	[image: image9.png]

	ABNT NBR 15606-2
November:2007

	[image: image8.png]

	ABNT NBR 15606-2
November:2007

Digital Terrestrial TV – Data Coding and transmission specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile receivers: XML application language for application coding
PRESENTATION

1) This first Project was made up by ABNT/CEET-00:001.85 - Comissão de Estudo Especial Temporária de Televisão Digital, in the following meetings:

	09/04/2007
	16/04/2007
	02/05/2007

	07/05/2007
	15/05/2007
	21/05/2007

	04/06/2007
	11/06/2007
	18/06/2007

	25/06/2007
	02/07/2007
	11/07/2007

	16/07/2007
	30/07/2007
	06/08/2007

	13/08/2007
	22/08/2007
	12/11/2007

2) It does not have normative value;

3) Those who knows any patent righ must present this information in their coments, with proper corroboration;
4) Persons who work on this Project elaboration:

Participant

 Representative

	CESAR
	Carlos André Guimarães Ferraz

	CESAR
	Mário Fried

	CESAR
	Paulyne Matthews Jucá

	FUNTEC/AM
	Wilkens de Figueiredo

	GENIUS/GRADIENTE
	Aguinaldo Silva

	HIRIX
	Zalkind Lincoln

	INMETRO
	Ewerton Madruga

	INMETRO
	Luiz da Silva Mello

	LG Electronics
	Gilberto A. R. Sacramento

	LG Electronics
	Guilherme Andrade

	LSI/USP
	Eduardo Rodrigues de Carvalho

	PUC-Rio
	Álvaro Veiga

	PUC-Rio
	Francisco Figueiredo G. Sant'Anna

	PUC-Rio
	Luiz Fernando G. Soares

	PUC-Rio
	Marcelo Ferreira Moreno

	PUC-Rio
	Marcio Ferreira Moreno

	PUC-Rio
	Rafael Ferreira Rodrigues

	PUC-Rio
	Rafael Savignon

	PUC-Rio
	Renato Fontoura de Gusmão Cerqueira

	PUC-Rio
	Rodrigo Laiola

	PUC-Rio
	Rogério Coelho

	PUC-Rio
	Rogério Ferreira Rodrigues

	PUC-Rio
	Romualdo Monteiro de Rezende Costa

	PUC-Rio
	Simone Diniz Junqueira Barbosa

	QUALITY
	Aguinaldo Rangel Boquimpani

	QUALITY
	Hernán Rafael Perroni

	QUALITY
	Márcio Antônio Ramos Alves

	SAMSUNG
	Fábio R. Campanhã

	SBT
	José Olairson Valentim

	SET
	Olímpio J. Franco

	TV BANDEIRANTES
	Lyzbeth Cronembold

	TV GLOBO
	Carlos Fini

	TV GLOBO
	Carolina Duca Novaes

	TV GLOBO
	Cleveland Albuquerque

	TV GLOBO
	Daniel Lourenço Domingos

	TV GLOBO
	Eduardo Chimati Giannotto

	TV GLOBO
	Fábio Henrique Lemos de Castro

	TV GLOBO
	Isabelle Desbois

	TV GLOBO
	Paulo Henrique Corona Viveiros de Castro

	TV GLOBO
	Rodrigo Nascimento

	UFMA/PUC-Rio
	Carlos de Salles Soares Netto

	UFPB/LAVID
	Carlos Eduardo Coelho Freire Batista

	UFPB/LAVID
	Gilberto Farias de Sousa Filho

	UFPB/LAVID
	Erick Augusto Gomes de Melo

	UFPB/LAVID
	Giuliano Maia Lins de Castro

	UFPB/LAVID
	Guido Lemos de S. Filho

	UFPB/LAVID
	Jefferson Ferreira Gomes de Melo

	UFPB/LAVID
	Lincoln David de Sousa Filho

	UFPB/LAVID
	Luís Eduardo

	UFPB/LAVID
	Tiago Maritan Ugulino de Araujo

	UNICAMP
	Davi Trindade dos Santos

	UNICAMP
	Douglas Terêncio do Vale

	UNICAMP
	Luis Geraldo Meloni

	UNICAMP/RCASoft
	Marcos César Manente

	UNICAMP/RCASoft
	Rodrigo Cascão Araujo

Digital Terrestrial TV – Data Coding and transmission specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile receivers: XML application language for application coding

Televisão digital terrestre – Codificação de dados e especificações de transmissão para radiofusão digital – Parte 2: Ginga-NCL para receptores fixos e móveis – Linguagem de aplicação XML para codificação de aplicações

Descriptors: Digital terrestrial televison. Middleware. Ginga. NCL. Mobile and fixed receivers.Full-seg profile.

Palavras-chave: Televisão digital terrestre. Middleware. Ginga. NCL. Receptores fixos e móveis. Perfil Full-seg.

