INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG/N8386

Klagenfurt, Austria, July 2006

Title
14496-12:2005 | 15444-12:2005 (2nd edition) / Amendment 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructions

Status
PDAM

Source
MPEG-4 Systems

Editor
Per Fröjdh, Ericsson, Sweden

© ISO/IEC 2006 — All rights reservedISO/IEC 14496-12:2005/PDAM 2 63Part 12: ISO base media file format, AMENDMENT 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructionsInformation technology — Coding of audio-visual objectsÉlément introductif — Élément central — Partie 12: Titre de la partieInformation technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructionsE2006-07-21(30) CommitteeISO/IECISO/IEC J20052AmendmentInternational Standard2006ISO/IEC 14496ISO/IEC 14496‑12ISO/IEC 14496-12/PDAM 2Coding of audio, picture, multimedia and hypermedia informationInformation Technology11291 2Heading 2Heading 1;Heading U;H1;H11;Œ©�o‚µ 1;뙥;Titre Partie;h1;?c�o??E 1;?c;?c�o?ƒÊ 1;?;Œ;Titre 1STD Version 2.130 4C:\Documents and Settings\ogura\デスクトップ\15938-3AMD1DCOR2.docISO/IEC JTC 1/SC 29 N
Date: 2006-07-21
ISO/IEC 14496-12:2005/PDAM 2 & ISO/IEC 14496-12:2005/PDAM 2
ISO/IEC JTC 1/SC 29/WG 11
Secretariat:
Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructions
Élément introductif — Élément central — Partie 12: Titre de la partie
Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

[Indicate the full address, telephone number, fax number, telex number, and electronic mail address, as appropriate, of the Copyright Manger of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the working document has been prepared.]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 2 to ISO/IEC 14496‑12:2005 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructions
Information technology — Coding of audio-visual objects — Part 12: ISO base media file format, AMENDMENT 2: Hint track format for FLUTE transmission, multiple meta box support and streaming server instructions
This amendment provides an update for the ISO base media file format (14496-12|15444-12). <It needs re-organizing into amendment style>.

1 Scope

The ISO base media file format can be used to define a file container, where each file is stored as an item in a top-level meta box. This amendment specifies extensions for delivery of such files over ALC and FLUTE. In particular, the amendment provides functionality to store pre-computed FEC encodings of files and to define hint tracks with server instructions facilitating encapsulation of files into ALC/FLUTE packets.

Another use case of the ISO base media file format is to provide scalable or alternative media streams at different bitrates to accommodate for varying transmission bandwidths. This amendment specifies a method to provide time-dependent information on target ratios between scalable or alternative streams that are supposed to share a common bandwidth resource.

This amendment also specifies how to include additional meta boxes that carry alternative and/or complementary information to a meta box in a file. Another addition is labelling of alternate tracks and the definition of switch groups within alternate groups.

2 Introduction

2.1 File delivery over ALC/FLUTE

ALC is a massively scalable reliable content delivery protocol. It is a base protocol for reliable multicast delivery of arbitrary binary objects and has been adopted as the mandatory protocol for broadcast/multicast file delivery in 3GPP2 BCMCS (Broadcast/Multicast Service) and OMA BAC BCAST.

FLUTE (File Delivery over Unidirectional Transport) builds on top of ALC and defines a protocol for unidirectional delivery of files and has recently been adopted in 3GPP Multicast/Broadcast Service (MBMS) and DVB-H IPDC (IP data casting) as the mandatory protocol for broadcast/multicast file delivery. Both ALC and FLUTE are defined by the IETF.

FLUTE defines a File Delivery Table (FDT), which carries metadata associated with the files delivered in the ALC session, and provides mechanisms for in-band delivery and updates of FDT. In contrast, ALC relies on other means for out-of-band delivery of file metadata. OMA BCAST defines an Electronic Service Guide (ESG) that is normally delivered to clients well in advance of the ALC session. If the file metadata needs to be updated during the ALC session, then fragments of ESG can be updated by using the ESG delivery/update channels.

Files to be delivered over ALC or FLUTE can be stored as items in an ISO container file. The Meta box and its child boxes enable storing of a variety of data items, such as static media (pictures) and SMIL presentations, into an ISO base media file. They also allow associating file names and paths to items and signaling of the file directory structure in the ISO base media file.

In order to transmit a presentation including both static and real-time media over a multicast/broadcast connection, it makes sense to use ALC/FLUTE for the transmission of the static parts and RTP for the transmission of real-time media (audio and video).

2.2 FEC encoding and hint track format

The first step before files can be sent over ALC/FLUTE is to partition them into source blocks and source symbols and possibly compute FEC encoded parity symbols. The partitioning depends on the FEC scheme, the target packet size, and the desired FEC overhead. For each source block of a FEC encoding, a reservoir of parity symbols can pre-computed and stored in the ISO base media file together with information on the FEC schema and partitioning of the source file.

The next step to facilitate transmission of files is to let the ISO base media file also contain instructions for a multicast/broadcast server that describe the ALC/FLUTE sessions (with SDP) and how to encapsulate items into ALC or FLUTE packets.

The file partitioning and FEC reservoirs, on the one hand, and the hint tracks for delivery of files, on the other, can be used independently of each other. The former aid the design of hint tracks and allow alternative hint tracks, with, e.g., different FEC overheads, to re-use the same FEC symbols. They also provide means to access source symbols and additional FEC symbols independently for post-delivery repair, which may be performed over ALC/FLUTE or out-of-band via another protocol. In order to reduce complexity when a server follows hint track instructions, however, hint tracks refer directly to data ranges of items or data copied into hint samples.

2.3 Combining scalable media in file format

The current ISO base media file format used for streaming servers, including the new amendment for scalable video streams (SVC) developed in parallel with this amendment, are concerned with the storage of one or more (scalable) streams and efficient extraction of this stream. However, no special considerations are made to optimize bandwidth usage for simultaneous extraction of (scalable) bit streams. For instance, it is well known that the bitrate required for encoded video is generally higher than that for encoded audio. Moreover, at extremely low rates, the rendered video quality can be so bad that it is beneficial to allocate the total available rate to the audio stream instead. In other instances, the rate share of audio and video may be different for different content and at different playout times.

Section 6 of this amendment specifies a way to provide ISO files with server directions on how scalable media streams can be optimally combined. The recommendations consist of time-dependant target rate shares for one or more operation points as well as maximum and minimum bitrates. The information is efficiently stored using sample groups and is only intended for consumption by streaming severs, i.e. it is not part of the stored or transmitted streams. The information enables optimization of the usage of a common bitrate resource shared by several (scalable or non-scalable) streams.

