniquely locates the object within the broadcast network. 
The DSM::ConnBinder component contains a number of Taps that point to DownloadInfoIndication() messages that 
describe the delivery parameters of the Module in which the object is conveyed. Figure F-5 explains in more detail how 
an object is resolved from its IOR. 

472 



0 ISO/EC ISO/IEC 13818=6:1998(E) 

[IOR ({ carouselId,mo idu 

T 
lleId,obiKey 1, { Tap, Tap 1) 

I I I 

I  
I  

DownIoadInfoIndication 0 { 
download id (= carouselId) 
blocksize 
Module-loop 
#lO- Id, Size,Version, 

Info -TimeOuts, NetworkTan 
+ #32- Id, Size,Version, 

Info -TimeOuts. NetworkTan 

(optidnal) use = BIOP-DELIVERY-PARAJJSE 

r --w-w-m i selector = <transactionId,timeouD 

; 
association-tag => <association-tag of connection> 

i use = BIOP - OBJECT-USE 
, -w-m----- ~-~-~-~-~-~-~ selector = <none> 

association-tag => 
<association-tag of broadcast channel> 

t  
I  

DownloadDataBlock 0 { 
download id (=carouselId) 

) moduleId 
moduleVersion 
<block of data of Module> 
) I 

\ 
d 

) Module (obiKev#a. obiKev#b.....> 

cl Obiect 

Figure F-5 How to resolve an object from its object reference. 

The IOR of the object contains the BIOP Profile Body that contains, in turn, the LiteComponent BIOP::ObjectLocation 
and the LiteComponent BIOP::ConnBinder. The BIOP::ObjectLocation component uniquely locates the object within 
the broadcast network using the carouselId, moduleId, and objectKey identifiers. The DSM::ConnBinder component 
contains a number of Taps that point to DownloadInfoIndication() messages that describe the delivery parameters of the 
Module in which the object is conveyed. 

As a first step to resolve the IOR, the Client has to acquire the DownloadInfoIndication() message that conveys the 
module delivery parameters of the Module. The Tap (or Taps) that points to this message includes a transaction-id field 
to identify the DownloadInfoIndication() message. The Tap also includes a time out value to time-out the acquisition 
process. 

When the DownloadInfoIndication() message has been acquired, the Client searches in the Module description loop for 
the module ‘moduleId’. The description of that Module includes three time out parameters that characterize the delivery 
of the module in time. The description also includes a Tap that points to the network channel on which the module is 
actually delivered. The blockSize of the blocks of the modules is indicated also in the DownloadInfoIndication() 
message. 

473 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Subsequently, the Client starts the acquisition of the Module in which the object is conveyed. In general, the Module 
will contain multiple objects which are related to each other at an application level. After the complete Module has been 
acquired, the requested object can be retrieved from the Module by inspecting the different object keys in the message 
sub-headers. 

F.6 Service Gateway and Download support 
Each U-U Object Carousel has a Service Gateway. The Service Gateway provides the root Directory of the content that 
is broadcast by this U-U Object Carousel. The IOR of the ServiceGateway shall contain the BIOP Profile Body. The 
BIOP Profile Body shall contain the LiteComponents BIOP::ObjectLocation and DSM::ConnBinder. 

The IOR of the Service Gateway is broadcast by means of DownloadServerInitiate() messages. The use of the 
DownloadServerInitiate() messages for the carriage of the IOR of the ServiceGateway is such that DSM-CC Download 
(non-flow controlled scenario) can be employed as a part of the ServiceGateway attach functionality. Such Download 
phase could be used to download the required code necessary to access the U-U Object Carousel. For this functionality, 
the DownloadServerInitiate() message has to convey at least a set of Taps; one with a TapUse value of 
DOWNLOAD CTRL DOWN USE and one with a TapUse value of DOWNLOAD DATA DOWN USE. The first - 
Tap points to the conn&on on-which the DownloadInfoIndication() messages are delivered (these messages contain the 
descriptions of the modules that have to be downloaded). An implementation could use multiple Taps to signal the 
second Tap points to the connection on which the DownloadDataBlock() messages are to be delivered. 

Figure F-6 illustrates how the relationship is between the DownloadServerInitiate() message and the 
DownloadInfoIndication() messages used for download. As illustrated, the Taps that point to the 
DownloadInfoIndication() message have a TapUse value of DOWNLOAD CTRL DOWN USE. The selector field of - - - 
the Tap contains the transaction-id of the DownloadInfoIndication() message and a timeout value to time-out the 
acquisition of the message. If necessary, multiple Taps with TapUse values of DOWNLOAD_CTRL-DOWN-USE may 
be carried in the DownloadServerInitiate() message for example to support multiple Client architectures. In this 
scenario, the differentiation between the Client architectures could be done using the compatibilityDescriptor() structure 
of the DownloadInfoIndication() messages. The other Tap directly points to the connection on which the 
DownloadDataBlock() messages are being broadcast. 

The semantics of the DownloadInfoIndication() messages that are used to support the non-flow controlled Download 
phase are defined in clause 7. Note that after the Download phase, the resolve operation of the IOR of the 
ServiceGateway is as described previously. 

474 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

DownloadServerInitiate () { 
server-id ( = Carousel NSAP address) 
userCompatibilities() (=not used) 
private data=> - 

IOR of ServiceGateway, 
Download Taps 
private data 

1 

use = DOWNLOAD CTRL~DOWN USE - - 
selector = <transaction-id,time-out> 
association-tag => <association-tag of connection> 

* 
DownloadInfoIndication () { 
download id 
blocksize- 
Module-loop 
lst- Id, Size,Version, 

Info -Implementation specific 
2nd- Id, Size,Version, 

Info -Implementation specific 
1 

I 
DownloadDataBlock () { 
downloadId (=carouselId) 
moduleId 
moduleversion 
<block of data of Module> 
I 

I 
* I 

Download Modules - 
I 1 

Figure F-6 Relationship between DownloadServerInitiate() and Download Taps 

F.7 U-U Object Carousels on top of MPEG-2 TS Broadcast Networks 
The BIOP specification is network independent and is applicable for any type of broadcast network. Network 
independence is achieved by using the Tap concept of clause 5. A Tap facilitates a reference to a particular network 
connection by means of an association tag. Obviously, in the course of resolving an object, Clients have to associate the 
Taps to the connections of the broadcast network. Clients need, therefore, an association table that makes the 
associations between the Taps and the connection of the broadcast network. 

The implementation of U-U Object Carousels on top of broadcast networks that are based on MPEG-2 Transport 
Streams is supported by the U-U object Specification by three descriptors. These descriptors facilitate i) the association 
of a MPEG-2 Program (i.e., PMT) with a U-U Object Carousel, ii) the association of a tap with a PID, iii) the 
localisation of the bit stream identified by the PID on which the IOR of the Service Gateway is broadcast, and iv) the 
distributed implementation of a U-U Object Carousel on top of multiple MPEG-2 Programs. 

The last feature is extremely useful when one U-U Object Carousel is broadcast using multiple transponders and, thus, 
multiple Transport Streams. This requires the use of one dedicated MPEG-2 program per Transport Stream. Figure F-7 

475 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

illustrates how one U-U Object Carousel can be implemented using multiple MPEG-2 programs and shows 
simultaneously how the different association-tag’s are related. 

, ,* a’ AT#l l=>TSH,PR#26 
#O .’ 

r- 

TS#4,PMT#lO 
carousel-id 
AT##7,AT##8,AT#I9=>TS#3,PR##lO-~**=~~, I- . 
AT#l l=>TS#5,PR#26 \ , . \ . . . \ . 

- PID stream loop . s . 
-b PID-80 <=> AT#lO , s 8 \ 

,  
s  
\  
,  
.  

,  

“‘~**L,,,**~ 

.  
-. 

-. 
-. 

* .  
-. 

--. 

TS#5,PMT#26 
carousel-id 
AT#77,AT#&AT##9=>TS#3,PR#lO 
AT#lO=>TS#4,PR#lO I 

#’ ,’ , , . 
+ PID stream loop , . . . I 

-+PID-133 <=> AT#ll,SG . : : .’ 0’ .-- . _- .- 
9. ---_ .- --- 

--._ -- 
--S_ __-- 

---_ ---- 
--- ----v__________---- __---- 

Figure F-7 Distributed implementation of U-U Object Carousel using multiple MPEG-2 Programs. 

In Figure F-7, three MPEG-2 programs are used to implement the U-U Object Carousel. Each PMT exists in another 
Transport Stream and has the carousel identifier descriptor0 included. This unambiguously associates the PMT with 
the U-U Object Carousel. Transport Streams aredenoted as TS. 

Each PID listed in the PMT has an associated assocation - tag-descriptor (denoted as AT). For example, the bit stream 
that is identified by PID#l03 and associated with AT#9 is used to broadcast DownloadServerInitiate() messages that 
carry the IOR of the ServiceGateway. 

The association tags that belong to PIDs that are part of other MPEG-2 Programs are described by 
deferred-association - tags - descriptorsO. These descriptors defer the resolve operation of an association tag to another 
MPEG-2 program in another Transport Stream. 

When a Client has to attach to a Service Gateway of a U-U Object Carousel, it should know at least the NSAP Carousel 
address that uniquely identifies the U-U Carousel with the broadcast network (see Service Domain in clause 11). Based 
on that information, the Client can find a PMT that belongs to the carousel and the PID which identifies the bit stream 
on which the DownloadServerInitiate() messages are broadcast. This PID has an association-tag with the use field set to 
0x0000. Subsequently, the Client acquires the DownloadServerInitiate() message, performs a possible download, and 
subsequently resolves the IOR of the ServiceGateway. Subsequent references to other Taps can now always be resolved 
because all association tags are known relative to this PMT. 

476 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Annex G 
(informative) 

Shared Resources and the Association Tag 

G.l Introduction 
This annex provides further clarification on the associationTag, the sharedResourceNumber and the 
sharedResourceRequestIcl in clause 4, U-N Session Messages. Various network types have been used as examples. 

G.2 Use of the Association Tag 
The association tag is used to indicate a horizontal association and also identify the descriptor ties. Figure G-l provides 
an example of an ATM SVC connection which is mapped into a non-ATM HFC Client access network connection. The 
Server view of this resource has been assigned resourceNum=l and associationTag=l. In this illustration, the non-ATM 
access network consists of an MPEG-2 Transport Stream (TS) in the downstream direction and TDMA in the upstream 
direction. Another associationTag, with the value 50, provides the descriptor association (a “vertical binding”) between 
the TS and its associated MPEG Program descriptor; vertical bindings are not visible to the ServiceGateway interface or 
the User-to-User Library. The associationTag 1 is, however, visible to both interfaces and is maintained constant across 
the end-to-end connection. 

Client Network Server 

Tag=1 (AtmSvcConnection(DownloadControl)) 

MpegProgram 
resourceNum = 30 
associationTag = 50 \\\\\\\.\\.....................................,,,.,,,.,.~ 

2 z 
P P PID 103 t z 
P Private Data t 
? \\ t (Download Control 
P t associationTag = l) 

f 
z z . \\\.\\.\.\\\..\\\\..\\\\\\\\\\\\\\\\\\\\................ 

Figure G-l Use of the associationTag to indicate horizontal association of different resources in the same end-to- 
end connection and stack nesting 

477 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

G.3 Use of the SharedResource Descriptor 
The sharedResource Descriptor is used when a number of resources are required to share a common resource. In Figure 
G-2, an AtmSvcConnection (with resourceNum 1) is shared by an RPC IP upstream resource (with resourceNum 12) as 
well as by an DownloadControl IP upstream resource (resourceNum 14). This occurs in cases where a single ATM 
Virtual Connection (VC) is assigned to MPEG, RPC and DownloadControl as shown in later examples. The 
sharedResource Descriptors, which have been assigned resourceNum 13 and 15, provide the linkage to the shared 
resource which has resourceNum 1. This is shown in Figure G-2 and Figure G-3 (left). 

session Id 
resourceCount= 

resourceNum4, associationTag=O (AtmSvcConnection) 
resourceNum=l 3, associationTag=l (SharedResource( 1)) 
resourceNum42, associationTag=l (WC upstream) 
resourceNum45, associationTag= (SharedResource( 1)) 
resourceNum44, associationTag= (DownloadControl upstream) 

Sharing1 

resourceNum=15 
associationTag= 

resourceNum=15 
associationTag= 
resourceNum=l 

resourceNum42 
associationTag=l 

Sharing2 

Figure G-2 Use of SharedResource Descriptor 

G.4 Use of the SharedRequestld Descriptor 
The SharedRequestId descriptor is used in place of the sharedResource descriptor in the case where the assignment of 
the resource numbers is done by the Network as opposed to being done by the originator of the resource request (a 
User). This case is shown in Figure G-3. A similar approach to that done in subclause G.3 is followed, except that 
instead of the sharedResourceNum descriptor being used to refer to a resourceNum, a sharedResourceRequestId 
descriptor is used to refer back to the resourceRequestId. 

478 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

resourceNum=l 
associationTag=O 

resourceNum=l2 
associationTag=l 

resourceNum=l3 
associationTag=l 

sharedResourceNum =l 

resourceNum=l5 
associationTag= 

resourceNum=l5 
associationTag= 

sharedResourceNum =l 

- 

4 

.  

.  

m  

.  

I  

d 

resourceRequestld=4 ’ 4 
associationTag=O 

resourceNum=l2 
associationTag=l 

. 

. 

resourceNum=l3 
associationTag=l 

sharedResourceRequestld=4 

I resourceNum=l5 
associationTag= 

resourceNum=l5 
associationTag= 

t 

Figure G-3 Use of SharedRequestId Descriptor 

G.5 Common Examples of Use 
The following examples provide different realistic scenarios for connections indicating how both the Association Tags 
and the Shared Resource descriptors are used (associationTag, SharedResource Descriptor and SharedRequestId 
Descriptor) : 

0 Download Phase, Multiple ATM SVCs 
0 Video Play Phase, Multiple ATM SVCs 
0 Single Asymmetric ATM SVC 

G.5.1 Download Phase, Multiple ATM SVCs 
This example uses separate ATM Switched Virtual Connections (SVCs) in order to carry the flows identified below: 

1. Download Data downstream 
2. Download Data Response upstream 
3. Download Control downstream 
4. Download Control upstream 
5. RPC 

Two scenarios are considered: 

0 End-to-End ATM. 
In this case the ATM SVC is maintained intact between the Server and the Client. 

l Core ATM network and non-ATM HFC Client access. 
In this case the flows being carried on the ATM SVC are mapped to non-ATM resources through the non-ATM 
resource descriptors. 

G.5.1 .l End-to-End ATM 
The top diagram in Figure G-4 provides the list of resource descriptors communicated from the Server to the Network 
and the Network to the Client. Since the system has an end-to-end ATM network, the resource numbers and the 
association tags are unchanged. 

In the example shown in the bottom diagram in Figure G-4, the flows corresponding to DownloadControl, 
DownloadData and RPC are carried on separate ATM WCs (resourceNuns I,2 and 3, respectively) and use their 
respective associationTags 1,2 and 3. The bindings to the interfaces are done using the associationTags. Through the 
bindings, the information format at the interfaces is expected to be in IP format. 

479 



ISWIEC 13818=6:1998(E) 0 ISO/IEC 

Client Network Server 

resourceNum=3 

\ 
f Session $ 
: : : 
: : .\ 

AtmSvcConnection 
(Download Control) 
resourceNum = 1 

associationTag = 1 

AtmSvcConnection 
(Download Data ) 
resourceNum = 2 

associationTag = 2 

AtmSvcConnection 
(RW 

resourceNum = 3 
associationTag = 3 

Figure G-4 End-to-End ATM, Download Phase, Multiple ATM SVCs Server and Client Views 

G.5.1.2 Non-ATM HFC Client View 
The top diagram in Figure G-5 provides the list of resource descriptors communicated from the Server to the Network 
and the Network to the Client. Since the ATM connection terminates in the Network, new resources between the 
Network and the Client are used over the non-ATM HFC network. The flows on the ATM SVC connection are mapped 
into non-ATM HFC resources. Although the resource numbers for each flow on the Client side are different, the 
association tags are kept the same. 

The DownloadControl, DownloadData and RPC connections each consist of 2-way flows. The downstream flows are 
carried on the MPEG TS and the upstream flows are carried on TDMA. The bindings to the corresponding interfaces are 
done using the associationTags. Through the bindings, the information format at the interfaces is expected to be in IP 
format. 

Since the MPEG TS is carried over TsDownstreamBandwidth (resourceNum 20), the SRM assigns an associationTag 
(50) to associate it with the MpegProgram (resourceNum 30). The Association Tag in this instance is used to identify a 
stack and does not appear in interface bindings at the User-to-User level. 