Summary

1
Scope
2
References
3
Definitions and terminology
4
Acronyms and abbreviations
5
Ginga architecture
5.1
Ginga main modules
5.2
Interaction with the native environment
6
Interoperability with other digital-TV-system declarative environments - XHTML objects embedded in NCL presentations
6.1
NCL as glue language
6.2
XHTML-based content format
6.3
Harmonization of XHTML-based content format
6.3.1
XML markups
6.3.2
Stylesheet
6.3.3
ECMAScript
6.3.4
DOM API
7
NCL: XML Application Declarative Language for Interactive Multimedia Presentations
7.1
Modular languages and language profiles
7.1.1
NCL modules
7.1.2
Identifiers for NCL 3.0 module and language profiles
7.1.3
NCL Version information
7.2
NCL Modules
7.2.1
General Remarks
7.2.2
Structure functionality
7.2.3
Layout functionality
7.2.4
Components functionality
7.2.5
Interfaces functionality
7.2.6
Presentation Specification functionality
7.2.7
Linking functionality
7.2.8
Connectors functionality
7.2.9
Presentation control functionality
7.2.10
Timing functionality
7.2.11
Reuse functionality
7.2.12
Navigational Key Functionality
7.2.13
Animation functionality
7.2.14
SMIL Transition Effects functionality
7.2.15
SMIL Metainformation functionality
7.3
NCL language profiles for SBTVD
7.3.1
Profiles modules
7.3.2
The Schema of the NCL 3.0 Enhanced DTV Profile
7.3.3
The schema of the NCL 3.0 CausalConnector profile
7.3.4
Attributes and elements of the NCL 3.0 Basic DTV profile
7.3.5
The schema of the NCL 3.0 Basic DTV profile
8
Media objects in NCL presentations
8.1
A modular Ginga-NCL implementation
8.2
Expected behavior of media players
8.2.1
start instruction
8.2.2
stop instruction
8.2.3
abort instruction
8.2.4
pause instruction
8.2.5
resume instruction
8.2.6
set instruction
8.2.7
addEvent instruction
8.2.8
removeEvent instruction
8.2.9
Natural end of a presentation
8.3
Expected behavior of media players after instructions applied to composite objects
8.3.1
Binding a composite node
8.3.2
Starting a context presentation
8.3.3
Stopping a context presentation
8.3.4
Aborting a context presentation
8.3.5
Pausing a context presentation
8.3.6
Resuming a context presentation
8.4
Relation between the presentation-event state machine of a node and the presentation-event state machine of its parent-composite node
8.5
Expected behavior of media procedural players in NCL applications
9
Content transmission and NCL stream events
9.1
Private bases
9.2
Command parameters XML schemas
10
Lua procedural objects in NCL presentations
10.1
Lua language - Optional functions in the Lua library
10.2
Execution model
10.3
Additional modules
10.3.1
Required modules
10.3.2
The ncledit module
10.3.3
The canvas module
10.3.4
The event module
10.3.5
The settings module
10.3.6
The persistent module
10.4
Lua-API for Ginga-J
10.4.1
Mapping
10.4.2
Packages
10.4.3
Basic types
10.4.4
Classes
10.4.5
Objects
10.4.6
Callback objects (listeners)
10.4.7
Exceptions
11
Bridge
11.1
A review
11.2
The bridge through <link> and <media> NCL elements
11.3
The bridge through Lua functions and Ginga-J methods
12
Media coding requirements and transmission methods referenced in NCL documents
12.1
Interactive channel use
12.2
Video coding and transmission methods - Video data referenced by <media> elements
12.2.1
Transmission of MPEG-1 video
12.2.2
Transmission of MPEG-2 video
12.2.3
Transmission of MPEG-4 video and H.264|MPEG-4 AVC
12.3
Audio coding and transmission methods - Audio data referenced by <media> elements
12.3.1
Transmission of MPEG-1 audio
12.3.2
Transmission of MPEG-2 audio
12.3.3
Transmission of MPEG-4 audio
12.3.4
Transmission of AC3 audio
12.3.5
Transmission of PCM (AIFF-C) audio
12.4
TS format for MPEG video/audio transmission - Data encoding specification
12.4.1
Transmission of Video and audio multiplexed
12.4.2
Required PSI
12.4.3
Transmission in object carousel
12.4.4
Constraints in playing
12.5
Coding scheme and transmission of still pictures and bitmap graphics data referenced by <media> elements
12.5.1
Transmission of MPEG-2 I-frame, MPEG-4 I-VOP, and H.264|MPEG-4 AVC I-picture
12.5.2
Transmission of JPEG still picture
12.5.3
Coding scheme and transmission of PNG bitmap
12.5.4
Coding scheme and transmission of MNG animation
12.5.5
Coding scheme and transmission of GIF graphic data and animation
12.6
Character coding and transmission - External text files referenced by <media> elements
12.7
Transmission of XML documents
12.7.1
Transmission of NCL documents and other XML documents used in editing commands
12.7.2
Transmission of external XML documents
13
Security
Appendix A (normative) NCL 3.0 module schemas used in the Basic DTV and the Enhanced DTV profiles
A.1 Structure module: NCL30Structure.xsd
A.2 Layout module: NCL30Layout.xsd
A.3 Media module: NCL30Media.xsd
A.4 Context module: NCL30Context.xsd
A.5 MediaContentAnchor module: NCL30MediaContentAnchor.xsd
A.6 CompositeNodeInterface module: NC30CompositeNodeInterface.xsd
A.7 PropertyAnchor module: NCL30PropertyAnchor.xsd
A.8 SwitchInterface module: NCL30SwitchInterface.xsd
A.9 Descriptor module: NCL30Descriptor.xsd
A.10 Linking module: NCL30Linking.xsd
A.11 ConnectorCommonPart Module: NCL30ConnectorCommonPart.xsd
A.12 ConnectorAssessmentExpression Module: NCL30ConnectorAssessmentExpression.xsd
A.13 ConnectorCausalExpression Module: NCL30 ConnectorCausalExpression.xsd
A.14 CausalConnector module: NCL30CausalConnector.xsd
A.15 ConnectorBase module: NCL30ConnectorBase.xsd
A.16 NCL30CausalConnectorFunctionality.xsd
A.17 TestRule module: NCL30TestRule.xsd
A.18 TestRuleUse module: NCL30TestRuleUse.xsd
A.19 ContentControl module: NCL30ContentControl.xsd
A.20 DescriptorControl module: NCL30DescriptorControl.xsd
A.21 Timing module: NCL30Timing.xsd
A.22 Import module: NCL30Import.xsd
A.23 EntityReuse module: NCL30EntityReuse.xsd
A.24 ExtendedEntityReuse module: NCL30ExtendedEntityReuse.xsd
A.25 KeyNavigation module: NCL30KeyNavigation.xsd
A.26 TransitionBase module: NCL30TransitionBase.xsd
A.27 Animation module: NCL30Animation.xsd
Appendix B (informative) Lua 5.1 reference manual
Appendix C (informative) Connector Base
References

Preface
The Associação Brasileira de Normas Técnicas (ABNT) is the Brazilian Forum for Standardization. The Brazilian Norms, whose content is of entire responsibility of the Brazilian Committees (ABNT/CB), the Sector Normalization Organisms (ABNT/ONS) and the Temporary Committees for Special Work (CE), are developed by working groups, composed of representatives of producers, consumers and neutrals (universities and laboratories, among others).
The Techinal ABNT Documents are produced following the ABNT Part 2 directives.

The Associação Brasileira de Normas Técnicas (ABNT) remarks that some elements of this document can be object of property rights. The ABNT has no responsibility in identifying any one of these property rights.

The ABNT NBR 15606-2 was developed by the Comissão de Estudo Especial Temporária de Televisão Digital (ABNT/CEET-00:001.85). The Project was put under National Consultation, in agreement with Edital n° 09, from 21.08.2007 to 20.09.2007, with the Project number 00:001.85-006/2.
This Norm is based on the work done in the Brazilian Digital Terrestrial TV System Forum, as established by the presidential decree n° 5.820, of 29.06.2006.
The ABNT NBR 15606, under the general title “Televisão digital terrestre - Codificação de dados e especificações de transmissão para radiodifusão digital (Digital Terrestrial TV – Data Coding and transmission specification for digital broadcasting)”, contains the following parts:

- Part 1: Codificação de dados (Data Coding);

- Part 2: Ginga-NCL para receptores fixos e móveis – Linguagem de aplicação XML para codificação de aplicações (Ginga-NCL for fixed and mobile receivers: XML application language for application coding);

- Part 3: Especificação de transmissão de dados (Data transission specification);

- Part 4: Ginga-J – Ambiente para a execução de aplicações procedurais (Execution environment for procedural applications);

- Part 5: Ginga-NCL para receptores portáteis – Linguagem de aplicação XML para codificação de aplicações (Ginga-NCL for portable receivers: XML application language for application coding).

Introduction
The Associação Brasileira de Normas Técnicas (ABNT) remarks that, in order to be compliant with this ABNT document, it can be required the use of the NCL property right mentioned in 5.1.

ABNT does not make any assertion about the evidence, validity and scope of this property right.