3 File format architecture

3.1 Principles for ALC/FLUTE extensions

Extensions to the ISO base media file format for delivery over ALC/FLUTE should:

a) Optimize the server transmission process by enabling ALC/FLUTE servers to follow simple instructions. It should be enough to follow one pre-defined sequence of instructions to transmit one session

b) Enable storage of pre-computed source block and symbol partitionings, i.e. files may be partitioned into symbols which fit to an intended packet size, and pre-computing a certain amount of FEC-symbols.

c) Allow storage of alternative ALC/FLUTE transmission session instructions for files (that may lead to equivalent end results). Alternative transmission sessions may be intended for different channel conditions because of higher FEC protection or even by using different error correction schemes.

d) If alternative ALC/FLUTE sessions are defined, it should be possible to refer to a common set of symbols.

e) Enable storage of additional pre-computed symbols for post-session repairs (could be the same reservoir as mentioned in b).

f) Optionally include template for File Delivery Table (FDT) in terms of pre-computed elements. It’s up to the FLUTE server to finalize all details at the time of transmission.

g) Allow transmission of multiple FDT instances. To increase reliability of FDT reception, a copy of the FDT instance may be interleaved within the actual object transmission.

h) Support ALC/FLUTE sessions involving simultaneous transmission over multiple channels.

i) Optionally include channel information to aid the server making decisions on how many and which channels to use for a certain transmission session.

j) Optionally include template for SDP at session and individual channel levels.

It is important to make a difference between defining sessions for transmission, on the one hand, and scheduling of such sessions, one the other. ALC and FLUTE server files should only address optimization of the server transmission process and should be self-contained. In order to ensure maximal usage and flexibility of such pre-defined sessions, all details regarding scheduling addresses, etc. should be kept outside the definition of the ALC/FLUTE server file format. External scheduling applications decide such details, which are not important for optimizing transmission sessions per se.

Hence, the following information is out-of-scope of the ALC/FLUTE server file extensions:

k) Time scheduling.

l) Target addresses and ports.

m) Source addresses and ports.

n) Transmission Session Identifier (TSI).

3.2 Architecture for ALC/FLUTE extensions

In order to meet the above design principles, ALC/FLUTE server extensions should consist of the following basic building blocks:

Hint tracks:

a) In analogy with hint tracks for RTP, hint tracks should be used for ALC/FLUTE sessions.

b) One hint track corresponds to one channel of an ALC/FLUTE session and contains all instructions for a complete transmission of that channel. An ALC/FLUTE server should simply execute all instructions in order to complete the transmission of the channel.

c) One or more hint tracks are used in combination to form one ALC/FLUTE session.

d) If alternative ALC/FLUTE sessions are defined in a file, they are described by (sets of) alternative tracks.

e) Hint track instructions refer to meta box items, or parts thereof, for source blocks and possibly FEC redundancy.

f) Hint tracks include templates for ALC/FLUTE headers, as well as FDT and SDP fragments.

g) Hint track sample numbers provide a numbered sequence of instructions.

h) Hint track sample times provide send times of ALC/FLUTE packets for a default bitrate. Depending on the actual transmission bitrate, an ALC/FLUTE server may apply linear time scaling. Sample times may simplify the scheduling process, but it is up to the server to send ALC/FLUTE packets in a timely manner.

Meta box items:

i) All source files that are to be transmitted in an ALC/FLUTE session are stored as items.

j) If a file is partitioned into several source blocks, it shall be possible to refer to them individually.

k) Each source block of a source file may be associated to a reservoir of FEC encoding symbols stored in a meta box item.

l) A FLUTE hint track can refer to both the original item (source file) and additional items (FEC reservoirs) when referencing encoding symbols.

m) It should be possible to refer to encoding symbols independently of using hint tracks. Encoding symbols which are part of source files or stored in the FEC reservoirs may be used by repair servers in addition to ALC/FLUTE servers.

3.3 File format additions

This amendment provides a number of new boxes. They are used for defining source file partitioning and FEC reservoirs, storing SDP information for ALC/FLUTE, templates for storing file metadata, e.g. for the FLUTE file delivery table, and constructing ALC/FLUTE hint tracks with instructions for ALC/FLUTE servers. In addition, a sample grouping for providing rate share information in media tracks is defined.

Table 1 shows the relevant box hierarchy of the ISO Base Media File Format. Bolded box names relate to extensions defined in this amendment. Instead of using protocol-specific names, such as ALC and FLUTE, in box definitions, we define the neutral term File Delivery (FD) Protocol.

Table 1. Relevant box hierarchy of the ISO Base Media File Format

moov

container for all the metadata

mvhd

movie header, overall declarations

trak

container for an individual track or stream

tkhd

track header, overall information about the track

mdia

container for the media information in a track

rsop

rate share operation point box

meta

meta box

iloc

item location box

iinf

item information box

pitm

primary item reference

fiin

FD item information box

paen

partition entry

fpar

file partition box

feci

FEC information box

fecr

FEC reservoir box

fmed

file metadata box

meco

additional metadata container box

meta

meta box

mere

meta box relation box

3.4 Example of usage

This section provides an example of how files and associated FEC reservoirs can be contained in an ISO base media file and how hint tracks can be provided for transmission over ALC/FLUTE. By providing alternative hint tracks for the same source files, the server can choose appropriate FEC overhead to accommodate for different channel conditions.

In the example depicted in Figure 1, a 5 MB file is partitioned into 2 source blocks containing symbols of size 512 bytes each. FEC redundancy symbols are calculated for both source blocks and stored in separate Meta box items. Three different (alternative) hint tracks are defined in the file with 10%, ~12% and 14% FEC redundancy overhead.

As the hint tracks reference relevant items in the file, there is no duplication of information. In addition, the original source symbols and FEC reservoirs can be used by repair servers that don’t use hint tracks.