480 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Client Network Server 

load Control upstream 

1, associationTag=l (AtmSvcConnection(DownloadControl)) 
2, associationTag= (AtmSvcConnection(DownloadData)) 

resourceNum=3, associationTag= (AtmSvcConnection(RPC)) 

1, associationTag= (TsDownstreamBandwidth( 
30, associationTag= (MpegProgram downstrea 

resourceNum=21, associationTag=l (ClientTdmaAssignment(D 
resourceNum=22, associationTag= (ClientTdmaAssignment( D 
resourceNum=23, associationTag= (CiientTdmaAssignment(R 

;\\\..\\\\\\\......\\: 
i Session j 
: z k . . . . . \ ..,...........: 

I \ 
TsDownstreamBandwidth 

resourceNum = 20 
associationTag = 50 

\ 
MpegProgram 

resourceNum = 30 
associationTag = 50 

~.\\\\\\\\..\.\.\\..\\\\\\\\\\\\\\\\\\\\ 
PID 103 : 

,.\\.\\\.\.\\\\\\\\.\\\\\\\\\\\\\\\\\\\\....; ~...\.\\.\.\.\\...\..................~ 
: 

Private Data 3 
: 
9 

PID 104 : : 
: 

$ 
Private Data i 

: PID 105 

f (Download Control) $ 
Private Data 

(Download Data) 
i $ 
: 

: : : 
associationTag = 1 E ,: associationTag = 2 

g 
{ 

(RPC) f 
assocIationTag = 3 : 

: : : 
g 

: : : : 
: : .\\\\\\\\\......\.\.\\\\\\\\\\\\\\\\\\\\.... \\\\\\\\\\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\\...: ~...............\..\\\\\\\\\\\\\\\\\\\\ 

Figure G-5 Non-ATM HFC Client View Corresponding to Download Phase, Multiple ATM SVCs Server and 
Client Views 

G.5.2 Video Play Phase, Multiple ATM SVCs 
This example uses separate ATM SVCs in order to carry the flows identified below: 

1. MPEG Audio/Video/Data downstream 
2. RPC 

Two scenarios are considered: 
0 End-to-End ATM. 

In this case the ATM SVC is maintained intact between the Server and the Client. 

l Core ATM network and non-ATM HFC Client access. 
In this case the flows being carried on the ATM SVC are mapped to non-ATM resources through the non-ATM 
resource descriptors. 

G.5.2.1 End-to-End ATM 
In Figure G-6 provides the list of resource descriptors communicated from the Server to the Network and the Network to 
the Client. Since it is end-to-end ATM, the resource numbers and the association tags are unchanged. 

481 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

In the bottom diagram in Figure G-6, the flows corresponding to MPEG Audio/Video/Data downstream and RPC are 
carried on separate ATM SVCs (resourceNums 1 and 3, respectively) and use the respective associationTags (1 and 3). 
The associationTag 4 identifies a stack and is not used in the bindings. The bindings to the corresponding interfaces are 
done using the associationTags 10, 11, 6 and 3. Through the associationTag 3 binding, the information format at the 
interface is expected to be in IP format. 

Client Network Server 

resourceNum=l, associationTag= (AtmSvcConnection) 
resourceNum=ll, associationTag= (MpegProgram) 
resourceNum=3, associationTag= (AtmSvcConnection(RPC)) 

resourceCount= 
resourceNum=l , associationTag= (AtmSvcConnection) 
resourceNum=ll, associationTag= (MpegProgram) 
resourceNum=3, associationTag= (AtmSvcConnection(RPC)) 

,... ..\\.,\.\\\\y 
i Session : 
: : 
: : 
: : : \\\\\\\\\\ \\\\\\\\\\ 

I  

AtmSvcConnection 

I resourceNum = 1 
associationTag = 4 

I 

I 

MpegProgram 
resourceNum = 11 
associationTag = 4 

~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\sq \\\\\\\\\\\\\\w..m\\\\\\\\\\\\ ~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\’ 
: : : : : : t: PID 102 : 
: z 
: PID 100 $ $ :: 

PID 101 
: 

$ f Private Data 

% MPEG Video $ $ MPEG Audio 
i 

i ; (Stream Event) z 
$ associationTag = 10 $ a associationTag = 11 $ i associationTag = 6 $ 
z z % $ :: z 

:: : 
zI\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\: ~,,,,,,,\\\,,,,,\,,,,,,,,,,,,,,,,,- ~,,,,,,,,,,,,,,,,,,,,,,,,,,~~Z 

AtmSvcConnection 

resourceNum = 3 

Figure G-6 End-to-End ATM, Video Play Phase, Multiple ATM SVCs Server and Client Views 

G.5.2.2 Non-ATM HFC Client View 
The top diagram in Figure G-7 provides the list of resource descriptors communicated from the Server to the Network 
and the Network to the Client. Since the ATM connection terminates in the Network, new resources between the 
Network and the Client are used over the non-ATM Hybrid Fiber Coax (HFC) network. The flows on the ATM SVC 
connection are mapped into the non-ATM HFC resources. Although the resource numbers for each flow on the Client 
side are different, the association tags are kept the same. 

In the bottom diagram of Figure G-7, the MPEG Audio/Video/StreamEvent consist of only downstream flows and the 
RPC consists of 2-way flows. Both MPEG Audio/Video/StreamEvent and RPC downstream flows are carried on the 
MPEG TS and the RPC upstream flow is carried on a TDMA connection. The bindings to the corresponding interfaces 
are done using the associationTags. 

Since the MPEG TS is carried over TsDownstreamBandwidth (resourceNum 20), the SRM assigns an associationTag 
(50) to associate it with the MpegProgram resourceNum (11). The Association Tag in this instance is used to identify a 
stack and does not appear in interface bindings at the User-to-User level. 

482 



0 ISOLIEC ISO/IEC 13818-6:1998(E) 

Client Network Server 

resourceCount= 
resourceNum=l , associationTag= (AtmSvcConnection) 
resourceNum=l 1, associationTag= (MpegProgram) 
resoutceNum=3, associationTag= (AtmSvcConnection(RPC)) 

resourceNum&O, associationTag= (TsDownstreamBandwidth) 
resoutceNum=l 1, associationTag= (MpegProgram) 
resourceNum=3, associationTag= (CIientTdmaAssignment(RPC)) 

~~&w”~~~ 

: 
E 

: ? k .\\.... . ...\ ,,..: 
I I 

ClientTdmaAssignmen 
resourceNum = 3 r-l WC) 

associationTag = 3 

I 
TsDownstreamBandwidth 

resourceNum = 20 
associationTag = 50 

I 1 

Mpeg Program 
resourceNum = 11 
associationTag = 50 

?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\’ \\\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~ \\\\\\\\\\\\\\\\.,..,~~,~~ 
: \ : : t 
: : : 
: PID 100 : : PID 101 

: z : ; PID 102 z 
: 
: MPEG Video 

: 
i f MPEG Audio $ $ Private Data i 

[ associationTag = 10 s 
: 

{ associationTag = 11 $ $ (Stream Event) ; 

\~~,,,,~,.~~,,~~....~~___~ ?,,,,,.,,,,,,,,,~.,,,~,.,,.,,,,5 
: associationTag = 6 $ 
,...\.\.\.......\\\\\\\\\\\\\\ 

Figure G-7 Non-ATM HFC Client View Corresponding to Video Play Phase, Multiple ATM WCs Server View 

G.5.3 Single Asymmetric ATM SVC 
This example uses a single asymmetric ATM SVC in order to carry the flows identified below: 

1. MPEG Audio/Video/Data downstream 
2. RPC over TCP/IP downstream flow over private data on MPEG TS 
3. RPC over TCP/IP upstream flow over ATM 
4. Download Control and Data downstream flow in UDP/IP over private data on MPEG TS 
5. Download Control and Data Response upstream flow over ATM 

Two scenarios are considered: 
0 End-to-End ATM. 

In this case the ATM SVC is maintained intact between the Server and the Client. 

l Core ATM network and non-ATM HFC Client access. 
In this case the flows being carried on the ATM SVC are mapped to non-ATM resources through the non-ATM 
resource descriptors. 

G.5.3.1 End-to-End ATM 
The top diagram in Figure G-8 provides the list of resource descriptors communicated from the Server to the Network 
and the Network to the Client. Since it is an end-to-end ATM network, the resource numbers and the association tags are 
unchanged. 

The bottom diagram in Figure G-8 shows how the SharedResource descriptor is used to share the AtmSvcConnection 
between the MpegProgram and Ip descriptors. 

483 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

The MPEG Transport Stream Resource number (resourceNum lo), through the SharedResource descriptor 
(resourceNum 11) shares the AtmSvcConnection (resourceNum 1) with the other IP connections. The link between the 
MPEG TS and the SharedResource is maintained through the Association Tag, associationTag 1. The Audio, the Video 
and the StreamEvent (carried in PIDs 100, 101 and 102, respectively) are assigned the associationTags 10, 11 and 6, 
respectively. 

Since the RPC consists of 2-way flows, the downstream is carried on the MPEG TS (PID 204) and the upstream is 
carried on the IP connection (resourceNum 12). The associationTag 2 links the two directions to the same interface. The 
SharedResource (resourceNum 13) also is tagged at associationTag 2. Similarly the PID (resourceNum 14) and 
resourceNum 15 for Download are tagged at associationTag 3. 

Client Network Server 

&I “i’)!! 2% $)?$I 

Data downstream 
jwnstream flow over private data on MPEG TS 
jstream flow over ATM 
WI Data downstream flow in UDP/IP over private data on MPEG TS 

e) Download Control and Data Response upstream flow over ATM 

sessionld _ - 

1, associationTag=O (AtmSvcConnection) 

AtmSvcConnection 
resourceNum = 1 

associationTag = 0 

SharedResource 

MpegProgram 
resourceNum = 10 
associationTag = 1 

Figure G-S End-to-End ATM, Single Asymmetric ATM SVC Server and Client Views 

G.5.3.2 Non-ATM HFC Client View 
The top diagram in Figure G-9 provides the list of resource descriptors communicated from the Server to the Network 
and the Network to the Client. Since the ATM connection terminates in the Network, new resources between the 
Network and the Client are used over the non-ATM HFC network. The flows on-the ATM SVC connection are mapped 
into non-ATM HFC resources. Although the resource numbers for each flow on the Client side are different, the 
association tags are kept the same. 

484 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

The bottom diagram in Figure G-9 shows how the SharedResource descriptor is used to share the 
ClientTdmaAssignment resource between the Ip descriptors used to carry the DownloadControVData and the RPC 
flows. Since the TsDownstreamBandwidth only carries the MPEG TS, both descriptors share the same associationTag 
(1) . 

The MPEG Transport Stream Resource number (resourceNum 30) carries the Audio, the Video and the StreamEvent in 
PIDs 100, 101 and 102, respectively. These are assigned Association Tag numbers 10, 11 and 6, respectively. 

Since the RPC consists of 2-way flows, the downstream is carried on the MPEG TS (PID 204) and the upstream is 
carried on the IP connection (resourceNum 12). The Association Tag (associationTag 2) links the two directions to the 
same interface. The SharedResource (resourceNum 3 1) also shares the associationTag 2. Similarly the PID, 
(resourceNum 14) and resourceNum 32 for Download share the associationTag 3. - 

Client Network Server 

)i Ji #I I/ ,I 

a) MPEG AudioNideolData downstream 
b) RPC over TCP/IP downstream flow over private data on MPEG TS 
c) RPC over TCP/IP upstream flow over ATM 
d) Download Control and Data downstream flow in UDP/IP over private data on MPEG TS 
e) Download Control and Data Response upstream flow over ATM 

lession Id 

sessionld 
resourceCount= 

resourceNum=l, associationTag=O (AtmSvcConnection) 
resourceNum=l 1, associationTag=l (SharedResource(1)) 
resourceNum=lO, associationTag=l (MpegProgram downstream) 
resourceNum=13, associationTag= (SharedResource(1)) 
resourceNum=12, associationTag= (TCP-IP upstream) 
resourceNum=l5, associationTag= (SharedResource(1)) 
resourceNum=14, associationTag= (UDP-IP upstream) 

resourceCount= 
resourceNum=20, associationTag=O (AtmSvcConnection) 
resourceNum=30, associationTag=l (MpegProgram downstream) 
resourceNum=21, associationTag=O (ClientTdmaAssignment) 
resourceNum=31, associationTag= (SharedResource(21)) 
resourceNum=12, associationTag= (TCP-IP upstream) 
resourceNum=32, associationTag= (SharedResource(21)) 
resourceNum=14, associationTag= (UDP-IP upstream) 

I 

TsDownstreamBandwidth 
resourceNum = 20 
associationTag = 1 

. 

\ I 

ClientTdmaAssignment 
resourceNum = 21 
associationTag = 0 

, 
I 

SharedResource SharedResource 
(TDMA/TCP-IP 

resourceNum = B 1 
(TDMAKJDP-IP 

resourceNum = 5 2 
associationTa 

it 
= 2 associationTa = 3 

sharedResource urn =21 sharedResource !I urn =21 

M e Program 
res 89 u ceNum = 30 
associationTaa = 1 ” 

~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
z 

~“““““““““‘““““‘\; \\\\\\\\\\\\\\\\\\\\ 
. 

z 
: t z z $3 \\\\\\\\\\\.~,...,.,~.,~~.~..,,~ 

: t PID 102 tt PID 103 P z 3 ? t PID 104 t 

i P 
I 100 : 3 

M  G Video { i M  P ii 
11 \[ Private Data $8 

G udio 
Private ata % 

z 
$ associationTag = 10~ 1 associationTag = 1 l\ 

z (Stream Event) $ Q (Download 8 ontrol/Data) 1 
[ Priv ec)Data 

& 
s 
3 h 

P : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t $ / associationTag = 2 $ 
~,.,,,,,,,,.,,,,,,,,.,,,,,,,,,,,,,~~L 

1 associationTag = 6 % 1 associationTag = 3 
\ \ 2 ~,~.,.,,.~~.,~~~~,.~~~.,,. ~~~~~~~~~~~~~~~~~\\\,,,,,,,,,,,,,,,,,,,,,,,,,,\ t t \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 

Figure G-9 Non-ATM HFC Client View Corresponding to Single Asymmetric ATM SVC Server Views 

485 



ISO/IEC 13818=6:1998(E) 0 ISOIIEC 

G.5.4 Single Asymmetric ATM PVC 
The example with ATM Permanent Virtual Connections (PVC) is similar to the example in 1 “Single Asymmetric ATM 
SVC”, except AtmSvcConnection is replaced by AtmConnection and SVC is replaced by PVC in the text. 

G.5.5 Download Phase, Multiple ATM PVCS 
The example with PVC is similar to the example in 2 “End-to-End ATM, Download Phase, Multiple ATM SVCs”, 
except AtmSvcConnection is replaced by AtmConnection and SVC is replaced by PVC in the text. 

G.5.6 Video Play Phase, Multiple ATM PVCs 
The example with PVC is similar to the example in 3 “End-to-End ATM, Video Play Phase, Multiple ATM SVCs”, 
except AtmSvcConnection is replaced by AtmConnection and SVC is replaced by PVC in the text. 

G.5.7 Use of sharedResourceRequest Descriptors 
In examples 1 through 6 above, the resource numbers are assigned by the originator of the request. If the resource 
numbers are assigned by the Network, then the sharedResourceRequest descriptor replaces the SharedResource 
descriptor at every instance of its occurrence. Correspondingly, the sharedResourceNum is replaced by 
sharedResourceRequestId. In the request message, from the originator to the Network, the ResourceNum fields are filled 
with 0’s. In the confirm message from the Network to the originator, the ResourceNum fields take their actual values 
assigned by the Network. 

486 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Annex H 
(informative) 

Switched Digital Broadcast Service 

H.l Introduction 
In some network architectures, such as Hybrid Fiber Coax (HFC) and Fiber to the Curb (FTTC), the economics of 
network design favor the delivery of digital broadcast programs to an Inter-Working Unit (IWU) within a delivery 
system, and from there, multicasting the programs to Clients. Although an entire set of broadcast programs is available 
at the IWU, it may not be practical for some system architectures to simultaneously deliver all digital broadcast 
programs to each Client. In this informative annex, a system assumption is that in order for a Client to switch from 
channel to channel, the IWU must be signaled for the channel connection to change. 

The Switched Digital Broadcast (SDB) Channel Change Protocol (CCP), defined in normative clause 10, specifies a 
protocol specifically for this application. The SDB Channel Change Protocol is exchanged between a Client and an SDB 
Server (part of an IWU) in the Network. The SDB Channel Change Protocol forms a separate functional group within 
DSM-CC U-N protocols. So, although this protocol has been designed to work harmoniously with other clauses of 
ISO/IEC 138 18-6, it has also been designed to used independently from the rest of DSM-CC. 