The University owner of this Property Right states to ABNT that it is available to negotiate licenses under reasonable and non-discriminating terms. About this, a declaration of the property right owner university is under register in the ABNT. More information can be obtained with:

Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Transferência de Tecnologia

Rua Marquês de São Vicente, 225 – Gávea, 22451-900 - Rio de Janeiro - RJ - Brasil.
ABNT also stress that some elements of this ABNT document can be object of other patents or property rights beside that aforementioned. ABNT shall not be considered responsible for identifying any patent or property right.

This Norm provides an XML application language recommendation that allows authors to write interactive multimedia presentations. This component of ABNT NBR 15606 is part of the Data Coding Specifications of the Brazilian Digital TV System (SBTVD), and comprises the language specification used by the presentation engine Ginga-NCL of the SBTVD middleware, named Ginga.

Using this language, called NCL (Nested Context Language), an author may describe the temporal behavior of a multimedia presentation, associate hyperlinks (user interaction) with media objects, define alternatives for presentation (adaptation), and describe the layout of the presentation on multiple devices.
This Norm is firstly intended to be used by entities writing terminal specifications and/or standards/recommendations based on Ginga. Secondly, it is intended for developers of applications that use the Ginga functionalities and APIs. Ginga aims to ensure interoperability between Ginga applications and different implementations of platforms supporting Ginga.

Ginga applications are classified into two categories depending upon whether the initial application content processed is of a declarative or an imperative nature. These categories of applications are referred to as declarative and procedural applications, respectively. Application environments are similarly classified into two categories depending upon whether they process declarative or procedural applications, and are called Ginga-NCL and Ginga-J, respectively.

It is important to note that, for fixed and mobile receivers, a Ginga-NCL-only or Ginga-J-only implementation shall not claim any kind of SBTVD conformance. This avoids the threat of market fragmentation and ensures that Ginga always offer backward-compatible profiles.

The Ginga Recommendation does not specify the implementation of application environments in a compliant receiver. A receiver manufacturer may implement both environments as a single subsystem; alternatively, both environments may be implemented as distinct subsystems with well-defined, internal inter-environment interfaces.

1 Scope

This part of ABNT NBR 15606 specifies an XML application language, named Nested Context Language (NCL), the declarative language of the middleware Ginga, and the data coding and transmission for digital broadcasting.
2 References
The following documents are required for this Norm. For dated references, only the cited editions apply. For non-dated references, the most recent editions (including their amendments) apply.

ABNT NBR 15601, Televisão digital terrestre – Padrão de transmissão
ABNT NBR 15606-1, Televisão digital terrestre – Codificação de dados e especificações de transmissão para radiodifusão digital – Parte 1: Codificação de dados

ABNT NBR 15606-3, Televisão digital terrestre – Codificação de dados e especificações de transmissão para radiodifusão digital – Parte 3: Especificação de transmissão de dados

ABNT NBR 15606-4, Televisão digital terrestre – Codificação de dados e especificações de transmissão para radiodifusão digital – Parte 4: Ginga-J – Ambiente para a execução de aplicações procedurais

ISO 639-1, Codes for the representation of names of languages - Part 1: Alpha-2 code

ISO 8859-1, Information technology - 8-bit single-byte coded graphic character sets - Part 1: Latin alphabet N° 1

ISO/IEC 11172-1, Coding of moving pictures and associated audio for digital storage mediaat up to about 1,5 Mbit/s Part 1 - Systems
ISO/IEC 11172-2, Coding of moving pictures and associated audio for digital storage mediaat up to about 1,5 Mbit/s Part 2 - Video
ISO/IEC 11172-3, Coding of moving pictures and associated audio for digital storage mediaat up to about 1,5 Mbit/s Part 3 - Audio
ISO/IEC 13818-1, Information technology - Generic coding of moving pictures and associated audio information: Part 1 - Systems

ISO/IEC 13818-2, Information technology - Generic coding of moving pictures and associated audio information: Part 2 - Video

ISO/IEC 13818-3, Information technology - Generic coding of moving pictures and associated audio information - Part 3: Audio

ISO/IEC 13818-6, Information technology - Generic coding of moving pictures and associated audio information - Part 6: Extensions for DSM-CC

ISO/IEC 13818-7, Information technology - Generic coding of moving pictures and associated audio information - Part 7: Advanced Audio Coding (AAC)

ISO/IEC 14496-3, Information technology - Coding of audio-visual objects - Part 3: Audio

ISO/IEC 14496-10, Information technology - Coding of audio-visual objects - Part 10: Advanced Video Coding

3 Definitions and terminology
The following terminology applies to this Norm:

3.1

active object content

type of content which takes the form of an executable program
NOTE: A compiled Java Xlet is an example of an active object content.
3.2
application

information that expresses a specific set of observable behaviors

3.3
application entity
unit of information that expresses some portion of an application
3.4
application environment
context or software environment in which an application is processed
3.5
application manager
entity that is responsible for managing the lifecycle of applications. It manages applications running in both the presentation engine and the execution engine
3.6
application programming interface
API
consists of software libraries that provide uniform access to system services
3.7
attribute
parameter that represents the character of a property
3.8
attribute of an element, or
element attribute

property of an XML element

3.9
author
person who writes NCL documents

3.10
authoring tool
tool to help authors to generate NCL documents

3.11
character
specific "letter" or other identifiable symbol,
EXAMPLE
"A"

3.12
character encoding
mapping between an integer input value and the textual character that is represented by this mapping

3.13
data carousel
method that sends out any set of data cyclically; the data may thus be downloaded via broadcasting in a time interval as long as needed [ISO/IEC 13818-6:2001]
3.14
declarative application
application which is started by and primarily makes use of declarative information to express its behavior;
NOTE
 An NCL document instance is an example of a declarative application.
3.15
declarative application environment
environment that supports the processing of declarative applications
NOTE
 An NCL user agent (formatter) is an example of a declarative application environment.
3.16
DOM API
API that defines the logical structure of an XML document and the way to access or manipulate an XML document
NOTE
This API is an interface independent of platforms and languages, and follows the Document Object Model (DOM).
3.17
digital storage media command and control
DSM-CC
control method, which provides access to a file or a stream in digital interactive services
[ISO/IEC 13818-6:2001].
3.18
document type definition
DTD
declaration that describes a family of XML documents
3.19
ECMAScript
programming language defined in the ECMA-262 standard

3.20
element
document structuring unit delimited by tags
NOTE
An element is usually delimited by a start-tag and an end-tag, except for an empty element that is delimited by an empty-element tag

3.21
elementary stream
ES

a basic stream that contains video data, audio data, or private data.
NOTE
A single elementary stream is carried in a sequence of PES packets with one and only one stream_id

3.22
end user
individual operating or interacting with a receiver

3.23
event
occurrence in time that may be instantaneous or have a measurable duration

3.24
execution engine
subsystem in a receiver that evaluates and executes procedural applications consisting of computer language instructions and associated data and media content