[image: image1.wmf]Src Sym

[

0

-

5119

]

FEC Sym

#

2

[

0

-

511

]

Src Sym

[

5120

-

10240

]

FEC Sym

#

1

[

0

-

511

]

track

#

1

(

10

%

FEC

)

FEC Sym

#

2

[

0

-

614

]

FEC Sym

#

1

[

0

-

614

]

track

#

2

(

~

12

%

FEC

)

FEC Sym

#

2

[

0

-

716

]

FEC Sym

#

1

[

0

-

716

]

track

#

3

(

14

%

FEC

)

File Meta box item

Storage Format of a single file

FEC Meta box items

FEC for Src Block

#

1

FEC for Src Block

#

2

Src Sym

[

0

-

5119

]

Src Sym

[

0

-

5119

]

Src Sym

[

5120

-

10240

]

Src Sym

[

5120

-

10240

]

4 File partitioning and FEC reservoirs

4.1 Storage of source files and FEC reservoirs

Files intended for transmission over ALC/FLUTE are stored as items in a top-level Meta box (‘meta’) of an ISO base media file acting as a container file. The Item Location box (‘iloc’) specifies the actual storage location of each item (source file) within the container file as well as the file size of each item. The file name and content type (MIME type) of each item are provided by the Item Information box (‘iinf’).

In a similar manner, pre-computed FEC reservoirs can be stored as additional items in the Meta box. If a source file is split into several source blocks, FEC reservoirs for each source block are stored as separate items. The relationship between FEC reservoirs and original source items is recorded in the FD Item Information box described in the following section.

4.2 File partitioning and pre-computation of parity symbols

4.2.1 FD Item Information box

Details on the partitioning of source files and FEC reservoirs are provided in the FD Item Information box (‘fiin’) located in the Meta box (‘meta’). It is defined as follows:

aligned(8) class FDItemInformationBox

extends FullBox('fiin', version = 0, 0) {

unsigned int(16)
entry_count;

PartitionEntry[entry_count] partition_entries;
}

Each PartitionEntry in the FD Item information box provides details on a particular file partitioning, FEC encoding, associated FEC reservoirs, and metadata for a particular source file. It is possible to provide multiple entries for one source file if alternative FEC encoding schemes or partitionings are used in the ISO file. All partition entries are implicitly numbered and the first entry has number 1.

4.2.2 Source File entry

The Partition Entry (‘paen’) of a source is defined as follows:

aligned(8) class PartitionEntry extends Box('paen') {

FilePartitionBox
blocks_and_symbols;

FECInformationBox
FEC_infos;

FECReservoirBox
FEC_symbol_locations;
//optional

FileMetadataBox
file_metadata_info;
}

It can contain three boxes that together provide all details on how a source file is FEC encoded. It also contains one box with metadata for the source file.

4.2.3 File Partition box

The File Partition box (‘fpar’) identifies the source file and provides a partitioning of that file into source blocks and symbols. Definition:

aligned(8) class FilePartitionBox

extends FullBox('fpar', version = 0, 0) {

unsigned int(16)
item_ID;

unsigned int(16)
packet_payload_size;

unsigned int(16)
max_source_symbols_per_source_block;

unsigned int(16)
entry_count;

for (i=1; i <= entry_count; i++) {

unsigned int(16)
block_count;

unsigned int(32)
block_size;
}

Semantics:

item_ID indicates the item_ID of the source file. It is possible to provide alternative partitionings and/or FEC encodings of a source file by using the same item_ID in the File Partition box of more than one File Information entry.

packet_payload_size gives the target (FLUTE or ALC) packet payload size of the partitioning algorithm. Note that UDP packet payloads are larger, as they also contain FLUTE or ALC headers.max_source_symbols_per_source_block gives an indication for the FEC payload ID (size of the field, numbering). Editor’s note: Clarify.

entry_count gives the number of entries in the list of (block_count , block_size) pairs that provides a partitioning of the source file. Starting from the beginning of the file, each entry indicates how the next segment of the file is divided into source blocks and source symbols.

block_count indicates the number of consecutive source blocks of size block_size (in bytes). A block_size that is not a multiple of the symbol size (provided in the FEC Information Box) indicates that the last source symbol includes padding not stored in the file item.

4.2.4 FEC Information box

The FEC Information box (‘feci’) identifies the FEC encoding schema and provides further details on how the FEC encoding is carried out:

aligned(8) class FECInformationBox

extends FullBox('feci', version = 0, 0) {

unsigned int(16) FEC_encoding_ID;

if (FEC_encoding_ID == 0) {

//Null FEC

unsigned int(32)
symbol_size;

}

else if (FEC_encoding_ID == 1) {

//MBMS FEC

unsigned int(32)
symbol_size;

unsigned int(8)
symbol_alignment_factor;

unsigned int(16)
entry_count;

for (i=1; i <= entry_count; i++) {

unsigned int(16)
block_count;

unsigned int(16)
number_of_sub_blocks;

}

}
}

Semantics:

symbol_size gives the size (in bytes) of all encoding symbols.

FEC_encoding_ID identifies the FEC encoding scheme (RFC 3452). A zero value corresponds to The "Compact No-Code FEC scheme" also known as "Null-FEC". Value one corresponds to the “MBMS FEC” (3GPP TS 26.346).

symbol_alignment_factor is measured in bytes. Symbol and sub-symbol sizes are restricted to be multiples of this value as defined in TS 26.346.

entry_count gives the number of entries in the list of (block_count, number_of_sub_blocks) pairs that specify the number of sub_blocks of each block partitioned by the File Partion box. Starting from the beginning of the source file, each entry indicates how many sub_blocks per blocks that the next group of blocks are divided into.

block_count indicates a number of consecutive source blocks that each is divided into a number of sub_blocks as indicated by number_of_sub_blocks.

4.2.5 FEC Reservoir box

The optional FEC Reservoir box (‘fecr’) associates a source file with FEC reservoirs stored as additional items:

aligned(8) class FECReservoirBox

extends FullBox('fecr', version = 0, 0) {

unsigned int(16)
entry_count;

for (i=1; i <= entry_count; i++) {

unsigned int(16)
item_ID;

unsigned int(32)
symbol_count;
}

Semantics:

entry_count gives the number of entries in the list of (item_ID , symbol_count) pairs that provides the item_ID for each FEC reservoir and the number of source symbols it contains. The list starts with the FEC reservoir associated to the first source block of the source file and continues sequentially through the file.

4.2.6 File Metadata box

In order to transmit internally embedded discrete media using broadcast/multicast file download protocol (ALC/FLUTE), it is required for the server to also transmit some metadata corresponding to the discrete media. The metadata is sent as part of the FDT, if FLUTE is used as a broadcast protocol, and as part of OMA BCAST ESG, if ALC is used in conjunction with OMA BCAST ESG.