The broadcastProgramId is a number that is used to uniquely identify each of the different broadcast programs that are 
available to a Client from the Network. How broadcastProgramId’s are administered is outside the scope of this part of 
ISO/IEC 138 18 (one possibility is to have the SRM administer these numbers). 

A mapping in the Client is needed between the Client’s view of the broadcast program (e.g., a name such as “PBS”, or a 
channel number such as “lo”), and the broadcastProgramId. The format of this mapping (commonly contained in an 
electronic program guide) and the means of its transport to the Client are outside the scope of this part of ISO/IEC 
13818. 

Three resource descriptors are defined to support Switched Digital Broadcast Service: The SDBContinuousFeed 
resource descriptor is defined to enable the addition or deletion of broadcastProgramId’s to the entire set of programs 
available at the IWU; the SDBEntitlement resource descriptor is defined to identify the set of the broadcast programs 
from which a particular client can select within an established SDB session; and the SDBAssociations resource 
descriptor is defined to point to the individual connections at the Client used for program viewing and for the CCP 
control channel. 

A mapping in the SDB Server is needed between the broadcastProgramId and the connection resources that transport the 
broadcast program. Although this information could be represented in a proprietary way, DSM-CC resource descriptors 
have been defined for this purpose and may be used. Descriptors of note are the AtmConnection resource, which 
contains port/VPYVCI fields, and the MpegProgram resource, which indicates the MPEG program number and PIDs of 
the broadcast program as it arrives at the IWU from the distribution network. 

H.2 Switched Digital Broadcast Service 
The main architectural elements that illustrate the Switched Digital Broadcast Service are illustrated in Figure H- 1. 

487 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Figure H-l Digital Broadcast Service Architecture 

As an example, the Switched Digital Broadcast Service may be provided over a Fiber-to-the-Curb (FTTC) system. Two 
connections for signaling are required from the Client, one for the Channel Change Protocol which terminates on the 
SDB Server in the IWU, and one for the DSM-CC U-N which terminates in the SRM. In this example, the Channel 
Change Protocol is carried directly over ATM AALS. 

Other implementations are possible. For example, both SDB Channel Change and User-Network messages could be 
carried over a single connection: the IWU could terminate SDB Channel Change messages and route User-Network 
messages to the SRM. Alternately, it is possible to implement an SDB Server and an SRM in a single platform, and 
terminate both sets of messages in a single place. 

H.3 Functional Flows 
This annex describes several functional flows. Although many of the flows given below are recognized to exist, they are 
implementation specific and are provided for information only. The following functional flows are considered: 

l Broadcast Program Configuration 
a Client Service Profile Transfer to the SDB Server 
l Broadcast Program Guide Transfer To Client 
0 Switched Digital Broadcast Service Session Establishment 
0 Client Initiated Channel Changes 
a Network Initiated Channel Changes 
0 Switched Digital Broadcast Service Session Release 

H.3.1 Broadcast Program Configuration 
The Broadcast Program sources must be delivered to the broadcast distribution network, and from there to the IWU 
switching fabric. An association must be established between connection resources used by a Broadcast Program, and its 
broadcastProgramId. This association, which describes the Broadcast Programs available to the SDB Server, may be 
performed by private means. Alternately, DSM-CC Continuous Feed Sessions may be used to facilitate the configuration 
of this information in the SDB Server. 

The following discussion describes how Broadcast Programs may be configured by the Continuous Feed Session 
mechanism. 

488 



0 ISO/IEC ISOAEC 13818=6:1998(E) 

SRM CFS Server 

ServerContinuousFeedSessionRequest 

sessionld 
serverld 
resourceCount 
loop (resourceCount, SdbContinuousFeed , 

connection resource descriptors) 

1 ServerContinuousFeedSessionConfirm 

sessionld 
serverld 
resourceCount 
loop (resourceCount, SdbContinuousFeed , 

connection resource descriptors) 

. 

Figure H-2 Broadcast program configuration using Continuous Feed Session establishment 

Step 1: 

To initiate a continuous feed session, the Continuous Feed Session Server (CFS Server) sends a 
ServerContinuousFeedSessionRequest to the SRM to establish Broadcast Program feeds on the Distribution Network. 
The ServerContinuousFeedSessionRequest includes a SDBContinuousFeed resource descriptor and connection resource 
descriptors. The SDBContinuousFeed resource descriptor contains the SDB Service ID (sdbId), which provides the list 
of broadcast programs within the continuous feed session: for each broadcast program, the CFS Server provides a 
broadcastProgramId (a globally unique identifier for a Broadcast Program) and the associationTag of its associated 
connection resource. The sdbId must be assigned beforehand and its management is outside the scope of this part of 
ISOAEC 138 18. The assignment of broadcastProgramId’s can be done by the CFS Server or by the SRM. If the CFS 
Server assigns the broadcastProgramId’s, it provides the assigned values in the request; if the SRM assigns them, the 
broadcastProgramId’s are provided in the ServerContinuousFeedSessionConfirm message. 

The format of the connection resource descriptors depends upon the connection establishment procedures in use. 

Note that when the ServerContinuousFeedSessionRequest message is received by the SRM, it may need to set up 
connections on the distribution network to the IWUs. For each Broadcast Program, the SRM must then provide an SDB 
Server with the association between broadcastProgramId and the SDB Server view of the connection resource that 
carries the broadcast program. The protocol used to transfer this information between the SRM and SDB Server(s) is 
outside the scope of this part of ISO/IEC 138 18. 

Step 2: 

The SRM replies with a ServerContinuousFeedSessionConfirm message to the CFS Server. The broadcastProgramId’s 
allocated by the SRM are provided back to the CFS Server within a SDBContinuousFeed resource descriptor. The CFS 
Server will request connection resources to be allocated by the SRM, if needed, via appropriate resource descriptors. 

H.3.2 Client Service Profile Transfer to the SDB Server 
One method of authentication is to perform entitlement checking in the SDB Server. Requests for broadcast programs 
are validated at the SDB Server using the list of the broadcastProgramId’s entitled to a Client within a session. If the 
Client is not entitled to the requested program, the SDBProgramSelectConfirm message, which is used by the SDB 
Server to respond to the Client, will fail with either a response code of rspEntitlementFailure or rspRedirect. In the latter 
case, the Client will be directed to an alternate channel. 

The Client Service Profile information is maintained by the SDB Management server. The SDBEntitlement resource 
descriptor has been defined for use between the SDB Management Server and the SRM to communicate Client 
entitlements within a session. This information may be sent as part of the Switched Digital Broadcast Service session 
establishment, as described in subclause H-3.4. However, other means of communicating the entitlements from the SDB 
Management server to the SDB Server through private means are not precluded. The communication of entitlements 
from SRM to the SDB Server, and its checking, are outside the scope of this part of ISO/IEC 138 18. 

489 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

H.3.3 Broadcast Program Guide Transfer to Client 
A list of the available broadcast programs (e.g., in an electronic program guide) may be required by the Client in order 
to request a Broadcast Program. Through this, the video user’s notion of a Broadcast Program (e.g., the channel number, 
and perhaps a printable string, such as “CNN”) is related to the broadcastProgramId. 

The electronic program guide may include additional application level information about the broadcast program content 
(such as language / parental advisory, event cost, start time, etc.), and may include additional connection information. In 
the case of ATM, if the VPYVCI values of Broadcast Programs are static, they could also be included in the electronic 
program guide for use by the Client to improve channel “surfing” response time. With this information, the Client need 
not wait for a SDBProgramSelectConfirm message to determine the VPI/VCI to which to “tune”. 

The format of the electronic program guide and the method by which it is sent to the Client is out of the scope of this 
part of ISO/IEC 13818. One method by which the electronic program guide may be sent to the Client is via a broadcast 
carousel mechanism (see clauses 7 and 11). The electronic program guide may be managed in its totality by a network 
service provider and passed as a single entity to the Client, or pieces may be managed by individual SDB service 
providers, and transferred to the Client separately. 

H.3.4 Switched Digital Broadcast Service Session Establishment 
The purpose of a SDB Session is to manage the resources needed to provide a SDB service. Typically, a minimum of 
two resources are needed in order to provide a SDB service: a bi-directional control channel between the Client and a 
SDB Server, and a “downstream” data channel to carry a broadcast program from the IWU to the Client. 

The DSM-CC session protocol can be used to establish SDB sessions; an example on how this is done is given below in 
Figure H-3. However, in simple implementations, dynamic session establishment using the SRM may not be needed and 
the sessionNumber (the least significant 4 bytes of the sessionId) used in the SDB Channel Change Protocol messages 
could be a number assigned, following a rule, to distinguish between different SDB service requests sharing the control 
channel. 

The SDB Channel Change Protocol supports simultaneous SDB sessions to a Client. Additional sessions may be used to 
receive multiple video streams (e.g., in order to support “picture in picture”), or for other purposes, such as to gain 
background access to a broadcast carousel. 

The session gateway in the SDB Management Server terminates Client SDB session establishment requests. The SDB 
Management Server is a logical entity only; in practice, this function may be implemented by a network provider 
together with the SRM. Alternately, this function may be provided by a service provider as a standalone implementation, 
or implemented together with the Continuous Feed Server. 

Figure H-3 illustrates a normal SDB session establishment. 

490 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Client SRM SDB Management Server 

ClientSessionSetUpRequest 

sessionld 5 ServerSessionSetUplndication 
clientld sessionld 
serverld = SDBManagementServerld clientld 
UserData serverld = SDBManagementServerld 

UserData 

XientSessionProceedingIndication 
(---------------------- 3 ServerAddResourceRequest ..,....................,.,.................,. 

t 

sessionld 
resourceCount 
loop(resourceCount, SdbAssociations, 

SdbFeed) 
UserData 

5 ServerAddResourceConfirm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
sessionld 

), 

response 
resourceCount 
loop(resourceCount, SdbAssociations, 

SdbFeed) 
UserData 

ServerSessionSetUpResponse 
ientSessionSetUpConfirm 

7 
sessionld 

sessionld response 
response resourceCount 
resourceCount loop(resourceCount, SdbAssociations, 
loop(resourceCount, SdbAssociations, SdbFeed) 

connection resource descriptors) UserData 
UserData 

ClientConnectRequest 
..-.-.-.-.-.-.-.-.-.-.-.-. ServerConnectlndication 

.-.-.-.-.-.-.-.-.-.-.m.m. -*w 

Indicates Command May BE+. -a -. - 
Sent Zero Or More Times. . . . . . . . . . . . 

Figure H-3 SDB Session Establishment 

Step 1 (Client): 

The Client sends a ClientSessionSetUpRequest to the SRM, indicating the SDB Management Server’s serverId. If the 
DSM-CC U-U interface is used (see clause 5), the Client may include a SessionUU attach0 request within the UserData 
of the ClientSessionSetupRequest message in order to identify the requested SDB service. 

Step 2 (SRM): 

The SRM sends a ServerSessionSetUpIndication to the SDB Management Server. 

Step 3 (SRM): 

The SRM may optionally send a ClientSessionProceedingIndication message to the Client. 

Step 4 (SDB Management Server) 

In this example, the SDB Management Server concludes by the serverId, or through the information provided in the 
SessionUU attach(), that the Client wishes to access an SDB service. Accordingly, it sends a 
ServerAddResourceRequest message to the SRM. In other cases, the Client may access a directory at the SDB 
Management Server from which SDB service(s) may be selected. In this example, the SDB Management Server through 
the SDBAssociations resource descriptor, requests two resources -- one for program viewing and one for the CCP 
control channel. An additional resource descriptor, the SDBEntitlement, may be used to provide a list of 
broadcastProgramId’s for the Client’s entitlements. Provision is made in the SDBEntitlement descriptor to either 
authorize additional programs over those to which the Client is already entitled or deny authorization to programs to 
which the Client was entitled. 

Step 5 (SRM): 

491 



ISWIEC 13818=6:1998(E) 0 ISO/IEC 

The SRM allocates the resource needed to support the control channel and a nominal resource for initial program 
viewing based on the Client entitlements for the SDB Session in the SDBEntitlement. Note that the SRM may need to 
request the resources from the IWU at this point, and may communicate Client entitlement information to the IWU. How 
this is done is outside the scope of this part of ISO/IEC 138 18. 

The SRM sends a ServerAddResourceConfirm message to the SDB Management Server. The response code is set to 
rspNeResourceOk if all resources could be successfully allocated; otherwise, it is set to rspNeResourceFailed. 

Step 6 (SDB Management Server): 

Once the SDB Management Server has determined that the resources required for the new SDB session have been 
allocated, it accepts the session, and sends a ServerSessionSetUpResponse to the SRM. The assigned tag values are 
reused by the SRM for the connection resources established to the Client. If the U-U Interface is used (see clause 5), the 
associationTag’s are also carried in the SessionUU attach0 response in order to bind the connection resources at the 
Client with the MPEG DOWN USE and SDB-CTRLJJSE taps. Private data in the ServerSessionSetUpResponse may 
be used to communica& the electronic program guide. 

Step 7 (SRM): 

The SRM sends the ClientSessionSetUpConfirm message to the Client. The list of resource descriptors included with 
this message comprise, from the Client’s view, the connection resource (for example the AtmConnection) corresponding 
to the sdbControlAssociationTag (the associationTag of the connection resource will correspond to that of the 
sdbControlAssociationTag) and the connection resource (e.g., TsDownstreamBandwidth) for program viewing, 
corresponding to the sdbProgramAssociationTag. 

In the case where the Client establishes multiple SDB sessions, a desired optimization would be to share the SDB 
Control Channel among them. Sharing of the SDB Control Channel may be accomplished by private means between the 
SRM and the IWU: an AtmConnection may be dedicated to serve as the SDB Control Channel for all the broadcast 
sessions at a Client. The SRM then provides the Client with the identical AtmConnection resource in the 
ClientSessionSetupConfirm messages for all its broadcast sessions. This also implies that the SRM will not tear down 
the shared AtmConnection when a particular session is released, as long as there is at least one active broadcast session 
at that Client. 

H.3.5 Client Initiated Channel Changes 
In order to request a Broadcast Program, the following is assumed: a SDB Session has been established, the SDB Server 
has received the Client entitlements for the established SDB session (see subclause H.3.4) and the Client has knowledge 
of broadcast program Id’s (e.g., via an electronic program guide). 

In Figure H-4, the Client requests a Broadcast Program from the SDB Server. The first parameter in the 
SDBProgramSelectRequest message body is the sessionId. This is used to distinguish between different SDB sessions 
that may be active at a single Client. The second field is broadcastProgramId, which is used to identify the Broadcast 
Program the Client desires. 

Parameter checking is performed and appropriate error response code values returned to the Client upon error. Typical 
errors at this step may be rspNoSession (invalid session number) or rspFormatError (badly formatted message). 

The Client’s entitlements can be used at this step to validate the request. The response code, rspEntitlementFailure, has 
been defined for this purpose. Depending upon implementation, the SDB Server may either block the delivery of the 
requested program or provide an alternate program in the case of entitlement failure. Such a feature might be used when 
the Client requests an un-subscribed channel, and instead of completely rejecting the request, the Client is directed to a 
broadcast program that contains an advertisement. In the case where an alternate channel is to be provided, the response 
code rspRedirect is sent to the Client, and the broadcastProgramId in the SDBProgramSelectConfirm message is set to 
the broadcastProgramId of the alternate broadcast program. 

The SDB Server checks the ability of the network to provide the desired Broadcast Program. This checking includes the 
applicability of the available resources and the operational state of the Broadcast Program. If the Broadcast Program 
cannot be delivered due to facility or network failure, the rspBcProgramOutOfService response code is returned. 

The SDB Server also checks the availability of resources necessary to provide the desired program. If insufficient 
resource exist at the SDB Server, then the rspNoServerResources response code is returned. If insufficient resources 
exist in the network, the rspNoNetworkResources response code is returned. 

492 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

If the request can be successfully satisfied, then the connection is made that allows the Client to receive the requested 
Broadcast Program, and a SDBProgramSelectConfirm message is sent with a response value of rspOk, and indicates the 
necessary connection information needed by the Client to receive the Broadcast Program. The format of this information 
is unspecified, and may be transported in privateData, if needed. In the case of FTTC, the connection information might 
include ATM VPI/VCI information; in the case of HFC, it might include PhysicalChannel and MpegProgram resource 
descriptors. 

An example of a successful channel change message sequence follows: 

1 

pfmallatitirrator 
-me 
messaeeld 
trarsadionld 
rd 
m-h 

se&rid 

pfmallatirri~or 
~Jil= 
rressaeeld 
trzmxtionld 
rW 
adaFtah’- 

sessionld 
bOOl8 
cMxxloOOM123456789012 

2 . 