NOTE
An execution engine can be implemented grouping an operating system, language compilers, interpreters, and Application Programming Interfaces (APIs), which a procedural application may use to present audiovisual content, interact with a user, or execute other tasks that are not evident to the user.
EXAMPLE
The JavaTV software environment, using the Java programming language and byte code interpreter, JavaTV APIs, and a Java Virtual Machine for program execution.
3.25
font
mechanism that allows the specific rendering of a particular character
EXAMPLE
Tiresias, 12 points
NOTE
In practice, a font format incorporates some aspects of a character encoding.
3.26
hybrid application
hybrid declarative application or a hybrid procedural application

3.27
hybrid declarative application
declarative application that makes use of active object content
NOTE
An NCL document with an embedded Java Xlet is an example of a hybrid declarative application.
3.28
hybrid procedural application
procedural application that makes use of declarative content
NOTE
A Java Xlet that creates and causes the display of an NCL document instance is an example of a hybrid procedural application.
3.29
interactive channel, or
return channel

the communication mechanism which provides connection between the receiver and a remote server

3.30
lifetime of an application
characterizes the time from which the application is loaded to the time the application is destroyed

3.31
local file system
file system provided by the local receiver platform

3.32
locator
an identifier that provides a reference to an application or resource

3.33
markup language
formalism that describes a class of documents which employ markup in order to delineate the document’s structure, appearance, or other aspects

3.34
media player
identifiable component of an application environment which decodes or executes a specific content type
3.35
method
a function that is associated with an object and is allowed to manipulate the object's data

3.36
native application
an intrinsic function implemented by a receiver platform

NOTE
A closed captioning display is an example of a native application.
3.37
NCL content
set of information that consists of an NCL document and a group of data including objects (media or execution objects) accompanying the NCL document

3.38
NCL formatter
software component that is in charge of receiving the specification of an NCL document and controlling its presentation, trying to guarantee that author-specified relationships among media objects are respected.
NOTE
Document renderer, user agent, and player are other names used with the same meaning of document formatter.
3.39
NCL node
refers to a <media>, <context>, <body>, or <switch> element of NCL

3.40
normal play time
NPT

absolute temporal coordinate which represents the position in a stream

3.41
media object
collection of named pieces of data that may represent a media content or a program written in a specific language

3.42
packet identifier
PID
unique integer value used to associate elementary streams of a program in a single or multi-program transport stream

3.43
persistent storage
memory available that may be read or written to by an application and may outlive the application's own life

NOTE
Persistent storage can be volatile or non-volatile.
3.44
plug-in
set of functionality which may be added to a generic platform in order to provide additional functionality

3.45
presentation engine
subsystem in a receiver that evaluates and presents declarative applications, consisting of media contents, such as audio, video, graphics, and text, primarily based on presentation rules defined in the presentation engine

NOTE
A presentation engine is responsible for controlling the presentation behavior and initiating other processes in response to user input and other events.
EXAMPLE
HTML browser and NCL formatter.
3.46
procedural application
application that is started by and primarily makes use of procedural information to express its behaviour
NOTE
A Java program is an example of a procedural application.
3.47
procedural application environment
environment that supports the processing of procedural applications

3.48
profile
specification for a class of capabilities providing different levels of functionality in a receiver

3.49
one-seg profile
characterizes the service that may be received by a narrow-band tunner (430KHz), therefore, with power saving
Note
The one-seg profile is also known as portable profile.
3.50
full-seg profile
characterizes the service that needs a broad-band demodulator (5,7 MHz) to be received

NOTE
Depending on the transmission configuration and on specific receiver functionalities, the service may be received by mobile receivers or only by fixed receivers, however, without the benefits of power saving. The video resolution may be high definition or standard definition.

3.51
Program-specific information
PSI
consists of normative data which is necessary for the demultiplexing of transport streams and the successful regeneration of programs [ISO/IEC 13818-1:2005]

3.52
property element
NCL element that defines a property name and its associated value

3.53
receiver platform
platform

the receiver's hardware, operating system and native software libraries of the manufacturer's choice

3.54
resource
network data object or a service which is uniquely identified in a network

3.55
service information
SI

data which describes programs and services

3.56
scripting language
language used to describe an active object content which is embedded in NCL documents and in HTML documents

3.57
transport stream
refers to the MPEG-2 transport stream syntax for the packetization and multiplexing of video, audio, and data signals for digital broadcast systems

3.58
uniform resource identifier
URI
addressing method to allow access to objects in a network

3.59
user
person who interacts with a user agent to view, hear, or otherwise use an NCL document

3.60
user agent
any program that interprets an NCL document written in the document language according to the terms of this specification

NOTE
A user agent may display a document, trying to guarantee that author-specified relationships among media objects are respected, read it aloud, cause it to be printed, convert it to another format etc.
3.61
eXtensible HTML
XHTML
extended version of HTML

NOTE
In the XHTML specification, an HTML document is recognized as an XML application.
4 Acronyms and abbreviations

The following acronyms and abbreviations apply to this Norm:

	API
	Application Programming Interface

	BML
	Broadcast Markup Language

	CLUT
	Color Look-up Table

	CSS
	Cascading Style Sheets

	DOM
	Document Object Model

	DSM-CC
	Digital Storage Media Command and Control

	DTD
	Document Type Definition

	DTV
	Digital Television

	DVB
	Digital Video Broadcasting

	GIF
	Graphics Interchange Format

	HTML
	Hypertext Markup Language

	HTTP
	Hypertext Transfer Protocol

	JPEG
	Joint Photographic Expert Group

	MIME
	Multipurpose Internet Mail Extensions

	MNG
	Multiple Network Graphics

	MPEG
	Moving Picture Expert Group

	NCL
	Nested Context Language

	NCM
	Nested Context Model

	NPT
	Normal Play Time

	OS
	Operating System

	PAT
	Program Association Table

	PES
	Packetized Elementary Stream

	PID
	Packet Identifier

	PMT
	Program Map Table

	PNG
	Portable Network Graphics

	PSI
	Program Specific Information

	SBTVD
	Sistema Brasileiro de Televisão Digital Terrestre

	SMIL
	Synchronized Multimedia Integration Language

	TS
	Transport Stream

	UCS
	Universal (Coded) Character Set

	URI
	Universal Resource Identifier

	URL
	Universal Resource Locator

	UTF
	UCS Transformation Coding

	XHTML
	eXtensible HTML

	XML
	Extensible Markup Language

	W3C
	World-Wide Web Consortium

5 Ginga architecture
5.1 Ginga main modules
The universe of Ginga applications can be partitioned into a set of declarative applications and a set of procedural applications. A declarative application is an application whose initial entity is of a declarative content type. A procedural application is an application whose initial entity is of a procedural content type. A purely declarative application is one whose every entity is of a declarative content type. A purely procedural application is one whose every entity is of a procedural content type. A hybrid application is one whose entity set contains entities of both declarative and procedural content types. A Ginga application needs not be purely declarative nor procedural. In particular, declarative applications often make use of script content, which is procedural in nature. Furthermore, a declarative application may refer to an embedded Java TV Xlet. Similarly, a procedural application may refer to a declarative content, such as graphic content, or may construct and initiate the presentation of declarative content. Therefore, either type of Ginga application may make use of facilities of both declarative and procedural application environments.