As some of the Metadata information needs to be created on the fly, a template structure for the part of the metadata that is static and common to both FLUTE and ALC is defined:

aligned(8) class FileMetadataBox extends box(‘fmed’) {

unsigned int(32)
content_length;

unsigned int(32)
transfer_length;

string

content_location;

string

content_type;

string

content_encoding;

string

content_MD5;

unsigned int(8)
entry_count;

string

group_names[entry_count];
}

Semantics:

content_length gives the total length (in bytes) of the (un-encoded) file.

transfer_length gives the total length (in bytes) of the (encoded) file.

content_location is a null-terminated string in UTF-8 characteres containing the URI of the file as defined in HTTP/1.1 (RFC 2616).

content_type is a null-terminated string in UTF-8 characteres with the MIME type of the file.

content_encoding is a null-terminated string in UTF-8 characters used to indicate that the binary file is encoded and needs to be decoded before interpreted. The values are as defined for Content-Encoding for HTTP/1.1. Some possible values are “gzip”, “compress” and “deflate”. An empty string indicates no content encoding.

content_MD5 is a null-terminated string in UTF-8 characters containing an MD5 digest of the file. See HTTP /1.1 (RFC 2616) and RFC 1864.

entry_count indicates the number of file groups, to which the file item belongs to.

group_names is an array of null-terminated strings in UTF-8 characters, each indicating the name of one file group to which the file item belongs to.

All fields are mandatory. However, it is possible that a null-terminated string only contains a null to indicate that the corresponding value of the field is not provided. Future extensions to the box may add additional fields at the end.

By considering the information provided in the File Metadata box for each item and the list of items used by a hint track, file entries needed for an FDT or an ESG can be constructed.

The content_location of embedded media resources may be referred by using the URL forms defined in Section 8.44.7 of the ISO base media file format. For the other parameters, see RFC 3926, section 3.4.2.

Editor’s note: It is enough to provide one File metadata box per source file (and not per partitioning). Consider re-using the Item Information box (‘iinf’) in the meta box in order to avoid duplication of information.

5 Hint tracks for ALC/FLUTE

5.1 SDP Information

SDP for an ALC/FLUTE session is generated by the server. Note that no SDP text fragments are provided as such in the file format structures.

Editor’s note: Include text that aids the server in finding information for and/or creating SDP. Do we need a box for this? Some SDP attributes must be generated by the server, e.g. TSI.

5.2 Hint Track Format

The hint track structure is generalized to support hint samples in multiple data formats. The hint track sample contains any data needed to build the packet header of the correct type, and also contains a pointer to the block of data that belongs in the packet. Such data can comprise dynamic and static embedded media.

Similar to the hierarchy of RTP hint track, the FDHintSampleEntry and FDsample are defined. In addition, related structures and constructors are also defined.

5.2.1 Sample entry format

FD hint tracks are hint tracks (media handler ‘hint’) with an entry-format in the sample description of ‘fdp ‘, short for File Delivery Protocol. The FDHintSampleEntry is contained in the SampleDescriptionBox ('stsd') and has the following syntax:

class FDHintSampleEntry() extends SampleEntry (‘fdp ‘) {

uint(16)
hinttrackversion = 1;

uint(16)
highestcompatibleversion = 1;

uint(16)

partition_entry_ID;

uint(16)

FEC_overhead;

box

additionaldata[]; //optional
}

Semantics:

partition_entry_ID indicates the partition entry in the FD item information box..A zero value indicates that no partition entry is associated with this sample entry, e.g for FDT.

FEC_overhead is a fixed 8.8 value indicating the percentage protection overhead used by the hint sample(s).

The fields, “hinttrackversion” and “highestcompatibleversion” have the same interpretation as in the “RtpHintSampleEntry”, described in section 10.2 of the ISO base media file format. The intention of providing FEC_encoding_ID and FEC_overhead is to provide characteristics of the session to help a server select among alternative hint tracks. As additional data a timescaleentry box may be provided. If not provided, there is no indication given on timing of packets.

File entries needed for an FDT or an ESG can be created by observing all sample entries of a hint track and the corresponding File Metadata Information boxes of the items referenced by the above item_IDs. No sample entries shall be included in the hint track if they are not referenced by any sample.

It is recommended that the server sends a different set of FEC symbols for each retransmission of the file.

5.2.2 Sample format

Each FD sample in the hint track will generate one or more FD packets. Compared to RTP samples, FD samples do not have their own specific timestamps, but instead are sent sequentially.

Each sample contains two areas: the instructions to compose the packets, and any extra data needed when sending those packets (e.g. encoding symbols that are copied into the sample instead of residing in items for source files or FEC). Note that the size of the sample is known from the sample size table.

aligned(8) class FDsample extends Box(‘fdsa’) {

FDPacketBox
packetbox[]

ExtraDataBox
extradata;

//optional
}

Sample numbers of FD samples define the order they shall be processed by the server. Likewise, FD Packet boxes in each FD sample should appear in the order they shall be processed. If the Time Scale Entry box is present in the FD Hint Sample Entry, sample times are defined and provide relative send times of packets for a default bitrate. Depending on the actual transmission bitrate, a server may apply linear time scaling. Sample times may simplify the scheduling process, but it is up to the server to send packets in a timely manner.

5.2.3 Packet entry format

Each packet in the FD sample has the following structure (References: RFC 3926, 3450, 3451):

aligned(8) class FDpacketBox extends Box(‘fdpa’) {

header_template
LCT_header_info;

unsigned int(16)
entrycount1;

dataentry

header_extension_constructors[entrycount1];

unsigned int(16)
entrycount2;

dataentry

packet_constructors[entrycount2];
}

header_template contains LCT header templates for the current FD packet.

entry_count1: count of following constructors.

header_extension_constructors: structures which are used to construct the LCT header extensions.

entry_count2: count of following constructors.

packet_constructors: structures which are used to construct the FEC payload ID and the source symbols in an FD packet.

class header_template {

unsigned int(1)
sender_current_time_present;

unsigned int(1)
expected_residual_time_present;

unsigned int(1)
session_close_bit;

unsigned int(1)
object_close_bit;

unsigned int(4)
reserved;

unsigned int(16)
transport_object_identifier;
}

The LCT header template can be used by a server to form an LCT header for a packet. Note that some parts of the header depend on the server policy and are not included in the template. Some field lengths also depend on the LCT header bits assigned by the server. The server may also need to change the value of the TOI.

5.2.4 LCT header extension constructor format

Note that a server can identify packets including FDT by observing whether EXT_FDT is present (see new LCT header extension constructors).

aligned(8) class LCTheaderextension {

unsigned int(8) header_extension_type;

unsigned int(8) header_extension_length;

unsigned int(8) header_extension_content[]; //number of items equal to header_extension_length;
}

header_extension_length is expressed in multiples of 32 bit words. A zero value means that the header is generated by the server.