Figure H-4 Example Client Initiated Channel Change 

H.3.6 Network Initiated Channel Changes 
Network initiated channel changes can be used to “tune” a Client to a channel (for example, just before a Pay-Per-View 
event begins), or away from a channel (for example, when a Pay-Per-View event ends, or when a Client is un- 
subscribed). 

493 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

The SDBProgramSelectIndication message contains a sessionId, which is comprised of the sessionNumber and deviceId 
of the Client. As with Client initiated channel changes, a session must be explicitly or administratively established 
before the SDBProgramSelectIndication message can be sent. The U-N Pass-Thru Receipt message protocol (defined in 
clause 12) is one method,by which the SIX3 Management Server may alert a Client to initiate a session. The Pass-Thru 
Receipt message protocol also allows the SDB Management Server to notify the Client of the appropriate parameters to 
establish the session and initiate the service. 

A reason field is provided to indicate why the SDB Server has decided to initiate the SDBProgramSelectIndication. If 
the reason is rsnNorma1, then the SDB Server has decided to provide a channel. If the reason is rsnEntitlementFailure, 
then the Client is no longer entitled to the channel, and will no longer receive it. In this case, the broadcastProgramId is 
set to all O’s to indicate that no program is available or is set to the broadcastProgramId of an alternate program as 
appropriate (e.g., a broadcast program that contains an advertisement). It is expected that the Client application software 
will recover from this situation appropriately, but how this is done is implementation dependent. 

If supplied, the broadcastJ+ogradd indicates the new Broadcast Program to be received, and privateData may be used 
to transport appropriate connection information. These fields have the same syntax and semantics as in the 
SDBProgramSelectConfirm. 

When received by the Client, parameter checking is performed and appropriate error response code values returned to 
the SDB Server upon error. Typical errors at this step may be rspNoSession (invalid session number), and 
rspFormatError (badly formatted message). 

If the indication is successfully processed in the Client, it responds with a SDBProgramSelectResponse message value 
set to rspOk. 

In the case of a response time-out waiting for the SDBProgramSelectConfirm message, the SDB Server may retry (up to 
a maximum number of retries), and if unsuccessful, discontinue the program. In this case, it is the responsibility of the 
Client to recover appropriately. How this is done is implementation dependent. 

An example successful network initiated channel change message sequence follows: 



0 ISO/IEC ISOAEC 13818=6:1998(E) 

Client sDEservef 

2 

SDBProgramSelectlndication 

protoaiDisctim’nator 
dsmccType 
messageld 
transactionld 
reserved 

adaptationlength 
m==wmm 

sessionid 
reason 
-Programld 
privateMamrlt 

resourceType 
VPI 
VCI 

SDERogramSelect~ 

oxmll2234 

WI8 
OxmIO0002123456789012 

oxmooool4 

oxm20 (Atmv-on) 

protocdmcrirYir 
-me 
messageid 
transtionld 
reserved 

adaptationlength 
-is--m 

sessionld 

response 
pfivateDatacarnt 

0x11 

oxmll2234 

oxoooo~123456789012 

1 

Figure H-5 Example Network Initiated Channel Change 

H.3.7 Digital Broadcast Session Release 
SDB sessions are released identically to other DSM-CC sessions. Figure H-6 illustrates the message flow for a SDB 
session release. 

495 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Client Network SDB Management 

1 ClientReleaseRequest 
sessionld 
reason 
UserData 

2 

ClientReleaseConfirm 

sessionld 
response 
UserData 

Server 

ServerReleaseIndication 

session Id 
reason 
UserData 

SewerReleaseResponse 
4 
sessionld 
response 
UserData 

4 

3 

Figure H-6 SDB Session Release 

496 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Annex I 
(informative) 

Example U-N Life Cycle Walk Through 

1.1 Introduction 
This appendix provides an example for a scenario and message flows for a DSM-CC session, including the phases of 
User-Network Configuration, Session Establishment, and Download. User-to-User information may be found in clause 
5. There are many possible scenarios for the 3 phases listed. This is but a small set of examples. 

I2 . General Flow 

Yes U-N Config 

Figure I-l Flow for Running an Application 

Each step, whether it be U-N Config, U-N Session Establishment, U-N Download or running a U-U Application, has 
certain preconditions and post-conditions. In general, if the pre-conditions are met for a step, the flow proceeds to the 
step is processed. Otherwise, the preconditions must be satisfied, possibly causing the flow to proceed to other 
prerequisite steps. 

Figure I-l illustrates the general flow for running an application. As can be seen, if the pre-conditions for Session 
Establishment and User-to-User application have been met, the steps performed are U-N Session Establishment and the 
running of the application. 

It is possible that other processes outside of DSM-CC can be used to satisfy a pre-condition. For example, a bootp 
request on a LAN might be used by the Client to obtain its client id (network address). 

497 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

I.3 U-N-Configuration 
The U-N-Config procedures serve to automatically register a Client’s device, which is connected to the DSM-CC 
Network. In addition, network specific parameters (e.g., actual timer values) can be made known to the Client’s device. 

1.3.1 Pre Conditions 
Before the U-N-Config procedure starts, the Client’s device has to know (from means outside the scope of DSM-CC): 

0 the path to the U-N configuration entity: (network address) 
0 how to approach the U-N configuration entity: UNConfigRequest message 
0 its own unique hardware identity: deviceId 
l its own hardware and software capabilities: deviceType, deviceMajorRev, deviceMinorRev 
0 the timer value for receiving the UNConfigResponse 
0 how to interpret the UNConfigConfirm message. 

1.3.2 Procedure 
The Client device generates the UNConfigRequest message containing 

l deviceId 
0 deviceType 
0 deviceMajorRev 
0 deviceMinorRev 

and sends it to the UNConfig manager. 

Client 

UNConfigRequest (deviceld, deviceType, 
deviceMajorRev, deviceMinorRev) 

UNConfigResponse (deviceld, clientld, reason 
neiworkld, page 0, page 1) 

4 

Figure I-2 U-N Configuration Scenario 

It has to be verified that the requirements for the underlying signaling network are satisfied (see clause 9), 

The ConfigManager responds with UNConfigConfirm containing 

1. reason: (various codes) 
2. deviceId: as in UNConfigRequest message 
3. clientId: a globally defined 20 byte network service access point (NSAP) address identifying the Client 
4. networkId: using format of a globally defined 20 byte NSAP address, which will be used for subsequent U-N 

messages (address of session manager) 
5. DSM-CC specific information (e.g., timer values, see clause 3) 
6. network dependent parameters (e.g., private to network operator; outside of the scope of DSM-CC). 

1.3.3 Post Conditions 
The post condition is that the Client Device now 

498 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

0 knows clientId and networkId 
0 knows timer values for U-N Session protocol 
0 knows network specific parameters 
0 knows DSM-CC client specific data 
0 knows what to do next and how to do it 

1.4 U-N Session Setup 

1.4.1 Pre Conditions 
The Client device knows (from U-N Config, U-N Download, or other means) 

0 how to approach the session manager. 
0 how to initiate U-N Session messages (i.e., code available in Set Top Box, messages exist). 
For the user-to-network part of SessionSetup message (see clause 4). 
0 the clientId: 20 byte NSAP address format. 
0 the serverId: 20 byte NSAP address format. 
0 who is assigning sessionId (and resourceId). 
For the user-to-user data in SessionSetup message (see clause 5). 
0 rPathSpec: symbolic name identifying path to the first service gateway and (optional) in addition the service 

selected. The default initiation service may be resolved from “null”. 
0 rClientRef: a unique system-wide address/identification of the Client node (may be redundant). 
0 rClientProfile: (user capabilities, see clause 6) used by the STB to identify its characteristics to the Server. 
0 aEndUser: a parameter identifying the consumer. 

1.4.2 Procedure 
The Client generates a ClientSessionSetupRequest message containing 

0 the clientId: 20 byte NSAP address format. 
0 the serverId: 20 byte NSAP address format. 
0 optional the sessionId: 10 byte field. 
0 rPathSpec: symbolic name identifying path to the first service gateway and (optional) in addition the service 

selected. The default initiation service may be resolved from “null”. 
0 rClientRef: a unique system-wide address/identification of the Client node (may be redundant). 
0 rClientProfile: (user capabilities, see clause 6) used by the STB to identify its characteristics to the Server. 
0 aEndUser: a parameter identifying the consumer. 

and sends this message to the SRM. 

499 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Client SRM Server 

CIientSessionSetupRequest (clientld, serverld, 
sessionld, rPathSpec, rClientRef, rClientProfile, 
aEndUser) 

ClientSessionProceedinglndication (sessionld, 
clientld) ------- -II-- d-0 
+ ,--m-c--- 

ClientSessionSetupConfirm (sessionid, response 1, 
resourceld, resourceDescriptor, userData) 

/ ClientConnectRequest (sessionld, userData) 
----- ‘I- ---- ---- ------ -b 

ServerSessionSetuplndication 
(clientld,serverld, sessionld, rPathSpec, 
rClientRef, rCIientProfiIe, aEndUser) 

ServerAddResourceRequest (sessionld, 
resourceld, resourceDescriptor) 

ServerAddResourceConfirm (sessionld, 
resourceld, response) 

ServerSessionSetupResponse (sessionld, 
response, userData) 

ServerConnectlndication (sessionld, userDatc 
---11--- --- ---9-w -‘I- -b 

Figure I-3 Session Setup Scenario (with nested Resource Request sequence) 

The session and resource manager (SRM) receives the SetupRequest and resolves the serverId to the network address 
(i.e., communication path) of the Server. The SRM provides a consistency check to the other fields contained in the 
message. If there is no sessionId setup yet, the SRM will assign it. Then the ServerSessionSetupIndication is forwarded 
to the Server. 

There are two possible continuations of the scenario: 

a either the session establishment is acknowledged by the Server immediately without adding resources 
0 or the first request/negotiating of resources is performed before the session establishment is acknowledged by 

the Server. 

The following describes the scenario with resources being requested immediately (see Figure I-3). 

The Server receives the SessionSetupIndication. The Clientcapablities and the Service Name are evaluated by some 
higher layer entity at the Server side and is used to request/negotiate those resources which are assigned by the SRM. 
For that purpose, a ServerAddResourceRequest, which contains 

0 sessionId: as in ServerSessionSetupIndication 
0 resourceDescriptors for each resource being requested, 

is generated by the Server and sent to the SRM. 

If the Network has successfully reserved the resources (i.e., established connections where applicable), the SRM will 
acknowledge the resources using a ServerAddResourceConfirm message which contains: 

500 



0 ISO/IEC ISOLIEC 13818=6:1998(E) 

0 sessionId 
0 response code 
0 resourceDescriptors specifying the status of each resource which was requested. 

If all resources were granted by the Network as requested/negotiated by the Server, the Server will send a 
ServerSessionSetupResponse message containing 

0 sessionId 
0 response code 
0 userData 

The SRM will forward the message as a ClientSessionSetupConfirm, which contains: 

0 sessionId 
0 response code 
0 list of resources which were added during the resource request/negotiating phase 
0 the userData will be transported as received. 

In order to account for variances in implementation architectures, optional Connect messages are provided in the case 
where it is necessary that a U-N layer Client acknowledgment be sent back to the Server (e.g., to overcome a possible 
race condition). In this case, the Client may inform the Server that all resources are available according to its point of 
view by sending a ClientConnectRequest message to the SRM. This message contains: 

a sessionId 
0 userData 

These parameters in term are passed to the Server using ServerConnectIndication. 

Note that SessionSetupProceeding messages are also optional. 

For an embedded “download” scenario, the ClientSessionSetupRequest / ServerSessionSetupIndication userData may 
contain the DownloadInfoRequest message. In this case, the ServerSessionSetupResponse / ClientSessionSetupConfirm 
then will contain a DownloadInfoResponse message. The U-N Download protocol is described in subclause 1.1.5. 

Although further text is not provided here, Figure I-4 shows the scenario where resources are requested using 
AddResource messages after session establishment. 

501 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Client SRM Server 

ClientSessionSetupRequest (clientld, serverld, 
sessionld, rPathSpec, rClientRef, rCIientProfiIe, 
aEndUser) 

ClientSessionProceedinglndication (sessionld, 
clientld) ---L---- 
+ --I.--- --C---- 

CIientSessionSetupConfirm (sessionld, responz 
resourceld, resourceDescriptor, userData) 

ClientAddResourcelndication (sessionld, 

ClientAddResourceResponse (sessionld, 
response resourceld, resourceDescriptor) 

ServerSessionSetuplndication 
(clientldserverld, sessionld, rPathSpec, 
rClientRef, rClientProfile, aEndUser) 

ServerSessionSetupResponse (sessionld, 
response, userData) 

ServerAddResourceRequest (sessionld, 
resourceld, resourceDescriptor) 

ServerAddResourceConfirm (sessionld, 
resourceld, response) 

Figure I-4 Session Setup Scenario (with Add Resource sequence after session establishment) 

1.4.3 Post Conditions 
The Client knows 

0 sessionId 
0 the list of resources to be used for the session including the states 
a the userData 

Optionally, the Client may know in addition: 
0 information contained in the DownloadInfoResponse message 

The Client session state is active (CSActive). 

The SRM knows 
0 the list of resources visible to Client or Server 
0 sessionId 

The SRM session state is active (NSActive). 

The Server knows 
l sessionId 
l the list of resources visible to Server 

502 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

The Server session state is active (SSActive). 

The state associated with functions outside the session protocol itself, but required to transition to “object land”, is 
(launch). 

1.5 U-N Download 

1.5.1 Pre Conditions 
There are several possibilities for the transport connections: 

1. There are two connections: one downstream control and data, one upstream control 
2. There are three connections: one upstream control, one downstream control, one broadband downstream data 
3. There are two connections: one upstream control, one broadband downstream control and data 
4. There is one connection: one download data (data carousel). 

The flow-controlled scenario is described below. For information about all download scenarios, see clause 7, 

The Client device 
0 knows how to approach the download manager 
l has a path to the download Server 

(up to 3 connections may be needed: control down, control up, data down) 
0 knows the download transport connection topology (by convention) 
a knows whether DownloadInfoRequest and DownloadInfoResponse/Indication messages have to be contained in 

SessionSetup messages 
0 knows how to interpret private data fields contained in DownloadInfoResponse/Indication. 

The Server 
0 knows what information has to be downloaded depending on the information provided in a DownloadInfoRequest 

message. 

503 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

IS.2 Procedure 

Client Server 

DownloadInfoRequest 

DownloadlnfoResponse 

DownloadDataRequest 

DownloadDataBIock 

DownloadDataBlock 

DownloadDataRequest 

(rsnEnd) 

Figure I-5 Flow Controlled Download Scenario 

The Client requests the Download procedure by sending a DownloadInfoRequest message to the Download Server. 

The Server will respond using a DownloadInfoResponse message to inform the Client about the parameters used for the 
download. 

The Client then starts the download by sending a DownloadStartRequest message. 

The Server will download the requested information using a sequence of DownloadDataBlock messages each containing 
a part of the whole download information. 

The Client acknowledges the receipt of the data blocks by sending a DownloadDataResponse message. In the flow 
controlled download procedure, the DownloadDataResponse message triggers the Download Server to continue sending 
DownloadDataBlock messages. 

1.5.3 Post Conditions 
The information has been downloaded. 

The Client knows what to do next and how to do this. 

504 



0 ISO/IEC ISO/IEC 13818-6:1998(E) 

Annex J 
(informative) 

Example of an OSI NSAP Address Format 

J.l Purpose 
The purpose of this annex is to describe a possible implementation for clientId and serverId, two User-to-Network 
Session message data fields used in many of the User-to-Network Session messages. The normative clauses of this part 
of ISO/IEC 138 18 define these fields to be in the format of an OS1 NSAP (Open Systems Interconnection Network 
Service Access Point) address. For more details on clientId and serverId, refer to clause 4, User-to-Network Session 
Messages. 

J.2 Introduction 
IS0 8348 1987/A2 (Information processing systems -- Data communications -- Network service definition -- Addendum 
2: Network layer addressing) defines the OS1 NSAP address formats. The ATM Forum industry consortium uses a 
subset of these address formats -- named AESA (ATM End System Address) -- in the User-Network Interface (UNI) 
Specification. The example selected below is the E. 164 NSAP. 

Note: Any discrepancies between the OS1 and ATM Forum specifications, and the address format described 
below represents an error in the format presented here. 

J.3 E.164 NSAP 
While any NSAP is acceptable for DSM-CC (i.e., inter-networking is beyond the scope), an example is shown using the 
E. 164 version of the AESA address format. The characteristics of this format are as follows: 

The generic OS1 NSAP address consists of two domains: 

Initial Domain Part (IDP), which consists of two sub-parts: 
- l-byte Authority and Format Identifier (AFI) 
- A variable-length Initial Domain Identifier (IDI), which depends on the value of the AFI. 
Domain Specific Part (DSP) which depends on the value of the IDI. 