Ginga-NCL is a logical subsystem of the Ginga System that processes NCL documents. A key component of Ginga-NCL is the declarative content decoding engine (NCL formatter). Other important modules are the XHTML user agent, which includes a stylesheet (CSS) and ECMAScript interpreter, and the Lua engine, which is responsible for interpreting Lua scripts (see Appendix B for Lua reference manual).

Note
NCL is a trade mark and its specification is an intellectual property of PUC-Rio (INPI Technology Transfer Department - No. 0007162-5; 20/12/2005).

Ginga-J is a logical subsystem of the Ginga System that processes active object content. A key component of the procedural application environment is the procedural content execution engine, composed of a Java Virtual Machine.

Common content decoders serve both procedural and declarative application needs for the decoding and presentation of common content types such as PNG, JPEG, MPEG and other formats. The Ginga Common Core is composed of common content decoders and procedures to obtain contents transported in MPEG-2 Transport Streams and via the interactive channel. The Ginga Common Core shall also support the conceptual display model as described in ABNT NBR 15606-1.
[image: image1.emf]Sintonizador

Filtro de Seções

Processador de

Fluxos de Dados

Persistência

Exibidores

de Mídias

(

JPEG, MPEG2,

MPEG4

, MP3, TXT,

GIF, HTML-based,

etc)

Presentation engine

(NCL formatter)

Execution engine

(Xlet manager)

Ginga -

specific service

Ginga – common core

Operating system

JVM

Bridge

Players’ APIs

XHTML APIs

NCL API

LUA-NCL

API

Figure 1 – Ginga architecture

The architecture and facilities of the Ginga Recommendation are intended to apply to broadcast systems and receivers for terrestrial (over-the-air) broadcast. In addition, the same architecture and facilities can be applied to other transport systems (such as satellite or cable TV systems).

5.2 Interaction with the native environment

In general, Ginga is unaware of any native applications that may also choose to use the graphics plane. These include but are not limited to: closed captioning, CAS messages, receiver menus, and native program guides.

Native applications may take precedence over Ginga applications. Closed captioning and emergency messaging shall take precedence over the Ginga System.

Some native applications, such as closed captioning, present a special case where the native application can be active for long periods concurrently with Ginga applications.

6 Interoperability with other digital-TV-system declarative environments - XHTML objects embedded in NCL presentations

6.1 NCL as glue language

All presentation engines of the three main DTV systems (BML [ARIB Standard B-24, 2004], DVB-HTML [DVB-HTML, 2001] and ACAP-X [ACAP, 2005]) use an XHTML-based language.
XHTML is a media-based declarative language, which means that the structure defined by the relationships among XHTML objects (XHTML documents or objects enclosed in XHTML documents) is embedded in the document’s media content. XHTML may thus be classified as a markup language: a formalism that describes a class of documents which employ markup in order to delineate the document’s structure, appearance and other aspects.
Reference relationships defined by XHTML links are the focus of the XHTML declarative language. Other relationship types, like spatio-temporal synchronization relationships and alternative relationships (media adaptability), are usually defined using imperative languages (for example, ECMAScript).
Unlike HTML or XHTML, NCL has a stricter separation between a document’s (or application’s) content and structure, and it provides non-invasive control of presentation linking and layout.
The focus of the NCL declarative language is broader than the XHTML counterpart. Generalized spatio-temporal synchronization, defined by NCL links; adaptability, defined by NCL switch and descriptor switch elements; and support for multiple exhibition devices, defined by NCL regions, is the focus of the NCL declarative language. User interaction is treated just as a special case of temporal synchronization.

As NCL has a stricter separation between content and structure, NCL does not define any media itself. Instead, it defines the glue that holds media together in multimedia presentations.

Thus, an NCL document only defines how media objects are structured and related, in time and space. As a glue language, it does not restrict or prescribe the media-object content types. In this sense, we may have image objects (GIF, JPEG, etc.), video objects (MPEG, MOV, etc.), audio objects (MP3, WMA etc.), text objects (TXT, PDF etc.), execution objects (Xlet, Lua, etc.), etc., as NCL media objects. Which media objects are supported depends on the media players that are coupled in the NCL formatter (NCL player). One of these players is the MPEG-4 decoder/player, usually implemented in hardware in the DTV receiver. In this way, note that the main MPEG-4 video and audio is treated like all other media objects that may be related using NCL.
Another NCL media object that shall certainly be supported is the XHTML-based media object. Therefore, NCL does not substitute but embed XHTML-based documents (or objects). As with other media objects, which XHTML-based language will have support in an NCL formatter is an implementation choice, and therefore it will depend on which XHTML browser will act as a media player coupled in the NCL formatter.
As a consequence, it is possible to have BML browsers, DVB-HTML browsers and ACAP-X browsers embedded in an NCL document player. It is even possible to have all of them. It is also possible to receive a browser code through datacasting and install it as a plug-in (usually a Java plug-in).
It is also possible to have a harmonization browser implemented, and receiving the complementary part, if needed, as a plug-in, in order to convert the XHTML player into one of the several DTV browser standards.
Note that, in the extreme case, an NCL document may be reduced to having only one XHTML media object. In this case, the NCL document player will act nearly like an XHTML browser. That is, just like any browser of the other aforementioned standards.

No matter the case, the XHTML-based browser implementation must be a consequence of the following requirements:

— interoperability;
— robustness;
— alignment with W3C specifications;
— rejection of non-conformant content;
— compatibility with the Ginga security model;
— minimization of the redundancy with existing Ginga-J technology;
— minimization of the redundancy with existing NCL facilities;
— precise content layout control mechanisms;
— support of different pixel aspect ratios.
It should be stressed that, in order to support all XHTML-based browser facilities defined by other DTV standards, all SBTVD specifications related to datacasting should also support the facilities defined for those browsers, such as the transport of stream events, for example.
Although an XHTML-based browser shall be supported, the use of XHTML elements to define relationships (including XHTML links) should be dissuaded when authoring NCL documents. Structure-based authoring should be emphasized for the well-known reasons largely reported in the literature.
As it is discussed in Section 7.2.8, during the exhibition of media-object contents, several events are generated. Examples of events are the presentation of marked segments of media-object content, the selection of a marked content segment, etc. Events may generate actions on other media objects, like to start or stop their presentations. Hence, events shall be reported by media players to the NCL formatter that, in its turn, can generate actions to be applied to these or other players. Ginga-NCL defines an adapter API (see Section 8) to standardize the interface between the Ginga-NCL formatter, and each specific player.
When any media player, in particular an XHTML-based browser, is integrated to the Ginga-NCL formatter, it shall support the adapter API. Therefore, for some media players, including XHTML-based browsers, an adapter module can be necessary to accomplish the integration.
Finally, for live editing, Ginga-NCL has also defined NCL stream events in order to support live generated events in stream media, in particular the main program stream video. These events are a generalization of the same concept found in other standards, like for example the bevents of BML. Again, although an XHTML-based browser shall be supported, the use of XHTML elements to define relationships (including stream events) should be dissuaded in authoring NCL documents, for the same motivation: structure-based authoring should be emphasized for the well-known reasons largely reported in the literature.