Editor’s note: Here we should have normative references to ALC, LCT, and FLUTE, and specify how the header extensions in those specifications must be used with ISO file format. For example, EXT_FDT must have extension_length of 0 and the contents of the extension header must be derived from persistent information maintained by the server.

5.2.5 Packet Constructor format

There are various forms of the constructor. Each constructor is 16 bytes in order to make iteration easier. The first byte is a union discriminator. This structure is based upon section 10.3.2 from the ISO base media file format.

The packet constructors are used to include FEC payload ID as well as source symbols in an FD packet.

aligned(8) class FDconstructor(type) {

unsigned int(8)
constructor_type = type;
}

aligned(8) class FDnoopconstructor extends FDconstructor(0)
{

unsigned int(8)
pad[15];
}

aligned(8) class FDimmediateconstructor extends FDconstructor(1)
{

unsigned int(8)
count;

unsigned int(8)
data[count];

unsigned int(8)
pad[14 - count];
}

aligned(8) class FDsampleconstructor extends FDconstructor(2)
{

signed int(8)

trackrefindex;

unsigned int(16)
length;

unsigned int(32)
samplenumber;

unsigned int(32)
sampleoffset;

unsigned int(16)
bytesperblock = 1;

unsigned int(16)
samplesperblock = 1;
}

aligned(8) class FDitemconstructor extends FDconstructor(3)
{

unsigned int(16)
item_ID;

unsigned int(16)
extent_index;

unsigned int(64)
data_offset;
//offset in byte within extent

unsigned int(32)
data_length;
//length in byte within extent
}

aligned(8) class FDxmlboxconstructor extends FDconstructor(4)
{

unsigned int(64)
data_offset; //offset in byte within XMLBox or BinaryXMLBox

unsigned int(32)
data_length;

unsigned int(32)
reserved;
}

5.2.6 Extra Data box

Each sample of a FD hint track may include extra data stored in an Extra Data box:

aligned(8) class ExtraDataBox extends Box(‘extr’) {

bit(8)
extradata[];
}

6 Combined storage and extraction of scalable media

6.1 Rate share information

When combinations of scalable media streams are delivered over a channel with a constrained bandwidth, it is necessary to provide provisions on how to dynamically perform extraction of data portions from all the media that is jointly delivered. For this purpose, this section specifies how a file containing one or more scalable media streams is amended to also hold rate share information. The purpose of such information is to inform the server about how media should be extracted from each stream at any instance of time. This will enable a controlled or recommended way of scaling media at the server and thus enabling the generation of elementary media streams.

Timed rate-share information may be added to media streams stored in tracks by associating portions (time ranges) of media with rate share information records specifying a target rate share value. Such a value indicates the target percentage of the available bitrate that should be allocated to the media in question. In the simplest case, only one target rate share value is specified per media and time range as illustrated in Figure 1.

[image: image2.emf]A

/

V

R

a

t

e

S

h

a

r

e

(

%

)

time

Higher audio rate

required

Audio

Video

Figure 1: Audio/Video rate share as function of time

However, in order to accommodate for rate share values that vary with the available bitrate, it is possible to specify more than one operation range. One may for instance indicate that audio requires a higher percentage (than video) at low available bitrates. Technically this is done by specifying two operation points as shown in Figure 2.

[image: image3.emf]A

u

d

i

o

R

a

t

e

S

h

a

r

e

(

%

)

Available bitrate

Higher audio

rate required

Lower audio

rate required

OP 1OP 2

Figure 2: Audio rate share as function of available bitrate

Each operation point (OP) in Figure 2 specifies a target rate share. For more complex situations it is possible to specify even more operation points. The first and the last operation points specify the target rate share at those points as well as for lower and higher available bitrates, respectively. The target rate share between two operation points is specified to be in the range between the target rate shares of those operation points. One possibility is to estimate with linear interpolation.

In addition to target rate share values, it is also possible to specify maximum and minimum bitrates for a certain media: A rate share record associated with a time range of a media stream specifies the following values:

· target rate-share (one for each operation point),

· maximum bitrate,

· minimum bitrate.

As described above, the target rate-share indicates the target percentage of the available bitrate that should be allocated to the media in question. Given this allocation, the maximum and minimum bitrates are used to specify boundaries. Maximum bitrate gives an upper limit of the available bitrate for the specified media and time range. Alternatively, it can be used to provide an upper threshold for which the allocated bitrate is a priority for the media. Minimum bitrate indicates a lower threshold that is deemed useful. If the allocated bitrate would fall below this value, the recommendation to the server is to not allocate any bitrate at all to the media. The bitrate could then either be given to the other media stream(s), or an alternative stream, if available.

Whereas the rate share records are specific to each media track and its content, the bitrates defining the operation points are common to all media tracks. The operation points are defined once per file and are specified as a numbered list of available bitrates.

6.2 Sample grouping

Rate-share information applies to the duration of a media sample. However, as the same rate-share information is likely to apply to many consecutive samples of a track and will perhaps only vary between two or three different records, rate-share information can be efficiently stored in a track by using sample groups. Each sample of a track may be associated to (zero or) one of a number of sample group descriptions, each of which defines a record of rate-share information.

The grouping type 'rash' (short for rate share) is defined as the grouping criterion for rate share information. Zero or one sample-to-group box ('sbgp') for the grouping type 'rash' can be contained in the sample table box ('stbl') of a track. It shall reside in a hint track, if a hint track is used, otherwise in the video track.

The rate share sample group entry is defined below:

class RateShareEntry() extends SampleGroupDescriptionEntry('rash')
{

unsigned int(16)
operation_point_count;

for (i=1; i <= operation_point_count; i++) {

unsigned int(16)
target_rate_share;

}

unsigned int(32)
maximum_bitrate;

unsigned int(32)
minimum_bitrate;
}

Semantics:

operation_point_count is an integer that gives the number of operation points specified in the following list. Note, if the file does not contain a Rate share operation point box ('rsop'), then only one operation point is defined. If the file contains a Rate share operation point box, then operation_point_count shall not exceed the number of operation points specified there. The Nth entry in the following list corresponds to the Nth operation point in the Rate share operation point box.

target_rate_share A non-zero value indicates the percentage of available bandwidth that should be allocated to the media for each operation point. The value of the first (last) operation point applies to lower (higher) available bitrates than the operation point itself. The target rate share between operation points is bounded by the target rate shares of the corresponding operation points. A zero value indicates that no information on the preferred rate share percentage is provided.

maximum_bitrate A nonzero value indicates (in kilobits per second) an upper threshold for which bandwidth should be allocated to the media. A higher bitrate than maximum bitrate should only be allocated if all other media in the session has fulfilled their quotas for target rate-share and maximum bitrate, respectively. A zero value indicates that no information on maximum bitrate is provided.

minimum_bitrate A nonzero value indicates (in kilobits per second) a lower threshold for which bandwidth should be allocated to the media. If the allocated bandwidth would correspond to a smaller value, then no bitrate should be allocated. Instead preference should be given to other media in the session or alternate encodings of the same media. Zero minimum bitrate indicates that no information on minimum bitrate is provided.