The E.164 NSAP version is a fixed 20-byte OS1 NSAP address and is formatted as follows: 

IDP DSP 
ID1 

AFI E.164 HO-DSP ES1 
1 -byte g-byte 4-byte 6-byte 

SEL 
1 -byte 

where 
Total length: 20 bytes 
AFI: 45 (ISO/IEC 8348 registered) 
IDI: &byte BCD-encoded E. 164 address 
DSP: Contains the Internet Protocol (IP) address in the 4-byte High Order-DSP 

(HO-DSP), the MAC address in the 6-byte End System Identifier (ESI), 
and a subscriber’s identifier in the l-byte Selector (SEL). 

For Clients, the E. 164 address in the ID1 identifies an ATM-to-the-curb drop. The MAC address identifies the set-top 
terminal that is serviced by the drop. The SEL byte allows the set-top terminal to support up to 256 logical subscribers 
from one hardware platform, such as in a dormitory environment where one terminal may be shared by more than one 
roommate. 

505 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

For servers, the E. 164 address identifies the ATM address of the server. The ES1 identifies a service that runs in that 
server. 

IP addresses can be embedded within the above format to be used by the interactive multi-media applications between 
the Client and Server (User-to-User communication). 

It is assumed that “IPv6” will be accommodated into the OS1 NSAP. This work is outside the scope of DSM-CC. 

506 



0 ISO/IEC ISO/IEC 1381$-6:1998(E) 

Annex K 
(informative) 

Stream PlayList 

K.l Overview 
It is desirable to implement an interface that enables client applications to generate and run playlists. A playlist is a 
sequence of QStreams that are delivered one after the other. A robust playlist interface is proposed that makes it easy for 
the client to generate repeats of a QStream in the playlist, and loops. 

The StreamLink is defined as a building block with which to construct playlist queues. The StreamLink will have two 
pointers, one to an open QStream, and the other to the next StreamLink in the queue. The end of the queue will have null 
as its next StreamLink pointer. 

The operations 
l QStream next () returns a StreamLink. 
0 StreamLink queue0 connects one StreamLink to a next StreamLink and sets start, stop, scale values. 
0 StreamLink unqueue() disconnects one StreamLink from its next StreamLink. 
0 StreamLink destroy0 deletes a StreamLink. 
0 StreamLink go() will cause the StreamLink start, stop scale values to be sent to the associated stream state machine 

as if a play0 operation had been invoked. 

The example above is implemented as follows: 
1. Send QStream next0 to A, get StreamLink W 
2. Send QStream next0 to B, get StreamLink X 
3. Send QStream next0 to A, get StreamLink Y 
4. Send QStream next0 to C, get StreamLink 2 
5. Send StreamLink queue0 to W, point to X, setting start, stop and scale 
6. Send StreamLink queue0 to X, point to Y, setting start, stop and scale 
7. Send StreamLink queue0 to Y, point to 2, setting start, stop and scale 
8. Send StreamLink queue0 to 2, no next link, setting start, stop and scale 
9. Start the first state machine for QStream A, by sending a start0 to W. 

The resulting queue looks like: 

W X Y z 
# , 

l D D 
* - 

w z 
Stream Stream 

A B 
f - 

w 
l  

Stream 
C 

4 

The function go() determines the first StreamLink to activate, or the first focus. When AppNPT rStop is reached, the 
focus shifts to the next StreamLink. Each time the focus shifts to a new StreamLink, the start, stop and scale values of 
the StreamLink are passed into the bound QStream and its state machine is initialized as if a Stream piay had just been 
issued. 

Here is the IDL for the StreamLink: 

507 



ISOiIEC P3818=6:1998(E) 0 ISO/IEC 

module DSM { 
interface QStream : Stream { 

// Add 
// Inherit from Stream 

void next (out StreamLink rNewLink); 
I ; 

interface StreamLink { 
attribute u-long count; // the number of iterations to perform 
attribute QS tream thisStr ; // pointer to an associated stream 
attribute S treamLink nextlink; // pointer to the next StreamLink 
/I 
// Cause one StreamLink to point to another with startup parameters 
void queue(in StreamLink nextlink, in NPT rStart, in NPT rStop, in Scale rScale) 

raises (QUE LIMIT); - 

// Remove the pointer to the next StreamLink 
void unqueue(); 
II 
// Initialize and activate the associated stream state machine. 
// If the playlist is a loop, decrement count each time the Streamlink is passed. 
// Stop the play when count = 0 
void go(in u-long count); 
II 
// When done delete the StreamLink 
void destroy(); 
/I 

A client could browse the queue to find its current path by looking at the thisStr and nextLink of the StreamLinks. 

Consider a second example which is a loop of A->B->A->B-> . . . 

cl Stream 
A tl Stream 

B 

If while QStream A is playing, a queue0 is sent to StreamLink W to null the nextLink value, the QStream A will play to 
completion and stop. If while QStream A is playing, a queue0 is sent to W that points to a third Qstream (e.g., QStream 
C) when QStream A completes (reaches rStop), the QStream C state machine will begin. Since the pointers are always 
forward, the pointer to the next StreamLink can be changed at any time. 

There is only one active QStream state machine at a given time for a playlist queue. 

The interfaces between StreamLink and QStream are implementation-specific and beyond the scope of DSM-CC. 

508 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

K.2 DSM QStream next 4 
DSM QStream next Create a StreamLink for a QStream. 

Client-Service IDL Syntax 

module DSM { 
interface QStream : Stream { 

void next ( 
out StreamLink rNewLink); 

1 ; 
1 ; 

Semantics 

The QStream next will associate a QStream with a new StreamLink. The StreamLink can then be used as an entry in a 
Stream playlist. 

Privileges Required 
READER 

Parameters 
StreaniLink 
rNewLink 

output A unique StreamLink which can be used for constructing a 
playlist. 

509 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Annex L 
(informative) 

Service Transfer Message Flows 

L.1 Introduction 
Service transfer describes a mechanism for transferring a Service from one service domain to another. It may be used in 
the normal course of a service or in emergency cases. Each use is briefly described below: 

LA.1 Use of service transfer in the normal course of service 
In the normal course of service, DSM SessionUU attach0 and DSM SessionUU detach0 (see clause 5, U-U 
Interfaces) can be used to perform Service Transfer. Most applications will have some nesting of navigation and will 
require a suspension of one level of nesting when proceeding to another. For example, a top level navigator can be 
located in one service domain and a movie browser in another. When going from the top navigator to the movie 
browser, the Client can suspend the navigator and attach to the movie browser. Then, when done with the movie 
browser, the Client can pop back to the top navigator by resuming it at the previous state. This is very common in 
applications and natural for human behavior. 

Note: a Service Transfer does not affect a Session established using the User-Network Session protocol (see clause 4). If 
the Session context needs to be changed (i.e., changing of a SessionGateway), then User-Network Session operations 
need to be performed (either by performing a Session Tear-down followed by a new Session Setup, or by performing a 
Session Transfer). 

Two methods are available for Service Transfer: a) Basic application level Service Transfer and b) Enhanced 
application level Service Transfer with DSM State suspend and DSM State resume. 

In the Basic application level Service Transfer method, the parameters required in the next DSM Session attach (i.e., for 
the destinationserver) are sent to the Client from the Server at the application level. The Client uses this information to 
do one of the following: 

1. Release the Session with the sourceserver and establish a new session with the destinationServer (using the 
appropriate U-N Session command sequences). 

2. Maintain the service with the sourceserver and establish a new session with the destinationserver (using an 
appropriate U-N Session command sequence). 

When the Session with the sourceserver is released, the Client cannot resume the context at a later time. 

In the Enhanced application level Service Transfer, the parameters required in the next DSM Session attach may be sent 
to the Client from the Server at the application level. The Client uses detach, suspend and resume User-to-User Session 
Messages to do one of the following: 

1. Release the Session with the sourceserver (using detach0 with asuspend true) 

2. Suspend a service with forced release of its connection resources (using suspend0 with aRelease true 

3. Suspend a service without forced release of its connection resources; i.e., the resources can be reassigned by the 
SessionGateway to another service within a time-out period (using suspend0 with aRelease false) 

4. Maintain the service with the SourceServer 

In this method, for the first three items above, the Client can resume the full context at a later time (using attach0 for 
item 1, and using resume0 for items 2 and 3). Message flows for both the Basic and Enhanced Service Transfer are 
given below. 

510 



0 ISO/IEC 

L.1.2 Use of Service Transfer in emergency cases 

ISO/IEC 13818=6:1998(E) 

The U-N Session protocol allows a service domain Server to tear down a session and redirect the Client U-U Library to 
reestablish a session to a substitute service domain. This service transfer takes place without the Client’s application 
being required to be aware of the change of the session. 

L.2 Basic application level Service Transfer 

L.2.1 Service Transfer: sourceserver to destinationserver with sourceserver 
Session Release 

CLIENT SRM SERVERA SERVERB 

2 U-U Sessic 

3 

7 

8 U-U Ses 
-- Pb 

9 

13 

1 I f 

;erver A passes to the Cliedt parameters required in the next ) I 
GM Session attach i.e., for server B ! 1 I 

I I \ I 
I detach(in asuspend) -$ passed in userData of Release mesbges - see f#zlow: 

ClientReleaseRequest 1 4 t i 
w ServerReleaselndication 5 I I 

sessionld, reason=client_fransfer, I sessionld, reason=client-transfer, 
: f 

userData=U-U detach “in” parametets 
I userData=U-U detach “in” parameters i i 

i I 
64 ServerReleaseResponse i I 

I 
CIientReIeaseConfirm ; sessionld, response I 

! 

I I 
I 

sessionld, response 

i i 
I 
I 

ion attach as received fro4 Server A f 
bsed in userData of Sessior#etUp messages - see below: I 
ClientSessionSetUpRequest I I 

sessionld, clientld, 
w; 10 I 

serverld= server-B-id,userData = ; 
ServerSessionSetUplndication I 

I sessionld, clientld, serverld=server-B-id, 
I 
I 

U-U attach “in” parameters 1 userdata = U-U attach “in” parameters I 

12 i< ServerSessionSetUpResponse 1 
I 

entSessionSetUpConfirm 1 
sessionld,response, userData = 

I 
I 

U-U attach “out” parameters 
i 

1 
sessionld,response, userData = 

i 
I 

U-U attach “out” parameters I 
! t 
I I 

I I 
I I 

I 
I 
I 
I 

w; 11 
I 
I 
I 
! 
I 
I 
I 
! 

i 
I 

Figure L-l Service Transfer from the sourceserver to the destinationserver -- sourceServer’s (Server A) Session 
is released 

Step 1 

Server A (called the Source Server) passes to the Client all the next Session attach parameters required in the transfer 
including the serverId of the destinationserver. 

Step 2 

In this message flow, since the Client wants to release the session, the Client issues a detach with asuspend set to false. 

Steps 3-7 will result in a complete release of the session between Server A and the Client. 

511 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Step 8 

The Client uses information obtained in Step 1 above to form the new DSM SessionUU attach0 

Steps 9- 13 complete the session set-up with Server B. 

L.2.2 Service Transfer: sourceserver to destinationserver, Service maintained on 
sourceserver 

CLIENT SRM SERVERA SERVERB 

I I I 

)server A passes to the Clie t parameters required in the next 1 
DSM Session attach i.e., foriserver B 

z 
I 1 

P I 4 
I I I 
i i i 

2 U-U Se 4 sion attach as received fro cn Server A I 
---- passed in userData of Sessio&etUp messages - see below: t I 

I I I 
3 

ClientSessionSetUpReque I 
sessionld, clientld, ServerSessionSetUplndication I I 
serverld= server-B-id,userData = 
U-U attach “in” parameters 

session Id, client Id, serverld=server-B-id, 

i 
userdata = U-U attach “in” parameters : 

64 ServerSessionSetUpResponse I 

session Id, response, userData = 
ClientSessionSetUpConfirm i U-U attach “out” parameters : 

I 
I 

* 5 

I 
I 

: 

session Id, response, userData = I I 
U-U attach “out” parameters : t : 

I I I 

7 

Figure L-2 Service Transfer from the sourceserver to the destinationserver -- Service maintained on the 
sourceserver 

Step 1 

Server A (called the Source Server) passes to the Client all the next Session attach parameters required in the transfer 
including the serverId of the destinationserver. 

Step 2 

The Client uses information obtained in Step 1 above to form the new DSM SessionUU attach(). 

Steps 3-7 complete the session set-up with Server B. 

512 



0 ISOIIEC 

L.3 Enhanced application level Service Transfer 

L.3.1 Release the Session with the sourceserver 

CLIENT SRM SERVERA 

% 

2 U-U Se 
---- pas 

3 

7 

8 U-U Se 
**** P 

s 

ierver A passes to the Clie parameters required in the next 
M/l Session attach i.e., for I 

\ 
\ I I 

I I 

ion detach(in asuspend) I 
d in userData of Release m+ages - set? below: 

I 
ClientReleaseRequ 4 

b ServerReieaselndication 5 
sessionld, reason=cli 
userData=U-U detach “in” : 

rl sessionld, reason=client-t 
userData=U-U detach “in” parame rs 

narameters I 

parameters 

sed in userData of Session tUp messages - see below: 

ISO/IEC 13818=6:1998(E) 

SERVERB 

ServerSessionSetUplndication 

Figure L-3 Service Transfer from the sourceserver to the destinationserver -- sourceServer’s (Server A) Session 
is released 

Step 1 

Server A (called the Source Server) passes to the Client all the next Session attach parameters required in the transfer 
including the serverId of the destinationserver. 

Step 2 

Since the Client wants to suspend the context and release the session, the Client issues a detach with asuspend set to 
true. 

Steps 3-7 will result in a complete release of the session between Server A and the Client. The SavedContext for the 
session is returned to the Client in the detach “out” parameters. 

Step 8 

The Client uses information obtained in Step 1 above to form the new DSM SessionUU attach(). 

Steps 9- 13 complete the session set-up with Server B. 

513 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

L.3.2 Maintain minimum resources with the sourceserver 

CLIENT SRM SERVERA 

i 
e 4 
1 ClientDeleteResourceIndicatior 

51: 

I 

8 U-U Se&ion attach as received fr 
-- pesed in userData of Sessi 

9 i ClientSessionSetUpReque t 1 
I 
I 

sessionld, clientid, 
9 serverld= server-B-id,userData = 

! U-U attach “in” parameters I 

! ClientSessionSetUpConfirm 
13 I+ I 

1 sessionId,response, userData = 1 

I 
U-U attach “out” parameters 

I 

ServerDeleteResourceRequest 

r 

I 
I 

ServerDeleteResourceConfirm 1 
w 7 

! 
I 

brn Server A I 
InSetUp messages - see below: ; 

I 
10 I 

ServerSessionSetUplndication I 

‘sessionld, clientld, sewerld=server-B-id, I 

userdata = U-U attach “in” parameters I 

ServerSessionSetUpResponse ! 

sessionId,response, userData = I 

U-U attach “out” parameters I I 

SERVERB 

Figure L-4 Service Transfer from the sourceserver to the destinationserver -- Maintain minimum resources with 
the sourceserver 

Step 1 

Server A (called the Source Server) passes to the Client all the next Session attach parameters required in the transfer 
including the serverId of the destinationserver. 

Step 2 

The Client uses the State suspend message to indicate that the context be suspended while the resources which support 
the session are reduced. Association Tags for resources that are released remain valid. The Client then receives the 
UserContext in the savedcontext. 

Setting aRelease to true forces Server A (the SessionGateway) to release resources immediately. This would be the case 
if the Service Transfer was to a service on a different Server. Setting aRelease to false allows Server A (the 
SessionGateway) to reassign or release the resources after a local time-out. This would be the case if the Service 
Transfer were to a service within the same Server. 

Steps 3-7 

A minimal session is kept with Server A. DeleteResource messages are exchanged to delete resources which the 
suspended service no longer requires. 

514 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Step 8 

The Client uses information obtained in Step 1 above to form the new DSM SessionUU attach0 

Steps 9-l 3 complete the session set-up with Server B. 

L.3.3 Maintain the service with the sourceserver 
This scenario is identical to the Basic application level Service Transfer method Service Transfer from the sourceserver 
to the destinationserver with Service maintained on the sourceserver in subclause L.2.2. 

L.3.4 Fall back to Server A after Session release with the sourceserver 
This scenario relates to the situation where the Client resumes a suspended service. In other words, a Service Transfer 
using a Session detach with asuspend true has occurred. 