6.2 XHTML-based content format
Common content formats shall be adopted for production and exchange of multimedia content, as defined in ABNT NBR 15606-1. In addition, specification of harmonized XHTML-based content formats in the declarative application environment is also required for interactive TV applications.
NOTE: This Norm follows the ITU-T Recommendation J.201 in order to identify the functional commonality among the declarative application environments for interactive TV applications specified by DVB-HTML, ACAP-X and BML.
Common elements and APIs at the syntactic level of the XHTML-based media-objects embedded in NCL applications should be specified in order to assist authors to create XHTML-based content.
Any XHTML-based media object implementation in conformance with this Norm shall at least support all common XML markups and stylesheet properties for the BML for basic services ("fixed terminal profile"), ACAP-X and DVB-HTML, as defined in the next section. Common features of ECMAScript native objects and DOM APIs, for the BML for basic services ("fixed terminal profile"), ACAP-X and DVB-HTML, should also be supported.
6.3 Harmonization of XHTML-based content format
6.3.1 XML markups

XHTML-based media-objects of NCL conform to the Modularization of XHTML W3C Recommendation, and their common XML markups are defined in the ITU-T Recommendation J.201.
The common XML markup modules may be:

— structure;

— text;

— hypertext;

— list;

— presentation;

— bidirectional text;

— forms;

— image;

— client-side image map;

— object;

— frames;

— target;

— meta information;

— scripting;

— stylesheet;

— style attribute;

— link;

— base.
The common XML markups for the BML for basic services ("fixed terminal profile"), ACAP-X and DVB-HTML, which shall be supported by any implementation, are listed in Table 2, together with Ginga extensions. In Table 2, XHTML attribute collections are defined, following W3C Recommendation, as presented in Table 1.
Table 1 – Attribute collections
	Collection name
	Attributes in collection
	Attribute condition

	Core
	class (NMTOKENS)
	required

	
	id (ID)
	required

	
	title (CDATA)
	–

	I18N
	xml:lang (CDATA)
	required

	Events
	onclick (Script)
	required

	
	ondblclick (Script)
	–

	
	onmousedown (Script)
	–

	
	onmouseup (Script)
	–

	
	onmouseover (Script)
	–

	
	onmousemove (Script)
	–

	
	onmouseout (Script)
	–

	
	onkeypress (Script)
	–

	
	onkeydown (Script)
	required

	
	onkeyup (Script)
	required

	Style
	style (CDATA)
	required

	Common
	Core + Events + I18N + Style
	

Table 2 – Common XML markup

	Module
	Element
	Element condition
	Attribute
	Atribute condition

	Core
	Structure
	body
	required
	%Common.attrib
	

	
	
	
	
	%Core.attrib
	required

	
	
	
	
	%I18n.attrib
	required

	
	
	
	
	%Events.attrib
	–

	
	
	head
	required
	%I18n.attrib
	required

	
	
	
	
	profile
	–

	
	
	html
	required
	
	

	
	
	title
	required
	%I18n.attrib
	required

	
	Text
	abbr
	–
	
	

	
	
	acronym
	–
	
	

	
	
	address
	–
	
	

	
	
	blockquote
	–
	
	

	
	
	br
	required
	%Core.attrib
	required

	
	
	cite
	–
	
	

	
	
	code
	–
	
	

	
	
	dfn
	–
	
	

	
	
	div
	required
	%Common.attrib
	required

	
	
	em
	–
	
	

	
	
	h1
	required
	%Core.attrib
	required

	
	
	h2
	required
	%Core.attrib
	required

	
	
	h3
	required
	%Core.attrib
	required

	
	
	h4
	required
	%Core.attrib
	required

	
	
	h5
	required
	%Core.attrib
	required

	
	
	h6
	required
	%Core.attrib
	required

	
	
	kbd
	–
	
	

	
	
	p
	required
	%Common.attrib
	required

	
	
	pre
	–
	
	

	
	
	q
	–
	
	

	
	
	samp
	–
	
	

	
	
	span
	required
	%Common.attrib
	required

	
	
	strong
	–
	
	

	
	
	var
	–
	
	

	
	Hypertext
	a
	required
	%Common.attrib
	required

	
	
	
	
	accesskey
	required

	
	
	
	
	charset
	required

	
	
	
	
	href
	required

	
	
	
	
	hreflang
	–

	
	
	
	
	rel
	–

	
	
	
	
	rev
	–

	
	
	
	
	tabindex
	–

	
	
	
	
	type
	–

	
	List
	dl
	–
	
	

	
	
	dt
	–
	
	

	
	
	dd
	–
	
	

	
	
	ol
	–
	
	

	
	
	ul
	–
	
	

	
	
	li
	–
	
	

	Applet
	applet
	–
	
	

	
	param
	–
	
	

	Text extension
	Presentation
	b
	–
	
	

	
	
	big
	–
	
	

	
	
	hr
	–
	
	

	
	
	i
	–
	
	

	
	
	small
	–
	
	

	
	
	sub
	–
	
	

	
	
	sup
	–
	
	

	
	
	tt
	–
	
	

	
	Edit
	del
	–
	
	

	
	
	ins
	–
	
	

	
	Bi-directional text
	bdo
	–
	
	

	Forms
	Basic forms
	form
	–
	
	

	
	
	input
	–
	
	

	
	
	label
	–
	
	

	
	
	select
	–
	
	

	
	
	option
	–
	
	

	
	
	textarea
	–
	
	

	
	Forms
	form
	required
	%Common.attrib
	required

	
	
	
	
	action
	required

	
	
	
	
	method
	required

	
	
	
	
	enctype
	required

	
	
	
	
	accept-charset
	required

	
	
	
	
	accept
	required

	
	
	
	
	name
	required

	
	
	input
	required
	%Common.attrib
	required

	
	
	
	
	accesskey
	required

	
	
	
	
	checked
	–

	
	
	
	
	disabled
	required

	
	
	
	
	readonly
	required

	
	
	
	
	maxlength
	required

	
	
	
	
	alt
	–

	
	
	
	
	name
	–

	
	
	
	
	size
	required

	
	
	
	
	src
	–

	
	
	
	
	tabindex
	–

	
	
	
	
	accept
	–

	
	
	
	
	type
	required

	
	
	
	
	value
	required

	
	
	select
	–
	
	

	
	
	option
	–
	
	

	
	
	textarea
	–
	
	

	
	
	button
	–
	
	

	
	
	fieldset
	–
	
	

	
	
	label
	–
	
	

	
	
	legend
	–
	
	

	
	
	optgroup
	–
	
	

	Table
	Basic tables
	caption
	–
	
	

	
	
	table
	–
	
	

	
	
	td
	–
	
	

	
	
	th
	–
	
	

	
	
	tr
	–
	
	

	
	Tables
	caption
	–
	
	

	
	
	table
	–
	
	

	
	
	td
	–
	
	

	
	
	th
	–
	
	

	
	
	tr
	–
	
	

	
	
	col
	–
	
	

	
	
	colgroup
	–
	
	

	
	
	tbody
	–
	
	

	
	
	thead
	–
	
	