6.3 Operation points

If more than one operation point is used to specify target rate share, the Movie box ('moov') shall contain one Rate share operation point box ('rsop') as defined below.

aligned(8) class RateShareOperationBox

extends FullBox('rsop', version=0, 0) {

unsigned int(16)
operation_point_count;

for (i=1; i <= operation_point_count; i++) {

unsigned int(32)
available bitrate;

}
}

Semantics:

operation_point_count is an integer that gives the number of operation points.

available_bitrate is a positive integer that defines an operation point (in kilobits per second). Each entry shall be greater than the previous entry.

6.4 Relationship between tracks

The purpose of defining rate share information is to aid a server extracting data from a track in combination with other tracks. Several tracks of an ISO file are served simultaneously if they belong to different alternate groups. By default, all tracks are served simultaneously if no alternate groups are defined.

Rate share information for each track and operation point in a session may be provided in the tracks themselves as described in the previous section. However, explicit rate share information may be missing for a track or parts of a track. It is for instance not necessary to specify that the target video rate share (for a particular operation point) is 40% if video is the only other media that is to be combined with an audio track that has its rate share specified to 60% (for the same operation point).

The default rule for target rate share values is the following. If target rate share is defined (for an operation point at a certain time) for at least one track in a session, then tracks that don’t have target rate share explicitly specified (for that operation point at that time) shall implicitly share the surplus (non-claimed) rate share equally, such that the total allocation of rate shares add up to 100%. As all tracks within an alternate group are alternatives to each other, they shall have the same target rate share values.

6.5 Rate-share allocation

Rate share information on maximum bitrate, minimum bitrate, and target rate share can be combined for a track. If this is the case, the target rate share shall be applied to find an allocated bitrate before the impact of the maximum and minimum bitrates is considered.

When allocating bandwidth to several tracks, a server should:

1. In the case all tracks have explicit target rate share values and they don’t sum up to 100 per cent, treat them as weights, i.e., normalize them.

2. Make an initial bitrate allocation for each track independently. If a track uses less than its target rate share there will be an excess bitrate. This will for instance happen when no suitable bitrate is available (can be extracted), or as a result of applying the minimum and maximum bitrate values.

3. Revisit the tracks that have not reached their maximum bitrates and offer the total excessive (non-allocated) bitrate. It is up to server implementation to make best use of the rate share information, but first priority should be given to tracks that have been cut off due to their minimum bitrate values. Otherwise it is recommended to offer the excessive bitrate in priority of track IDs, i.e. tracks with lower IDs have higher priority.

6.6 Examples with rate share information

6.6.1 Scalable audio and video tracks

One scalable audio track is combined with one scalable video track. The tracks belong to different alternate groups and shall therefore be served simultaneously:

Track ID
Content
Alternate group
Switch group

1
Scalable audio
1
1

2
Scalable video
2
2

No Rate share operation box is provided, i.e. all available bitrates correspond to the same operation point. Rate share information may be provided explicitly in one or both of the tracks. At a certain time interval the following values may be specified:

Track ID
Target rate share
Maximum bitrate
Minimum bitrate

1
40
128
0

2
60
0
30

The above values imply that audio should be extracted such that it allocates 40% of the available bitrate and video should be extracted such that it allocates the rest (60%). If the available bitrate equals 320kbps, audio would get 128kbps and video 192kbps. As this corresponds to the maximum bitrate for audio, any increase of the available bitrate should be allocated to video only. If the available bitrate would be less than 50kbps, then video would correspond to less than 30kbps. However, as the minimum bitrate for video is set to 30kbps, only audio should be served (at the full available bitrate) in this case.

6.6.2 Scalable audio with fixed-rate video tracks

One scalable audio track is combined with several fixed-rate video tracks. The video tracks belong to the same alternate group. Hence only one video track shall be served at any point in time in combination with audio. The fact that all video tracks belong to the same switch group means that the server may switch between them during serving to accommodate for variations in the rate share requested by the audio track.

Track ID
Content
Alternate group
Switch group

1
Scalable audio
1
1

2
Video at 128 kbps
2
2

3
Video at 160 kbps
2
2

4
Video at 192kbps
2
2

In this example, rate share information is only provided in the audio track. At a certain time interval the following values may be specified:

Track ID
Target rate share
Maximum bitrate
Minimum bitrate

1
30
128
0

The audio target rate share of 30% implies that the video target rate share is 70%. If the total available bitrate is 230kbps, this corresponds to 161 kbps for video. Hence, the server may choose to stream the bit stream that has been pre-encoded to 160 kbps.

6.6.3 Scalable audio, scalable video, and fixed-rate video tracks

The above example may be extended by adding one additional track of scalable video to the same alternate group as the other video tracks. As all video tracks are in the same alternate group, they represent the same content and only one should be served at any point in time in combination with the audio track:

Track ID
Content
Alternate group
Switch group

1
Scalable audio
1
1

2
Scalable video
2
2

3
Video at 128 kbps
2
3

4
Video at 160 kbps
2
3

5
Video at 192kbps
2
3

In this example it is enough to provide explicit rate-share information in the audio track, but additional video rate-share information may be provided. Before the session starts, the server needs to make a decision if it should stream video from the scalable track or from the fixed-rate tracks. This corresponds to different scenarios (Examples 6.6.1 and 6.6.2 above). The total available bitrate together with rate-share information and bitrates of available tracks can aid the server in this process.

7 Support for Multiple Meta Boxes

7.1 Additional Metadata Container Box

The Additional Metadata Container Box is an optional box including one or more Meta Boxes. The Additional Metadata Container Box can be carried at the top level of the file, in the Movie Box (‘moov’), or in the Track Box (‘trak’). When no Meta Box is present in the file, the Movie Box, or the Track Box, the Additional Metadata Container Box shall not be present either in the respective container. A Meta Box that is not contained in the Additional Metadata Container Box is the preferred (primary) one, and Meta Boxes in the Additional Metadata Container Box complement or give alternative metadata information compared to the preferred Meta Box. Use of multiple Meta Boxes may be desirable e.g. when a single handler is not capable of processing all metadata.