1 uus 
atresl 

I 

6 

I I I I 4 d’ r 4 I t I I I I I t . ! I 

5 

ai6tSd~n-n 

gg!g!FS= 

I 
I I I 

I 
I l  

I ; 

= l- ; 5 
’ 1 

I 
I f 

1 ! 
I 

S3u34 in- 
f&KfM~~-sa 

3 . sr 

iaid4 dii smAd=sm,w-Bid ’ 
l3B%3=UU~‘T~ lZEEHM% 

-a 

siSiaIbmlmma= 
uuatt;ad-r”al”m 

I 
I I I 
I 
P 
I 
i 

J I’ 
i 
I ,I I 
I t 
I I 
I 

Jwu 

4 

Step 1 

Figure L-5 Client fall-back to Server A after a sourceServerSession Release 

The Client retrieves the UserContext received from sourceserver at suspension time and prepares a Session attach with 
the user context placed in the savedcontext. 

Steps 2-6 

A normal session set-up with Server A is performed with the userData carrying the Session attach. 

L.3.5 Resumption of the full context on Server A after reduced Session 
This scenario relates to the situation where the Client resumes a suspended service which has undergone a reduction of 
resources. In other words, it assumes that the Service Transfer with a sourceserver session reduction has occurred. 

515 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

I  

UUSkjkeresure(insanedSa7tsctfdServer4out restoadWs) 
I 

- s&e r?ititi s 
stillttifl this UU~~~~i~~~t~Ui~)~~theUU~Slillin~~ 
rExOc$aestalJisJL7a~m i 

1 I I I 

I 0  I 
I 

I I 

I 
; 

I Uiwmltication j 

4 1.4p 

--r ; 2 
I 
0  
I 
I 

I 
I 

I 

1 ai I 
‘em I I # I I 

I serwrmrrm f I I I I 4 I 

ssim is 
-Ix) 

Step 1 

Figure L-6 Client fall-back to Server A after a sourceserver Session reduction 

The Client retrieves the UserContext received from the sourceserver at suspension time and prepares a State resume 
with the user context placed in the savedcontext. 

Steps 2-6 

An Add Resource by Server A is performed to acquire the resources for full context resumption. 

L.3.6 Emergency Service Transfer 
This scenario assumes that a Server, which is already serving a Client session, has reached a state that it requires to shed 
off some of its load by transferring the Client’s service to another Server with which it has made a prior agreement. 

516 



0 ISO/IEC ISO/IEC 13818&1998(E) 

3 

4 

8 

Step 1 

I 
I 
1 3 
I 
7 I 
I I I- 
; 
I 
I 

I l 
i 

I I I 
I 1 4 
I I 

I 

ClierrtReleasdndiiim 
SessionId, teaso&ienl_t rarxfer, 
reason=tsnSeServiceTransfer 
private-d, M-Nan-e,- 

sessionid, response 

ClientsessionSet~Request 
sesionld, diertla 
sewerId= serwrB~id,userlXa = 
UUattadl‘irl’~ 

7 

UU attach “OS pararrreters 

I 
I 

t 1 I 

: 
I I 

. I 
I 
I 4 
: 

1 I I 
I 

serverRelease- 

sessionid, masm=ditiJansfer, 
nxson=WoeTransfer 
ptiva-4 Pamkmle,S 

sessionld, respons 

5 
SewMesionSeqClpln~ion 

sessionid, diet44 setverl~-Bjd, 
usetdata=UUattach’~rl’parameters 

sedonl4response, uscaata= 
UUattadYaK paramtes 

I 
I 

i 
i 
I 
I 
z 

bJ 

I 

I 
I 

I 

I 
t 

I 

-c 
I 
I 

I 

I 3 
I 

Figure L-7 Server Emergency Service Transfer 

I 

6 

For some emergency reason, such as an overload, the Server may want to shed some of the Clients. As a result, it 
provides ServerId information for a substitute Server, a PathName and a SavedContext in the privateData field of the 
ServerReleaseRequest, and the reason indicating the rsnSeServiceTransfer. 

Step 2 

Upon receipt of the ServerReleaseRequest, SRM sends ClientReleaseIndication to the Client with the reason and private 
data fields unchanged. 

Step 3 

The Client, when it receives the ClientReleaseIndication, proceeds with the release of the session and passes the private 
data content, including the reason for the release, to the U-U Library. 

Step 4 

The Session Object in the Client’s U-U Library, when it receives the contents of the private data and the associated 
reason, requests the establishment of a session to the substitute server using information from the private data to access 
to the service. 

517 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Steps 5-8 

A session is established to the substitute server and the Client accesses the service in the substitute service domain. The 
semantics of the Session Object are such that, to the application, the session would continue. The application does not 
detach0 from the first service domain and attach0 to the substitute service domain. Instead, it retains the previous 
Session object and is unaware of the substitute session domain. 

518 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Annex M 
(informative) 

T.120 Inter-working 

M.1 Introduction 
This annex provides informative guidelines to ITU-T Recommendations T. 120-series and DSM-CC to allow each to 
benefit from the other standard, and suggests how inter-operation to its counterpart is feasible. These guidelines present: 
(a) a reference model, (b) a subclause defining features, functions and services of each standard, and a common 
vocabulary for the two standards, (c) a subclause which lists each standard’s components and their relation to the other 
standard, and (d) the specifics for how to inter-operate from one standard to the other. 

M.2 Reference Model for side-bv-side integrated DSM-CWT.120 

I---- -- 

I Appl'ns : 
L--_--d 

r- 
IB; 
;01 
10; 
ITi 
- J  

t  

-- ----- 

t. 

U-N 4 

------3 
Conn’n , 

MaEm f 
PmtDook, 

----s-d 

I------I I Appl”ns I L-- --A 
------- 

I t 
_____- --- ---. 

v 

U-U 
ObjAoc: 
Mangr, 

B, 4 

SVC 
GWY 

U=*-uSar _________ -----~---- ---- 
Usx-tmNetwor3c 

I IIT 
+I SRM t-H ua I 

if 

__------- ---- 

r .---, -- 
I Netwodc ’ 

; COM’rl ; 

iMaqr ' -------I 

I ’ I 

r------l 
1Conn’n 1 

;Mangr& ) 

~Pmtraak 1 ------J 
I 

------ 
A~l'ns ; 

---4 

-- ------ 
r---i 
I NC I 
I- -J 

APE 

fd 

GCCP 

MCSP 

---- ---- 

--------- 

--------- 

MCU 

I---- 
-- 

I A~l'ns t 

GCCP 

MCSP 
A 

-------- 

( ) a (b) 

Figure M-l Simplified Models of DSM-CC and T.120 

519 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

r __------ ---- I 
I Appl'ns I 

__------ 

4  I 

APE I 

I 

I 

\ 

’ -1 

GCCP IB, 

10’ 
10: 

;T' 
-I 

L  

- - . 
_- 
------ -- 1 ------ -- 

MCSP 

TP 

J-U 
--_-- 
T3_20 
cmt 1 
NC) 1 

----- 

- 
-- 

4 

I 

Cmnfn I 

Mangr& I 

I 

PldDdS I 
.-------------J 

Ut33333iJSerr ------ ------- 
Ua&-N&odc 

+ SRM 

P ---- --l------- 

r--- t ---I 

i Netwoik 
: COMYt 
~Mangr ------ 

MCU 

-------- 
:--- -Appl‘ns I 

I 

I  VW - I  I 

GCCP 
4 

SVC 
GWY 

I 

I 

I 

I 

I 

I 

I 

I 

1  

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

Conn’n I 

I 

I 
Mmgr& 

I 

I 

PldXXilS 

MCSP 

I 

t 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I TP I 
I 

I 

I-- -, 

’ I 
= oueti 

I I smpeofthis -- 
sgxxikabn 

Figure M-2 Outline Reference Model for T.l2O/DSM=CC inter-working 

While it can be argued successfully that the ‘I’. 120 Node Controller (NC), Application Protocol Entity (APE), and 
Generic Conference Control Provider (GCCP) fall into the DSM-CC U-U domain, it is harder to place the Multi-point 
Communication Service Provider (MCSP) within the DSM-CC model. 

MCSP has multiple functions. These cover setting up resources (i.e., attach, detach), management of the resources (e.g., 
channel join, channel convene, etc.) and also utilization of the resources (send data, uniform send data, etc.). The 
resources include connections (both point-to-point and multi-cast) and non-connection resources (tokens). On the one 
hand the resource management aspect of MCSP matches the User-to-Network (Session management and resource 
management) and on the other hand the control of multi-point (broadcast/multi-cast) connections falls under the 
connection manager. 

With side-by-side integration of DSM-CC and T. 120, the applications see both DSM-CC U-U API and T. 120 APE. The 
TP is the common point where both DSM-CC U-N and the MCSP interact. The integrity of the MCSP is therefore 
preserved. The resulting model is shown in Figure M-2. 

520 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

The characteristics of this model are: 

l Hybrid DSM-CC and T. 120 applications can use both the DSM-CC U-U portability interface and the T. 120 
application level (APE) primitives. 

l Operation starts with the “boot process” initiating a session to a “conferencing server” (MCU). The client code 
download may include GCCP, APE etc., 

0 Can use all of the DSM-CC features, functions and services in the application if desired. 

M.3 Features, Functions and Services of the DSM-CC and the T.120 specifications 

M.3.1 Features, Functions and Services of DSM-CC 
1. Network independent uniquely identified sessions 

This feature allows a Client to initiate a session with a Service Provider. Sessions allow grouping 
and management of resources. Both connection resources and non-connection resources are 
permitted. DSM-CC allows Clients and Servers to use different connection media if desired e.g., 
at the Client side non-ATM HFC could be used while at the Server side an ATM SVC connection 
could be used to carry the same video stream or control data. Connections can be point-to-point 
(for Video on Demand) and multi-cast (for Digital Broadcast). An example of a non-connection 
resources is Digital Broadcast Service Continuous Feed. 

2. Download 
DSM-CC allows a Client to begin a session without carrying application programs. These are 
downloaded to the Client as the need may arise based on the choice of services by the Client. 

3. Defined interfaces for services 
Interfaces are defined for Directory, video stream control and file services. 

4. Channel Change 
Client TV channel controls are defined for the Digital Broadcast Service to allow channel change 
to be carried out in the network. 

5. Normal Play Time 
The MPEG Transport Stream is augmented with codes that allow VCR like control of the MPEG 
video stream. 

M.3.2 Features, Functions and Services of T.120 
1. Network independent 

Different networks could be used without impacting on the Multi-point Communication Service 
protocols. 

2. Multi-point Communication Service 
Sets up individual and broadcast channels for conferencing, multi-cast private channels, allows 
control of tokens, and if requested carries data in a uniform sequence to multiple destinations. 

3. Conference management 
Allows the setting of conference parameters by the convener, permits different types of 
conference scenarios such as meet-me, call-out, call-through and point-to-point, prepares and 
distributes a conference roster of participants and of active applications. 

4. Defined Interfaces for Applications 
Standard multi-point aware applications are specified and guidelines are defined for the 
incorporation of non-standard applications. The standard applications include simultaneous multi- 
point file transfer, still image viewing and annotation, shared white-board and facsimile. Work is 
presently being done on multi-point video. 

M.3.3 Inter-working of DSM-CC and T.120 Features, Functions and Services 

Table M-l DSM-CC Session and Resources and their use by T.120 

521 



ISO/IEC 1381%6:1998(E) 0 ISO/IEC 

DSM-CC connection resource 
for data 

DSM-CC connection resource 
for video/audio data 

DSM-CC session 

- transport pipe for multi-point data. The transport connection MCS 
uses between 2 nodes can be mapped to this DSM-CC connection 
resource 
- transport pipe for video/audio data. T. 130 could make use of the 
DSM-CC resource descriptor that describes this pipe when it ensures 
QOS between 2 points in the conference. This is relevant to T. 13 1 
Network Specific Mapping for DSM-CC. 
- a DSM-CC session groups together all resources being used between a 
Client and a Server. This is a useful concept for the new T. 130 series on 
control of multi-point audio/video/real-time data. 

M.4 DSM-CC and T.120 Components Harmonized 
Each DSM-CC component in Figure M-2 are explained below in relation to T. 120 (Table M-2) and each T. 120 
component in relation to DSM-CC (Table M-3). 

Table M-2 DSM-CC Components in relation to T.120 

DSM-CC Component Relation to T.120 
Applications A T. 120 application that wishes to make use of DSM-CC would 

interact with DSM-CC using the U-U primitives defined in DSM-CC 
BOOT (outside the scope of outside the scope of T. 120 
DSM-CC) 
Client terminal 
Connection Manager and MCSP connection setup and tear down 
Protocols (outside the scope of 
DSM-CC) 
Network Connection Manager outside the scope of T. 120 - no T. 120 counterpart 
(outside the scope of DSM-CC) 
Server MCU 
Service Gateway outside the scope of T. 120 
SRM - Session and Resource outside the scope of T. 120 - no T. 120 counterpart 
Manager 
T. 120 Client/Server (NC) Builds the link between DSM-CC and T. 120 - it encompasses the 

T. 120 Node Controller (NC) functionality. The T. 120 NC drives the 
GCCP. 

U-N box DSM-CC U-N messages are used for U-N configuration and to set up a 
DSM-CC session and resources - can be used to set up a T. 120 
resource, whose handle can then be passed to the T. 120 code (through 
the T. 120 Client/NC) 

U-U box link between DSM-CC and T. 120 is contained in this box - the T. 120 
Client/Server 

522 



0 ISO/IEC ISO/IEC 13818-6:1998(E) 

Table M-3 T.120 components in relation to DSM-CC 

Control Provider 

MCSP - Multi-point 
ication Service 

The handle for the T. 120 connection resource set up using 
U-N messages is passed to the MCSP through GCCP. 

M.5 Specifics for inter-operation between DSM-CC and T.120 
From the perspective of ease of integration while maximizing the services to the user the side by side integration model 
appears to be the best suited for further work at this time. In order to evaluate this model an example of meet-me- 
conferencing is chosen between two terminals using one MCU server as shown in Figure M-3. In a meet-me conference, 
a conference is established at an MCU, and terminal nodes (as well as other MCUs if necessary) call into the MCU and 
join the conference. 

Figure M-3 Integrated DSM-CCfl.120 meet-me example with two terminals and one MCU 

The scenario covers the following steps: 

523 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

1. Terminal 1 creates a conference; 
2. Terminal 2 queries for the conference name; 
3. Terminal 2 then joins the conference. 

Each of the above steps is covered below. The T. 120 command flows are covered first, and DSM-CC with T. 120 
command flows are covered next. 

MS.1 Terminal 1 creates a conference 
Figure M-4 shows the case of terminal 1 issuing a conference create using T. 120. 

Figure M-5 replicates the flow using the side by side integrated DSM-CC and T. 120 model. 

The boot code sends a ServiceGateway attach to the client U-N. The client U-N generates a ClientSessionSetUpRequest 
which includes the compatibility descriptors of the terminal. Upon receipt of the ServerSessionSetupIndication, the 
MCU U-N attaches and launches the T.120 server. The MCU server generates a SessionGateway addResource request 
with a connection resource descriptor that includes the QOS required for a T. 120 data pipe and a connection resource if 
required for the download of the T. 120 code to the Client. This causes the MCU U-N to issue a 
ServerAddResourceRequest (or, if the server is allowed to directly allocate resources, it goes ahead and allocates them 
using Q.293 1 SETUP messages). Upon receipt of a ServerAddResourceConfirm (or upon a confirm that the requested 
Q.293 1 resources were set up), the server issues a SessionGateway addResource reply to the T. 120 server. The T. 120 
server then issues a ServiceGateway attach reply which is mapped to a ServerSessionSetupResponse, and arrives at the 
client as a ClientSessionSetupConfirm, including the connection bindings (T. 120 use and download use) of the resource 
descriptors that have been allocated. 

At this point, the handles to these resources are passed to the download code and later to the T. 120 code to be used. The 
terminal 1 GCC Provider then proceeds with the GCC-Conference-Create.request, and then in the 
MCSConnectProvider.request. The steps followed are identical to the straight T. 120 case. 

MS.2 Terminal 2 queries a conference 
Figure M-6 shows the case of terminal 1 issuing a conference query using T. 120. 

Figure M-7 replicates the flow using the side by side integrated DSM-CC and T. 120 model. 

The approach used for the integration is similar to the case of terminal create. 

MS.3 Terminal 2 joins the conference 
Figure M-8 shows the case of terminal 1 issuing a conference join using T.120. 

Figure M-9 replicates the flow using the side by side integrated DSM-CC and T. 120 model. 

The approach used for the integration is similar to the case of terminal create. 

It is likely that terminal 2, after performing conference query, will proceed directly with conference join. This scenario 
can therefore trail the query scenario above without the need for releasing and reestablishing a session to the same 
MCU. 