	
	
	tfoot
	–
	
	

	Image
	img
	–
	
	

	Client side map

	a&
	–
	
	

	
	area
	–
	
	

	
	img&
	–
	
	

	
	input&
	–
	
	

	
	map
	–
	
	

	
	object&
	–
	
	

	Server side image map
	img&
	–
	
	

	
	input&
	–
	
	

	Object

	object
	required
	%Common.attrib
	required

	
	
	
	archive
	–

	
	
	
	classid
	–

	
	
	
	codebase
	–

	
	
	
	codetype
	–

	
	
	
	data
	required

	
	
	
	declare
	–

	
	
	
	height
	required

	
	
	
	name
	–

	
	
	
	standby
	–

	
	
	
	tabindex
	–

	
	
	
	type
	required

	
	
	
	width
	required

	
	param
	–
	
	

	Frames
	frameset
	–
	
	

	
	frame
	–
	
	

	
	noframe
	–
	
	

	Target
	a&
	–
	
	

	
	area&
	–
	
	

	
	base&
	–
	
	

	
	link&
	–
	
	

	
	form&
	–
	
	

	IFrame
	iframe
	–
	
	

	Intrinsic events
	a&
	required
	
	

	
	area&
	–
	
	

	
	frameset&
	–
	
	

	
	form&
	–
	
	

	
	body&
	–
	
	

	
	label&
	–
	
	

	
	input&
	–
	
	

	
	select&
	–
	
	

	
	textarea&
	–
	
	

	
	button&
	–
	
	

	Metainformation
	meta
	required
	%I18n.attrib
	–

	
	
	
	http-equiv
	–

	
	
	
	name
	required

	
	
	
	content
	required

	
	
	
	scheme
	–

	Scripting
	noscript
	
	
	

	
	script
	required
	charset
	required

	
	
	
	type
	required

	
	
	
	src
	–

	
	
	
	defer
	–

	Stylesheet
	style
	required
	%I18n.attrib
	required

	
	
	
	id
	–

	
	
	
	type
	required

	
	
	
	media
	required

	
	
	
	title
	–

	Style Attribute
	
	required
	
	

	Link
	link
	required
	
	

	Base
	base
	–
	
	

6.3.2 Stylesheet

The common stylesheet properties are listed in Table 3
Table 3 – Common stylesheet properties

	Common stylesheet properties

	background
	clear
	outline-color

	background-attachment
	clip
	outline-style

	background-color
	color
	outline-width

	background-image
	content
	overflow

	background-position
	counter-increment
	padding

	background-repeat
	counter-reset
	padding-bottom

	border
	display
	padding-left

	border-bottom
	float
	padding-right

	border-bottom-color
	font
	padding-top

	border-bottom-style
	font-family
	position

	border-bottom-width
	font-size
	right

	border-color
	font-style
	text-align

	border-left
	font-variant
	text-decoration

	border-left-color
	font-weight
	text-indent

	border-left-style
	height
	text-transform

	border-left-width
	left
	top

	border-right
	letter-spacing
	vertical-align

	border-right-color
	line-height
	visibility

	border-right-style
	list-style
	white-space

	border-right-width
	list-style-image
	width

	border-style
	list-style-position
	word-spacing

	border-top
	list-style-type
	z-index

	border-top-color
	margin
	nav-down

	border-top-style
	margin-bottom
	nav-index

	border-top-width
	margin-left
	nav-left

	border-width
	margin-right
	nav-right

	bottom
	margin-top
	nav-up

	caption-side
	outline

The common stylesheet properties for BML for basic services, ACAP-X and DVB-HTML, which shall be supported by any implementation, are listed in Table 4.
Table 4 – Common stylesheet CSS 2 properties
	Property
	Property Condition

	Value assignment/Inheritance

	@import
	–

	!important
	–

	Media type

	@media
	required

	box model

	margin-top
	–

	margin-right
	–

	margin-bottom
	–

	margin-left
	–

	margin
	required

	padding-top
	required

	padding-right
	required

	padding-bottom
	required

	padding-left
	required

	padding
	required

	border-top-width
	–

	border-right-width
	–

	border-bottom-width
	–

	border-left-width
	–

	border-width
	required

	border-top-color
	–

	border-right-color
	–

	border-bottom-color
	–

	border-left-color
	–

	border-color
	required

	border-top-style
	–

	border-right-style
	–

	border-bottom-style
	–

	border-left-style
	–

	border-style
	required

	border-top
	–

	border-right
	–

	border-bottom
	–

	border-left
	–

	border
	required

	Visual formatting model

	position
	required

	left
	required

	top
	required

	width
	required

	height
	required

	z-index
	required

	line-height
	required

	vertical-align
	–

	display
	required

	bottom
	–

	right
	–

	float
	–

	clear
	–

	direction
	–

	unicode-bidi
	–

	min-width
	–

	max-width
	–

	min-height
	–

	max-height
	–

	Other visual effects

	visibility
	required

	overflow
	required

	clip
	–

	Generated content/Auto numbering/List

	content
	–

	quotes
	–

	counter-reset
	–

	counter-increment
	–

	marker-offset
	–

	list-style-type
	–

	list-style-image
	–

	list-style-position
	–

	list-style
	–

	Page media

	"@page"
	–

	size
	–

	marks
	–

	page-break-before
	–

	page-break-after
	–

	page-break-inside
	–

	page
	–

	orphans
	–

	widows
	–

	Background

	background
	–

	background-color
	–

	background-image
	required

	background-repeat
	required

	background-position
	–

	background-attachment
	–

	Font

	color
	required

	font-family
	required

	font-style
	required

	font-size
	required

	font-variant
	required

	font-weight
	required

	font
	required

	font-stretch
	–

	font-adjust
	–

	Text

	text-indent
	–

	text-align
	required

	text-decoration
	–

	text-shadow
	–

	letter-spacing
	required

	word-spacing
	–

	text-transform
	–

	white-space
	required

	Pseudo class/ Pseudo element

	:link
	–

	:visited
	–

	:active
	required

	:hover
	–

	:focus
	required

	:lang
	–

	:first-child
	–

	:first-line
	–

	:first-letter
	–

	:before
	–

	:after
	–

	Table

	caption-side
	–

	border-collapse
	–

	border-spacing
	–

	table-layout
	–

	empty-cells
	–

	speak-header
	–

	User interface

	outline-color
	–

	outline-width
	–

	outline-style
	–

	outline
	–

	cursor
	–

	voice style sheet

	volume
	–

	speak
	–

	pause-before
	–

	pause-after
	–

	pause
	–

	cue-before
	–

	cue-after
	–

	cue
	–

	play-during
	–

	azimuth
	–

	elevation
	–

	speech-rate
	–

	voice-family
	–

	pitch
	–

	pitch-range
	–

	stress
	–

	richness
	–

	speak-punctuation
	–

	peak-numeral
	–

	extended property

	clut
	–

	color-index
	–

	background-color-index
	–

	border-color-index
	–

	border-top-color-index
	–

	border-right-color-index
	–

	border-bottom-color-index
	–

	border-left-color-index
	–

	outline-color-index
	–

	resolution
	–

	display-aspect-ratio
	–

	grayscale-color-index
	–

	nav-index
	–

	nav-up
	–

	nav-down
	–

	nav-left
	–

	nav-right
	–

	used-key-list
	–

The following restrictions shall be applied to display property:
— only block elements may be applied for <p>, <div>, <body>, <input>, and <object>;
— only inline values may be applied for
, <a>, and .