A Meta Box contained in an Additional Metadata Container Box shall contain a Primary Item Box or an XML Box, and it shall not include Boxes or syntax elements concerning items other than the primary item indicated by the present Primary Item Box or XML Box. URLs in a Meta Box contained in an Additional Metadata Container Box are relative to the context of the preferred Meta Box.

aligned(8) class AdditionalMetadataContainerBox

extends FullBox('meco', version=0, 0) {

unsigned int(16)
count;

for (metabox_index=1; metabox_index <= count; metabox_index++) {

MetaBox
metabox[metabox_index];

}

Box other_boxes[]
// e.g. optional MetaBoxRelationBox
}

7.2 Metabox Relation Box

The Metabox Relation Box is an optional box indicating the relations between Meta Boxes within the same container (i.e., the top level of the file, the Movie Box, or Track Box). Zero or more Metabox Relation Boxes can be contained in the Additional Metadata Container Box. When there is no Metabox Relation Box indicating the relation between a pair of Meta Boxes, the relation of the Meta Boxes is unspecified.

aligned(8) class MetaboxRelationBox

extends FullBox('mere', version=0, 0) {

unsigned int(16)
first_metabox_index;

unsigned int(16)
second_metabox_index;

unsigned int(1)
similar_metadata_flag;

unsigned int(1)
disjoint_flag;

unsigned int(2)
intersection_information;

unsigned int(28)
reserved;
}

first_metabox_index and second_metabox_index indicate the pair of Meta Boxes that the Metabox Relation Box concerns. first_metabox_index and second_metabox_index are relative to the loop counter (metabox_index) in the Additional Metadata Container Box that contains the Metabox Relation Box. The Meta Box not contained in the Additional Metadata Container Box has index 0.

similar_metadata_flag equal to 0 indicates that the Meta Boxes are not related and the semantics of disjoint_flag and intersection_information are unspecified. similar_metadata_flag equal to 1 indicates that the Meta Boxes are related.

disjoint_flag equal to 0 indicates that the Meta Boxes include semantically identical metadata. Note that the syntax of the metadata in the two Meta Boxes may differ. disjoint_flag equal to 1 indicates that the two Meta Boxes contain no identical information and the semantics of intersection_information are unspecified.

intersection_information equal to 0 indicates that the Meta Box labeled with first_metabox_index is a subset of the Meta Box labeled with second_metabox_index. intersection_information equal to 1 indicates that the two Meta Boxes are semantically identical. intersection_information equal to 2 indicates that the Meta Box labeled with first_metabox_index is a superset of the Meta Box labeled with second_metabox_index. intersection_information equal to 3 indicates that the two Meta Boxes are not identical and neither Meta Box is a superset of the other.

7.3 Examples

Example 1. A Meta Box whose handler is ‘svgt’ (for SVG Tiny) resides in the file level. In addition, the file level contains the Additional Metadata Container Box including a Meta Box whose handler is ‘3gsd’ (3GPP scene description, based on SMIL, specified in 3GPP TS 26.244 Rel-6). Processing of either one of the Meta Boxes results into a similar multimedia presentation, but the ‘svgt’ Meta Box gives a richer experience thanks to a greater number of graphical components in the presentation. The Additional Metadata Container Box also includes a Metabox Relation Box with similar_metadata_flag equal to 1, disjoint_flag equal to 0, and intersection_information equal to 3.

Example 2. A Meta Box whose handler is ‘mp7t’ (MPEG-7 metadata) resides in the Movie Box. In addition, the Movie Box contains the Additional Metadata Container Box including a Meta Box whose handler is ‘id32’ (ID3 version 2 Box, defined by the MP4 registration authority). While a part of the metadata included in the boxes is semantically identical, the ‘mp7t’ Meta Box contains a richer set of data. The Additional Metadata Container Box also includes a Metabox Relation Box with first_metabox_index equal to 0, second_metabox_index equal to 1, similar_metadata_flag equal to 1, disjoint_flag equal to 0, and intersection_information equal to 2.

8 Labelling tracks in SVC alternate groups

Editor’s note: The text for this section shall be copied from the corresponding section of ISO/IEC 14496-15/PDAM2 (SVC File Format). Only the parts specific to SVC shall remain in the SVC File format.

9 Example of FLUTE session

This chapter contains an example of a FLUTE session based on Example 7.2.1 “Video Clip download Service Use-case” from TR 26.946 (V6.0.1). The session consists of two files:

· http://www.example.com/bundesliga/VideoClip-10.3gp

· http://www.example.com/bundesliga/FileRepairFragment.xml

with item IDs 1 and 2, respectively, in the Meta box, and an FDT instance created by the server. In addition, a FEC reservoir associated with item ID 1 is stored as item ID 3 in the Meta box.

9.1 FD item information box

The FD item information box contains two entries, identified as partition entry IDs 1 and 2, respectively.

9.1.1 Partition entry 1

The first partition entry contains the following four boxes:

Table: File partition box (partition entry 1)

Field
Value
Comment

item_ID
1

packet_payload_size
512
see clause 7.2.4.1 of TR 26.946

max_source_ symbols per source block
1000

entry_count
1

block_count
1

block_size
307200
300 x 1024

Table: FEC information box (partition entry 1)

Field
Value
Comment

FEC_encoding_ID
1

symbol_size
256

symbol_alignment_factor
4

Entry_count
1

Block_count
1

number_of_sub_blocks
2

Table: FEC reservoir box (partition entry 1)

Field
Value
Comment

Entry_count
1

Item_ID
3

symbol_count
192
2 symbols per packet

Table: File meta data box (partition entry 1)

Field
Value

content_length
307200

transfer_length
307200

content_location
http://www.example.com/bundesliga/VideoClip-10.3gp

content_type
video/3gpp

content_encoding
NULL

content_MD5
NULL

9.1.2 Partition entry 2

The second partition entry contains the following three boxes:

Table: File partition box (partition entry 2)

Field
Value
Comment

Item_ID
2

packet_payload_size
512
see clause 7.2.4.1 of TR 26.946

Max_source_ symbols per source block
1000

Entry_count
1

Block_count
1

Block_size
572

Table: FEC information box (partition entry 2)

Field
Value
Comment

FEC_encoding_ID
0

symbol_size
512

Table: File meta data box (partition entry 2)

Field
Value

content_length
572

transfer_length
572

content_location
http://www.example.com/bundesliga/FileRepairFragment.xml

content_type
application/mbms-associated-procedures-description-xml

content_encoding
NULL

content_MD5
NULL

9.2 Hint track

The example requires one hint track that contains samples and two associated sample entries (one per file). In addition to the parameters stored in the hint track, the server needs to generate and include some parameters, such as TSI, which shall be the same for every packet. The server also needs to choose TSI and TOI value lengths and adjust the LCT header length accordingly.