524 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Temind.1 

NC GCCP MCSP TP 
: GCCConfiXa~~: 

1: 

MCW 

TP MCSP GCCP NC 

-2 :MCSC-mvxq ; I'-*: 

26 

34 

42 

50 

fData$d i 24 : 25 y ;----____ 

:MCSCc&Pmvmnf 
:d-: : 

f 33 ~--:-------- 
~MCSAU&JS~XCX& 
:+-I : 
:MCSChani&Bk~ 

23 __----_---- 

-- 
- - 

-- 
-- 

: 14 
:GCCCcnbmt~~ 

15 jl 

; MCSCb+n@bjn~$ 

20 + 
:MCSChankBjnri 

L)21 i 
:MCSCCRX-$~~EQ ! 

: TData& 46 ___----- -------- -cd 
MCSCha.nn&LIbizmn~ 
IW : 

MCSSekiDatax3q : 
53 :TDatahd ! --------------- --- br54 MCSkndDataz& 

k54 ; 

Figure M-4 Conference Create using T.120 

525 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

TexnhaI.1 MCU 
TP MCSP GCCP 

I I I I 
I I I I I I 

$ersxkGaW~a~q I I n 

1- 
I : ; svc 

TLL20 
: I : smer 

I 2 I ckts&etLlpRQe j GWY : &hrdjng 
I I I I I  

b41 ! NC 
I  I  

I I I I I I 
I  I  
I 

BOOT UN 
I I  
I  I  
I  I  
I  I  
I  I  
I I  
I  I  
I  I  
I  I 
I  I 
I I 
I I  

l  

NetwodcCm~est.ab~ 

I SenbGat5iayatIa&zq 
I 
I  y+b] I ( 
I  :  1 6 I%!h+SXl ECJ 

J , P 

SRM : UN I I'17 
I  

'S~hunch~l 
I  I  

I  I 814 
I  

I  

I 

i SessjcolGa)8nrayladW+m& 1 

I  
: -/ j 

I 
;  9' 

I I I 

I  s-ddR (zEGlERw& I I  I  
I I 
I I I 

I I I 
I  I  I  I  

I  I  I  I  

11 ; S-ddRmOn& .);12; ; I 
I I I I 

I  I  I  
I  I I  

S-GaW~addR+d~l 
I  I I 
I 

; &I13 I I 
I I  

I  I  I  
Seiv+ahva-$atiac&pl~ 

I 
I emerSe2sbrtSe~~~~ I -/ 
I  

atmayaUa&xqA 
* 114 1 

I  I  I  

t  I I  I  

I  I  I  I  

TheT~20ap?p~~p~s~downbadsdandthe~~ IrEmumshan~hrT920da~is 
passledtDT,120 
I 
IT120 GCCP MCSP TP 
'cl&t :  1 :  

1 irdldilg :  
1 :  

5 1 :  

:NC ;I: 

i ~GCCcp$-f~wj i 

;  I  2 jMCS~oau)P~=sl ; 
I  I  

!-b: ;  

I I I 
I I I 
I  I  I  

I  I  I  

I I  I  

I I I 
I  I  I  

I  I  I  

I  I  I  

I I  I  

I  I  I  

I  I  I  

I  

I  5 iTData% / j 
_--___----- 

I  

I  I  I  

I/ ;]j j I 
I  

I  I  :  I I I 
I  I  

’ 1 :  I  

: I  ; ; ;  ;  I  

; ;7 iGCCC&athd 
I  

I  I  I  

CmtiuestDtheazdas~&ure3 

11 i;; ; I I I 
I I I 
I 52 !TDatahd I I I 
&--------- 1 
I  

p53 MCSS&&at&hd I 
I  I  I  I ’ I  

y54 I 
I  I  

Figure M-5 Conference Create using DSM-CC with T.120 

To highlight the interoperability issues the following table describes the flows and parameters for Figure M-5 
“Conference Create using DSM-CC with T. 120”. No similar tables are provided for Conference Query and Conference 
Join because the issues are similar. 

526 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Table M-4 DSM-CC and T.120 - Conference Create - Table of Flows and Parameters 

l71 Al.4 7  Pnr/rmotorc 
1 ~UVV 1 Le. CCI IUUUV# u LuII~rIcGIcc 

I-2 in inSC - Optional service context information passed between client 
ServiceGateway and service 
attach request in aPrincipal - Identifies a specific user of terminal 1 

in savedcontext - Provides context to resume service if session had been 
suspended 

in pathName - Names the path to DSM-CC U-U service on Server (in this 
example, the service on the Server knows that the Client will 
require a T. 120 multi-point resource) 

in downloadInfoReq - Client requests download, compatibility parameters are listed 
2-3 sessionId - A unique session identifier assigned by terminal 1 or SRM 
ClientSessionSet based on terminal 1 User-to-Network configuration 
upRequest clientId - Client identifier in NSAP format could be the E. 164 NSAP 

ATM SVC address of terminal 1 
serverId - Server identifier in NSAP format could be the E. 164 NSAP 

ATM SVC address of the MCU 
uuData - Carries an on the wire encoded format of the 

ServiceGateway attach in parameters from l-2 
privateData - Not used 

3-4 sessionId - Same as in 2-3 
ServerSession clientId 
SetupIndication serverId 

uuData 
privateData 
loop(forwardCount, - Contains the serverIds the ServerSessionSetupIndication was 
forwardServerId) forwarded to - in this case it is NULL 

5-6 in inSC - Same as l-2 
ServiceGateway in aprincipal 
attach request in savedcontext 

in pathName 
in downloadInfoReq 

6-7 in aResume - Indicates if this is a resumption of a suspended DSM-CC U- 
Service launch U service 
request in aUserContext - Provides the user context to resume the DSM-CC U-U 

service 
in rSessGateway - Contains the object reference of the User-to-Network 

Session Gateway 
in aPrincipal - Specifies a specific user of the terminal 1 from l-2 
in rNetResources - Initial network resources available for the DSM-CC U-U 

service is NULL 
in downloadInfoReq - client request for download, including client’s compatibility 

parameters 
7-8 out - T. 120 requirements to be downloaded to the client, based on 
Service launch downloadInfoResp the client’s compatibility parameters - Download services will 
reply be invoked to actually download the required code. 
8-9 aUserContext - Provides user context 
SessionGateway rReqResources - Provides requested resources - In this case, the DSM-CC U- 
addResource U service is requesting a T. 120 resource with T. 120 QOS 
request 

527 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

- NOTE: if the Server is to allocate the resource, steps 9- 10 & 
1 l- 12 can be omitted, and the result of the resource allocation 
will go in the resource descriptor in the 
ServerSessionSetUpResponse/ 

loop(resourceCount, 
resourceDescriptor) 

downloadInfoResp 
out resolvedRefs 

- No download info response 

Object References corresponding to 

r in NSAP format - 
address of the MCU 

loop(resourceCount, 
resourceDescriptor) 

- This is the serverId of the Server to which this session is to 

- Identifies resources allocated to the session - redundant if 
AddResource messages were exchanged, not redundant if the 
Server was the resource allocator, which means no 
AddResource messages were exchanged 
- Carries an on the wire encoded format of the 
ServiceGateway attach reply parameters from 13- 14 

ClientSession 

connection resource handle for the T. 120 data pipe is passed 

528 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Flow 
l-2 
GCC- 
Conference- 
Create.req 

2-3 
MCS-Connect- 
Provider.req 

3-4 
TData.req 
4-5 
UserPlane data 
5-6 
TData.ind 
6-7 
MCS-Connect- 
Provider.ind 

7-8 
GCC- 
Conference- 
Create.ind 
14-15 
GCC- 
Conference- 
Create.resp 

Parameters 
confName 
co&Locked 

confConductible 

termMethod 

domainParameters 

calling address 

called address 

qos 

calling address 

calling domain 
selector 
called address 

up/down Flag 
domain parameters 
qos 

userData 
userData 

userData 

calling address 
calling domain 
selector 
called address 

up/down Flag 
domain parameters 
qos 

userData 
conferenceName 
conferenceId 
domainParameters 
qos 
conferenceName 
conferenceId 
tag 

result 

Comment 
- Name by which the conference to be created is identified 
- When set, prevents anyone from joining this conference 
unless they are specifically added using GCC-Conference-Add 
primitive 
- When set indicates that this conference may be placed in 
conducted mode using GCC-Conductor-Assign primitive 
- Indicates manual (using GCC-Conference-Terminate 
primitive) or automatic when no joined nodes remain 
- MCS domain parameters - protocol version, max. height of 
MCS providers, max. size of MCSPDUs 
- Local handle to the T. 120 resources set up earlier using 
DSM-CC 
- Local handle to the T. 120 resources set up earlier using 
DSM-CC 
- not used - required QOS for this connection should have 
been set in the resource descriptors used to set up the T. 120 
connections by the Server when it issued the AddResource for 
the T. 120 resources 
- Local handle to the T. 120 resources set up earlier using 
DSM-CC 
- Conference name from l-2 in GCCConferenceCreate.req 

- Local handle to the T. 120 resources set up earlier using 
DSM-CC 
-UP 
- Same as l-2 in GCCConferenceCreate.req 
- Not needed - DSM-CC T. 120 Resources have already been 
set up 
- contains the ConferenceCreateRequest GCCPDU 
- contains the ConnectInitial MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SVC 
- same as Tdata.req above 

- same as MCS-Connect-Provider.req 2-3 
- same as 2-3 

- Local handle to the T. 120 resources set up earlier using 
DSM-CC 
- same as 2-3 
- May have been modified from 2-3 
- Not needed - DSM-CC T.120 Resources have already been 
set up 
- Same as 2-3 
- Same as l-2 
- Locally allocated identifier of the newly created conference 
- May have been modified from l-2 
- Not needed 
- Same as 7-8 
- Same as 7-8 
- This parameter is used to identify the returned 
UserIdIndication GCCPDU sent later 
- An indication of whether the request was accepted or 
rejected 

529 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

. 
la /)LlJ I Pflrflrnotorc Cnmmont 

1 b”,” 1 LC,  be,IYC/YU# u -“,,L4,,~,cY 

15-16 domainSelector - Set to conferenceId 
MCSAttachUser. 
req 
16-17 userId - unique MCS UserId 
MCSAttachUser. result - An indication of whether the request was accepted or 
conf rejected 
17-18 channelId - channelId = userId from MCSAttachUser.conf 
MCSChannel 
Join.req 
18-19 channelId - channel joined 
MCSChannel result - An indication of whether the request was accepted or 
Join.conf rejected 
19-20 channelId - identifies channel to join as the GCC Broadcast Channel 
MCSChannel 
Join.req 
20-2 1 channelId - channel joined 
MCSChannel result - An indication of whether the request was accepted or 
Join.conf rejected 
21-22 domainParameters - May have been modified 
MCS-Connect- (40s - Not needed 
Provider.resp result - An indication of whether the request was accepted or 

rejected 
userData - Contains the ConferenceCreateResponse GCCPDU 

22-23 userData - contains the ConnectResponse MCSPDU 
TData.req 
23-24 - Maps to the appropriate network protocol - e.g. to AALS in 
UserPlane data the case of ATM SVC 
24-25 userData - same as Tdata.req above 
TData.ind 
25-26 domainParameters - same as2 l-22 
MCS-Connect- qos 
Provider.conf result 

userData 
26-27 domainSelector - Set to conferenceId 
MCSAttachUser. 
req 
27-28 
TData.req 
28-29 
UserPlane data 
29-30 
TData.ind 
30-3 1 
TData.req 
3 l-32 
UserPlane data 
32-33 
TData.ind 
33-34 
MCSAttach 
User.conf 
34-35 
MCSChannel 
Join.req 

userData 

userData 

userData 

userData 

userId 
result 

channelId 

- contains the AUrq MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SVC 
- same as Tdata.req above 

- contains the AUcf MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SVC 
- same as Tdata.req above 

- unique MCS UserId 
- An indication of whether the request was accepted or 
rejected 
- channelId = userId from MCSAttachUser.conf 

530 



0 ISO/IEC ISOAEC 13818=6:1998(E) 

Flow 
35-36 
TData.req 
36-37 
UserPlane data 
37-38 
TData.ind 
38-39 
TData.req 
39-40 
UserPlane data 
40-4 1 
TData.ind 
41-42 
MCSChannel 
Join.conf 
42-43 
MCSChannel 
Join.req 
43-44 
TData.req 
44-45 
UserPlane data 
45-46 
TData.ind 
46-47 
TData.req 
47-48 
UserPlane data 
48-49 
TData.ind 
49-50 
MCSChannel 
Join.conf 
50-5 1 
MCS-Send- 
Data.req 

5 l-52 
TData.req 
52-53 
UserPlane data 
53-54 
TData.ind 
54-55 
MCS-Send- 
Data.ind 

50-56 
GCC- 
Conference- 
Create.conf 

Parameters 
userData 

userData 

userData 

userData 

channelId 
result 

channelId 

userData 

userData 

userData 

userData 

channelId 
result 

priority 
channelId 

userData 
userData 

userData 

priority 
channelId 
userData 
sendUserId 
conferenceName 
conferenceId 
tag 
result 

Comment 
- contains the CJrq MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SW 
- same as Tdata.req above 

- contains the CJcf MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SVC 
- same as Tdata.req above 

- channel joined 
- An indication of whether the request was accepted or 
rejected 
- identifies channel to join as the GCC Broadcast Channel 

- contains the CJrq MCSPDU 

- Maps to the appropriate network protocol - e.g. to AAL in 
the case of ATM SVC 
- same as Tdata.req above 

- contains the CJcf MCSPDU 

- Maps to the appropriate network protocol - e.g. to AAL in 
the case of ATM SVC 
- same as Tdata.req above 

- channel joined 
- An indication of whether the request was accepted or 
rejected 
- Top 
- channelId=userId channel of the node directly above this one 
- Contains the UserIDIndication GCCPDU, containing the tag 
from earlier 
- contains the SDrq MCSPDU 

- Maps to the appropriate network protocol - e.g. to AALS in 
the case of ATM SVC 
- same as Tdata.req above 

- Same as 50-51 MCS-Send-Data.req 

- Terminal 1 GCCUserId (=NodeId) 
- Same as 14- 15 GCC-Conference-Create.resp 

531 



ISOfIEC 13818=6:1998(E) 0 ISO/IEC 

Texnhd.1 MCU 

NC GCCP MCSP TP TP MCSP GCCP NC 

2;MCSCj@vx~q ; 

:TConn& 
3: 

;TC ann& 
,,4______-----------_5; 

TCatinWnff TCoimezWq~; 6 
14 ; ;8----- -------- -----'jg 

-----------_-__ 

:TDataindi 18 17 ------------------- 

GCCCmQuery&nf ! 
21 9 ;20 : 

12 ~MCSC&whd ; 

l3 ; GCCCj-&yind 

Figure M-6 Conference Query using T.120 

532 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

1 

Teamhal MCU 
TP MCSP GCCP 

I I I I 
I I I : I I f I 

?ezv~atmrayaUachq I : I ’ 
I f Tile20 

I I  
; :svc : 

I  
SWer 

’ 
I  13SenraSde&~h~ ;  Gwy f  hahg 

I  
2 : CIjEntSessjansWRw~ 

I  
**I : 

I  I  I  I  I  :  NC 
I  I I 
I  

I  I  

I  
I  I 

I  I I 

BOOT UN SRM 
I I  I  

I I  I  

I  I  I  

I I  I  

I  I  I  :  * I  :  

I  I I I I 
I I  I  : I I I 

NetwodcConn-estab= I 
I  

,  I  
I  I  ’ I  1 

I  I  I  I  I  

I  
;  I  

I  !5k?XEAddR E54unc anti I I 11 ; &=I i I - 
ses;jco?G~tE3lvar:-~lrrp1 

*  I  

; &113 ! ' 
S&~+@+va$aUach~lt 

I  

~e?SesihnSet&R~j I  i 

*  * ;  

. 114 1 
I  I I 
I  I  I  

i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I TheTl20appljcatjonpmg~~ts~b-andthe~~~ hmdktirT~2Odatais 
passidtoTJ.20 I 

IT120 GCCP MCSP TP 
hnt :  

1 :  

;  idikg ;  1 :  

’ 1 : 
;NC *  1 :  

’ 1 :  

I dCCConfQuery+q f I 
,1*-b: I: ; 

I I I 
I I I 
I  :  I  I  

I :  I  I  

I I I 
I  I  I  

I  I  I  

I  I  I  

I  : I I 
I  ;  I  I  

I  I  I  
I 
I  

I  

I’ 

f I 
I ; I I I 

I  

1 I 
I  I  

:  I  I  I 
:  I  I  

;  I  I  I 
I  I  

:  I  I  
;  I  

I  I  f I 
I  I  

I  I  ; I 
*  I  I  

Figure M-7 Conference Query using DSM-CC with T.120 

533 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

Termhal. 

NC GCCP MCSP TP 
:GCCCon$Biruxq : 

1j- 

MCU 

TP MCSP GCCP NC 

50 : 

-2 :MCSConriPrwx.q j 
.:-I : 

: TCOM~ 
3: 14 5 ; TConnectind 

-----_-____-- -------_, .6 
: .,~+,'j,~~ ________ _____ _____ T%"& ; ; 

-----__--- ------- -1; ;TDatk& ; ; 

iDabind! 18 1g ; ; _______ --- -------- _17_ 

: MCSCorlnPrrwmni 

zo----+ : ; MCSAtk$iUszr&~ 
:'-+I : 

23 ____---_--------- 
27 25 4 :___a.__--_--__- ----__ 

!MCSAiJackJs2lrmni 
: 4-: : 

31 ----------------- 

-------- ----- --? 

I.2 ! ~MCSCon.ni?~v.ind : 

13 

: 14 
!GCCConfJ&n- 

15 :4 

:MCSConriPmvxeq : 

: TDataini 

: TDatadd 

MCSChann&iJ&r-~mnf 36 : a--: : 

_____----------- 
I$CSChann$Joinmn~ 
: 4-1 : 

47 :TDatatid: ___--_____--------- ' e48 MCS~~dDatax& 
e49 ; 

Figure M-8 Conference Join using T.120 

534 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Tezxnhd.2 MCU 
TP MCSP GC,CP 

I I I 
: ; 

I 
I I I I I 

$exvk&atx3c3yatt&vq I I 
I 

1' I : ; s= 
I 

I 2 I ClAtS&nSetupRqu& /3 SexverSessjonseb.ipliI~tin~ ’ ; Gwy : inchding 
I I +4' 
I I I I I 

f NC 
I I I 
I I I 

Sexv&Gat+3my+i3&* 1 
I I I : +I : I 
I I I I 

BOOT UN SRM 
I I I 
I I I 

I s&nGajEw+addR+m& ’ 

: *; i ’ 
I 

I I I 
; 9; 

I I I tzkmeAddR~~& I 
I I 1  
I I lo Y : I 
I I I : I I 
I I I : I I I 

N etw ark C OMEtiX’E ESStiSbtid 

I 

I I 

I I I 

I * I I I 

11 ; Sen7&ddRdod -+2 I i I 

s&IlG~~~addR+~~l I 
i J--&u i 

S~~a~+aW~~l 
/ 

I 

I tSezbnSeb@onfhm 9-Y 

I 114 1 
atmmyaUa&x@ I I I 

t I : I I 

; I I 

_5-~TDalair-,& j i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

T120 GCCF MCSP TP 
client 1 : 
idLlding 1 : 

1 : 
NC 1 : 

1 : 
IGCCConf&i-mrq : 

1,--w I I 

I 
2 :MCStonrqPmvxq ; 

:'*b: : 

I  I  

Contizuesbthemdasin~7 

;, :I; : 
0  

I : I I 

I 1 1 : f 45 i TData- 46 
; , : 

GCCCon.$Bi&nf: 
; “------ 

I _____--------- ,  

‘1 :I: : 

I, ;;I j 

Figure M-9 Conference Join using DSM-CC with T.120 

535 



ISO/IEC 13818=6:1998(E) 0 ISO/IEC 

M.6 T.120 service within DSM-CC 
This subclause is provided as a. proposal to stimulate potential future work for the extension of DSM-CC to cover T. 120 
functionality in conjunction with the ITU-T SG8 group. 

In this case the T. 120 functions are absorbed into the appropriate subsystems within the DSM-CC framework. The 
characteristics of this model are: 

l Applications are built to DSM-CC model 
0 Define IDL for manipulations of new types of taps for T. 120 connections 
0 A T. 120 set of resources (new resource descriptor types) could be provided by the network. 
a The DSM-CC services such as directory, video stream control and file can access the multi-point communication 

service features for perusal by the conference participants. 
T8ZUbhEd MCU 

clkrlt S- 

; Appl'ns I  

I ------- -- 

t 
-------- -- 

UIJ 

(ax&ins 

T 120 
GCCPmd 
APE 
-1 I 

r- 
IB ’ 

‘0 I 

0 ’ 

‘T ; 
’ J  
--A USX4KdJSZ ------------- 

UsE!?AD~~o& 

-+ SRM + 

I Netwolk ' 
; Conn’n ; 

~Mangr ' ------, 

COMh 

Mangr& 
PXKdIXXllS ------------- 

r---------, 
I App1'n.s I 

J-u 

. 
Tl20 
SerVer 
C ordains 

GCCP 

U-N 

, bdhMCSP 

mmlpnnt) 

TP 

COM’n 

Mangr& 
PldDCXdS I 

--------------I 

Figure M-10 T.120 service within DSM-CC 

M.6.1 An Example of Extending DSM-UU to provide custom interfaces 
The example below illustrates how DSM-CC User-to-User can be extended in a custom application. This is provided 
here as an illustration of a similar use for theT. 120.series of protocols. 

536 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

The objective of this subclause is to present an example which illustrates how such an extension of the interface can take 
place. The example relates to event distribution. A portion of the Event interface of subclause 5.7.2.4 is shown below: 

interface Event { 
void subscribe(in string aEventName, 

out u short a.EventId) 
raises(INV EVENT-NAME); 

void unsubscribe(inu short aEventId) 
raises( INV EVENT-ID) ; - 

I . 
The standard interface does not specify how the events reach the event target but specifies a mechanism to distribute 
events through the media stream. The implication of the mechanism is that, to receive the events, the client device must 
also receive the media stream. The example of this subclause extends the Event interface to support event targets which 
do not receive a media stream. 

The concept is that there is an event source which distributes events to event targets. (Note: The example is not a 
complete event architecture. A more robust solution is found in the Common Object Services: Event Service of the 
Object Management Group.) The event source provides the interface below: 

exception NotConnect { 
I, 
interface EventSource { 

void connect(in EventTarget aEventTarget); 
void disconnect0 

raises(NotConnect); 
> . 9 

The event target provides the interface below: 

interface EventTarget ( 
void push(in any aEvent); 
disconect() 

raises(NotConnect); 
1 . 

The client ‘of the EventSource interface provides the object reference to the object instance which provides the 
EventTarget interface. Note: The client of the EventSource interface and the object instance which provides the 
EventTarget interface could differ. The client, in this case, delegates to another object to field the events. If the client 
later decides to not receive events, it invokes disconnecto. 

The EventSource object invokes push0 on the EventTarget object to forward the event. The EventSource object can 
also disconnect0 the EventTarget object. 

The example packages the standard Stream interface, the standard Event interface, and the above EventSource interface 
together into one interface which inherits these abstract interfaces: 

interface StreamEvent : Stream, EventSource, Event { 
1 . 

Given the above interface definition, it is possible to describe the steps the service side and the client side take to build, 
install, and activate the StreamEvent object. Starting with the service side. 

1) The service compiles the Interface Definition Language into its favorite implementation language. It builds 
the software which implements the interface. It installs the implementation on device hardware. 

2) To publish the object, the service would invoke the bind0 function found in subclause 5.7.1.6. The interface 
declaration for just the bind0 function is: 

bind(in Name aName, in Object aObjRef) 

raises(NotFound, CannotProceed, InvalidName, AlreadBound); 

The complete declaration is found in subclause 5.7.1.6. The topic to observe here is that the service would 
select a service name, for example StreamEventService. It would define the leaf name of the name graph into which it 

537 



ISO/IEC 13818=6:1998(E) 0 ISOIIEC 

installs the service as two fields both of which are strings. The first is the service name; the second is the interface name 
which here is StreamEvent. 

The service could also install a name where the interface field is Stream rather than StreamEvent. The 
motivation in this case is to install a name which clients not aware of the StreamEvent subclass would recognize. These 
clients would select the Stream Service and expect to invoke just the old Stream interface. 

3) Interfaces within the service domain are not prescribed. To complete the example, however, the discussion 
illustrates how the service could integrate itself with the service domain. The requirement is to provide an interface 
which other objects in the service domain invoke to activate the service. A technique which is common is the Object 
Factory. The Object Factory has one function which is to create a service. 

On the client side, the example assumes the client understands the StreamEvent interface. The steps which the client 
takes are: 

1. The client browses the available services. Because the Name it encounters in the name graph 
provides fields for both the service and the interface, it could invoke the list0 function to detect a 
Stream Service which supports the StreamEvent interface before it activates the service. 

2. When the client encounters a Stream Service which exports the StreamEvent interface, it 
resolve()s the name, which returns the object reference to the Stream Event Service. 

3. The client then invokes the StreamEvent interface, either functions for the standard stream 
control, or functions to subscribe to events which the Stream Service is to distribute to the 
EventTarget. 

538 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

Annex N 
(informative) 

The Relation of DSM-CC to MHEG-5 

N.l Overview 
MHEG-5 (ISO/IEC 13522-5) provides a framework for the distribution of interactive multimedia applications across 
minimal resource platforms of different types. A MHEG-5 application resides on a server, and as portions of the 
application are needed, they will be downloaded to the client. In a broadcast environment, this download mechanism 
could rely, for instance, on cyclic re-broadcasting of all portions of the application. 

A minimal MHEG-5 runtime environment has to provide an entity for decoding of the MHEG data structures and an 
entity called MHEG engine, which parses and interprets the MHEG-5 objects. The engine also communicates with the 
local presentation environment and the MHEG-5 objects. It responds to the events initiated by the application or the user 
(for example timer events, or “button pressed”) in the application specific way. A MHEG application is always event 
driven. 

An MHEG-5 application consists of Scenes objects and objects that are common to all Scenes within an Application 
object. At most one Scene is active at any one time. This is the part of the application that has to loaded on the clients’ 
system. Navigation in an application is done by transitioning between Scenes. A Scene contains a group of objects, 
called Ingredients, that represent information (graphics, sound, video, etc.). The content data is typically not part of the 
encoded Scene object. Instead, content data can be referenced and stored externally. 

A MHEG-5 runtime system can utilize DSM-CC for access to MHEG objects and content data. Such a system is 
sketched below (the design of the system shown below is not normative by MHEG-5, nor MPEG-2 DSM-CC): 

Presentation System 
. 

MHEG Engine 
1 
I  

DSM-CC Client 

1 MHEG Object / Content Repository 1 

Figure N-l Example of MHEG-5 runtime system 

The following subclauses provide examples and hints, how DSM-CC facilities can be used by an MHEG-5 runtime 
system. Further information on details of MHEG-5 facilities are available in the MHEG-5 standard. 

N.2 Name Space 
When an application starts, it is assumed that a service gateway has been located and attached to, so that there is exactly 
one name space within which the application objects are located. Within that name space, a service has also been 
located. That service is a DSM-CC directory; within it, there can be other directories, files, and streams. 

Furthermore, it is assumed that each object belongs to exactly one application. This assumption is necessary to allow for 
unambiguous MHEG object references. Three types of retrieved data can be differentiated: 

0 objects that comply to MHEG-5 (Scenes or Applications) 
0 the content (such as bitmaps or text) of those objects 
a streams (such as video and audio) 

539 



ISO/IEC 13818-6:1998(E) 0 ISO/IEC 

For accessing the various objects of an application on the server side, the DSM-CC Directory, File and Stream objects 
are used. Note that the server, in this context, does not have to be a physical server, but could be implemented, for 
example, as a broadcast carousel in a pure-broadcast topology. 

Each file is either a Scene object, an Application object, or the content data of an Ingredient object, belonging to a 
Scene or an Application. Each Scene object, Application object and content data is stored in a separate file. 

N.2.1 MHEG Object References 
MHEG objects and content data can be exchanged in two ways: either the object is exchanged as a DSM-CC file object 
or within another object. The former method is used for Applications and Scenes, the latter for all other objects 
contained in a scene or application object. The MHEG objects are identified by an Ob j ec tRef erence, consisting of 
an optional byte string GroupIdent i f ier, followed by an integer, the Ob j e&Number. For the 
GroupIdent i f ier, the following rules may be defined by the application domain: 

All GroupIdentif iers are ASCII strings. A GroupIdentif ier reference is mapped on a DSM-CC name 
within the name space of the service gateway to which the runtime is attached. Within the GroupIdent i f ier, the 
character ‘/’ (standard ASCII slash) is used to delimit directory references (of the ‘depth’ type); for instance, if the 
GroupIdent i f ier is ‘apps/otherAppl’, it is mapped on the DSM-CC name ‘otherApp1’ in the directory ‘apps’ of the 
service gateway to which the runtime has attached. 

Additional rules may be defined (e.g. for shortcutiwildcards of application identifiers or references to the current 
directory root) if required. For the mapping on DSM-CC, the following additional rules may be used: 

0 Each Application and Scene object shall have in its GroupIdent i f ier a byte string which maps on the name of 
the DSM-CC file which contains that object. These objects have their ObjectNumber set to 0 (normative by MHEG- 
5) . 

0 Each application shall have exactly one Application object. That object shall be contained in a DSM-CC File object 
with the special name, e.g. ‘startup’ (normative by the application domain). 

a References to content data objects may (as defined by the application domain) 
1. either leave out the GroupIdent i f ier, in which case it is assumed to be a string which maps on 

the name of a DSM-CC file which contains the object (Application or Scene) of which this object is a 
part, or 

2. fill in the GroupIdentif ier with such a string. 
0 Such objects shall have their ObjectNumber set to a value which is unique within that file (normative by MIIEG-5). 

N.2.2 Content References 
The high-level API has a separate way of referencing the external content of objects belonging to the Ingredient class. 
This is done by way of a ContentRef erence. The ContentRef erence consists of a byte string. The following 
rule may be defined by the application domain: 

0 The exact same mapping shall be used as for the GroupIdent i f ier above; 
a the relative name of the content object file is appended to the GroupIdent i f ier, separated with a 7’. 

N.3 Stream Events and Normal Play Time 
The DSM-CC StreamEvent interface provides the possibility to carry private data in the data structure for the event, in 
the form of the PrivateDataByte field. These bytes shall be mapped one-to-one on the St reamEventTag of the 
MHEG-5event StreamEvent. 
The MHEG-5 internal attribute Counter Pas i t ion of the Stream class shall also be mapped one-to-one on the value 
of the DSM-CC Normal Play Time of the corresponding stream. 

540 



0 ISO/IEC ISO/IEC 13818=6:1998(E) 

N.4 Example of DSM-CC file structure for an application 
This subclause shows how MHEG-5 objects may be mapped to DSM-CC file structure. 

aPP 

scene1 .mheg 
image.bitmap 

video.mpeg 
text.txt 

Figure N-2 DSM-CC f’ile structure example 

Below is one textual representation of the code for accessing the different objects depicted in the figure above. The first 
is an Application Object, performing a transition to the first scene. The Scene object identifies the content objects which 
belong to the scene by referencing the content files. 

{:application 
:object-identifier ( "apphtartup" 0 ) 
:on-startup ( :transition-to ( app/scenel/scenel.mheg) 

1 

{:scene 
:object-identifier ( "app/scenel/scenel.mheg" 0 ) 
(:bitmap 1 

(:content-data 
:referenced-content "app/scenel/image.bitmap") . ..) 

(:video 2 
(:content-data 

:referenced-content "app/scenel/video.mpeg") . ..) 
(:text 3 

(:content-data 
:referenced-content "app/scenel/text.txt") ..J) 

541 



PSO/IEC 13818=6:1998(E) 0 ISO/IEC 

N.5 Example of Mapping High-Level API Actions on DSM-CC U-U Primitives 
Below is a possible example of a “translation” of MHEG-5 actions to DSM-CC U-U primitives. 

Table N-1 Example of MHEG-5 translation to DSM-CC U-U primitives 

amResume(StreamObReJ starttime, 

SetSpeed(0) Stream 

stop Stream 
StreamMarker Stream 

S treamTimer Stream 
Call and Fork Application 
OpenConnection Application 

StreamPause(StreamObReJ 
x80000000.x00000000) 
StreamClose(StreamObRef) 
StreamSubscribe (StreamObRef marker) 
StreamNotify (StreamObReJ marker, call 
back function) 
StreamUnSubscribe (StreamObRef, 
marker) 
StreamStatus -> Gets normal playtime 
RPC - UN0 
Attach (ID) 

542 





lSO/lEC 13818=6:1998(E) @ ISOAEC 

ICS 35.040 
Descriptors: data processing, moving pictures, image processing, video recording, sound recording, video data, audio data, data 
converting, coding (data conversion), control procedures. 

Price based on 542 pages 