In this example the FDT instance is sent once at the beginning of the session. In principle, the FDT instance can be repeated in the session.

9.3 Sample entries 1 – 3

The first two sample entries are associated with the file partitionings in partition entry 1 and 2. The third sample entry as associated with the FDT instance. The common fields hintrackversion (1) and highestcompatibleversion (1) have been omitted below:

Table: Sample entry 1

Field
Value
Comment

partition_entry_ID
1

FEC_overhead
16.0

Table: Sample entry 2

Field
Value
Comment

partition_entry_ID
2

FEC_overhead
0.0

Table: Sample entry 3

Field
Value
Comment

partition_entry_ID
0
FDT is not stored in meta box.

FEC_overhead
0.0

9.4 Samples

In this example, sample 1 contains an FDT instance, samples 2-697 the video clip and samples 698-699 the file repair fragment.

9.4.1 Sample 1 (FDT)

The first sample contains two FDT packets and is associated with sample entry 3 above. It includes an FD sample box that contains two FD packet boxes.

The first FD packet box contains LCT header info and two header extension constructors (entrycount1=2 and entrycount2=0). They are as follows:

Table: LCT header info

Field
Value
Comment

sender_current_time_present
0

expected_residual_time_present
0

session_close_bit
0

object_close_bit
0

reserved
0

transport_object_identifier
0

Table: Header extension constructor 1 (EXT_FDT)

Field
Value
Comment

header_extension_type
192

header_extension_length
0

Table: Header extension constructor 2 (EXT_FTI)

Field
Value
Comment

header_extension_type
64

header_extension_length
4

header_extension_content

16 bytes (for server to include)

The second FD packet box may contain the same headers (LCT and header extensions) as the first FD packet box. Alternatively, it may leave out the extension headers.

9.4.2 Samples 2 – 601 (source symbols for video clip)

Sample 2 contains one packet associated with sample entry 1. It includes an FD sample box that contains one FD packet box and one Extra data box.

The FD packet box contains LCT header info and four FD item constructors (entrycount1=0 and entrycount2=4). The LCT header info is as follows:

Table: LCT_header_info

Field
Value
Comment

sender_current_time_present
0

expected_residual_time_present
0

session_close_bit
0

object_close_bit
0

reserved
0

transport_object_identifier
1

Note that the server needs to adjust the TOI value and its length.

The packet contains 2 symbols, i.e. 4 sub symbols. The packet is interleaved and one needs one FDconstructor of type 3 (FD item constructor) per sub symbol to construct the packet. In this example, the 3GP file is not fragmented into extents. Hence, the four item ID constructors are as follows:

Table: Item ID constructor 1 (type 3)

Field
Value
Comment

item_ID
1

extent_index
1

data_offset
0

data_length
128

Table: Item ID constructor 2 (type 3)

Field
Value
Comment

item_ID
1

extent_index
1

data_offset
153600
150 * 1024

data_length
128

Table: Item ID constructor 3 (type 3)

Field
Value
Comment

item_ID
1

extent_index
1

data_offset
128

data_length
128

Table: Item ID constructor 4 (type 3)

Field
Value
Comment

Item_ID
1

extent_index
1

Data_offset
153728
150 * 1024 + 128

Data_length
128

The following 599 packets are formed similary (samples 3-601).

9.4.3 Samples 602-697 (FEC symbols for video clip)

Sample 602 is the first packet with FEC symbols. It is also associated with sample entry 1 above and looks the same as samples 2-601, except for the FD item constructors. As there is no need to form FEC sub symbols (for interleaving), it is enough to have only one FD item constructor:

Table: Item ID constructor (type 3)

Field
Value
Comment

Item_ID
3

extent_index
1

Data_offset
0

Data_length
512

The following 95 packets are formed similary (samples 603-697) to give 16% FEC overhead.

9.4.4 Samples 698 – 699 (source symbols for file repair fragment)

Sample 698 contains one packet associated with sample entry 2. It includes an FD sample box that contains one FD packet box and one Extra data box.

The FD packet box contains LCT header info and one FD item constructor (entrycount1=0 and entrycount2=1). The LCT header info is as follows:

Table: LCT_header_info

Field
Value
Comment

sender_current_time_present
0

expected_residual_time_present
0

session_close_bit
0

object_close_bit
0

reserved
0

transport_object_identifier
2

Note that the server needs to adjust the TOI value and its length.

The packet contains 1 symbol. The XML file is not fragmented into extents. Hence, the item ID constructor is as follows:

Table: Item ID constructor (type 3)

Field
Value
Comment

item_ID
2

extent_index
1

data_offset
0

data_length
512

The next packet is formed similarly (sample 699).

10 Comments and open issues

1) Need to define (FLUTE) channel and simultaneous transmission over several channels. Optional channel information in the file may help the server to make decisions on how many and which channels to use.

2) Clarify how URL forms refer to meta boxes (absolute/locally, primary/additional meta boxes).

3) Need to look more at the relationships between primary and additional meta boxes?

Document type:
Document subtype:
Document stage:
Document language:

_142892348.vsd
Src Sym [0-5119]

File Meta box item

FEC Meta box items

Storage Format of a single file

Src Sym [0-5119]

FEC Sym#2 [0-511]

Src Sym [5120-10240]

FEC Sym #1 [0-511]

track #1 (10% FEC)

FEC Sym #2 [0-614]

Src Sym [5120-10240]

FEC Sym #1 [0-614]

track #2 (~12% FEC)

Src Sym [0-5119]

FEC Sym #2 [0-716]

Src Sym [5120-10240]

FEC Sym #1 [0-716]

track #3 (14% FEC)

FEC for Src Block #1

FEC for Src Block #2

_143000476.vsd
A / V Rate Share (%)

time

Higher audio rate required

Audio

Video

_142996196.vsd
Audio Rate Share (%)

Available bitrate

Lower audio rate required

Higher audio rate required

OP 1

OP 2