Moreover, the following restrictions shall be applied to position property:

— only absolute values may be applied for <p>, <div>, <input> and <object>;

— only static values may be applied for
, , and <a>.

The common CSS selectors for BML for basic services, ACAP-X and DVB-HTML, which shall be supported by any implementation, are the following:
— universal;
— type;
— class;
— id;
— dynamic (:active and :focus).
6.3.3 ECMAScript

When implemented, the ECMAScript engine should support the common native objects for BML for basic services, ACAP-X and DVB-HTML, as follows in Table 5. As a restriction, number type supports integer operations only.

Table 5 – Common native objects
	Object
	Method, properties
	Operation condition

	(global)
	

	
	NaN
	required

	
	Infinity
	–

	
	eval(x)
	–

	
	parseInt(string, radix)
	required

	
	parseFloat(string)
	–

	
	escape(string)
	–

	
	unescape(string)
	–

	
	isNaN(number) O
	required

	
	isFinite(number)
	–

	Object
	all

	
	prototype
	required

	
	Object([value])
	required

	
	new Object([value])
	required

	Object.prototype
	all

	
	constructor
	required

	
	toString()
	required

	
	valueOf()
	required

	Function
	

	
	prototype
	required

	
	Length
	required

	
	Function(p1, p2, . . . , pn, body)
	–

	
	new Function(p1, p2, . . . , pn, body)
	–

	Function.prototype
	all

	
	constructor
	required

	
	toString()
	required

	Array
	all

	
	prototype
	required

	
	Length
	required

	
	Array(item0, item1, . . .)
	required

	
	new Array(item0, item1, . . .)
	required

	
	new Array([len])
	required

	Array.prototype
	all

	
	constructor
	required

	
	toString()
	required

	
	join([separator])
	required

	
	reverse()
	required

	
	sort([comparefn])
	required

	
	constructor
	required

	String
	all

	
	prototype
	required

	
	Length
	required

	
	String([value])
	required

	
	new String([value])
	required

	
	String.fromCharCode(char0[, char1, . . .])
	required

	String.prototype
	all

	
	constructor
	required

	
	toString()
	required

	
	valueOf()
	required

	
	charAt(pos)
	required

	
	charCodeAt(pos)
	required

	
	indexOf(searchString, position)
	required

	
	lastIndexOf(searchString, position)
	required

	
	split(separator)
	required

	
	substring(start [,end])
	required

	
	toLowerCase()
	required

	
	toUpperCase()
	required

	Boolean
	all

	
	prototype
	required

	
	Boolean([value])
	required

	
	new Boolean([value])
	required

	Boolean.prototype
	all

	
	constructor
	required

	
	toString()
	required

	
	valueOf()
	required

	Number
	

	
	prototype
	required

	
	MAX_VALUE
	required

	
	MIN_VALUE
	required

	
	NaN
	required

	
	NEGATIVE_INFINITY
	–

	
	POSITIVE_INFINITY
	–

	
	Number([value])
	required

	
	new Number([value])
	required

	Number.prototype
	all

	
	constructor
	required

	
	toString([radix])
	required

	
	valueOf()
	required

	Math
	

	
	E
	–

	
	LN10
	–

	
	LN2
	–

	
	LOG2E
	–

	
	LOG10E
	–

	
	PI
	–

	
	SQRT1_2
	–

	
	SQRT2
	–

	
	abs(x)
	–

	
	acos(x)
	–

	
	asin(x)
	–

	
	atan(x)
	–

	
	atan2(y, x)
	–

	
	cos(x)
	–

	
	exp(x)
	–

	
	floor(x)
	–

	
	log(x)
	–

	
	max(x, y)
	–

	
	min(x, y)
	–

	
	pow(x, y)
	–

	
	random()
	–

	
	round(x)
	–

	
	sin(x)
	–

	
	sqrt(x)
	–

	
	tan(x)
	–

	Date
	

	
	prototype
	required

	
	Date([year, month [, date [, hours [, minutes [,seconds [, ms]]]]]])
	required

	
	new Date([year, month [, date [, hours [, minutes[, seconds [, ms]]]]]])
	required

	
	Date(value)
	–

	
	new Date(value)
	–

	
	Date.parse(string)
	–

	
	Date.UTC([year [, month [, date [, hours [,minutes [, seconds [, ms]]]]]]])
	–

	Date.prototype
	

	
	constructor
	required

	
	toString()
	required

	
	valueOf()
	–

	
	getTime()
	–

	
	getYear())
	–

	
	getFullYear()
	required

	
	getUTCFullYear()
	required

	
	getMonth()
	required

	
	getUTCMonth()
	required

	
	getDate()
	required

	
	getUTCDate()
	required

	
	getDay()
	required

	
	getUTCDay()
	required

	
	getHours()
	required

	
	getUTCHours()
	required

	
	getMinutes()
	required

	
	getUTCMinutes()
	required

	
	getSeconds()
	required

	
	getUTCSeconds()
	required

	
	getMilliseconds()
	required

	
	getUTCMilliseconds()
	required

	
	getTimezoneOffset()
	required

	
	setTime(time)
	–

	
	setMilliseconds(ms)
	required

	
	setUTCMilliseconds(ms)
	required

	
	setSeconds(sec [, ms])
	required

	
	setUTCSeconds(sec [, ms])
	required

	
	setMinutes(min [, sec [, ms]])
	required

	
	setUTCMinutes(min [, sec [, ms]])
	required

	
	setHours(hour [, min [, sec [, ms]]])
	required

	
	setUTCHours(hour [, min [, sec [, ms]]])
	required

	
	setDate(date)
	required

	
	setMonth(mon [, date])
	required

	
	setUTCMonth(mon [, date])
	required

	
	setFullYear(year [, mon [, date]])
	required

	
	setUTCFullYear(year [, mon [, date]])
	required

	
	setYear(year)
	–

	
	toLocaleString()
	required

	
	toUTCString()
	required

	
	toGMTString()
	–

Depending on the middleware implementation, it is possible to have ECMAScript functions mapped to the APIs provided by Ginga-J, in order to have access to some set-top box resources and Ginga facilities. In this case, the API provided in ECMAScript should follow the same specification presented in ABNT NBR 15606-4.
6.3.4 DOM API

The common DOM level 1 APIs are the ones in the following list:
— DOMException;

— DOMImplementation;

— DocumentFragment;

— Document;

— Node;

— NodeList;

— NamedNodeMap;

— CharacterData;

— Attr;

— Element;

— Text;

— Comment.

The DOM APIs, when implemented, should support the common DOM level 1 APIs for BML for basic services, ACAP-X and DVB-HTML, as follows in Table 6.
Table 6 – Common DOM level 1 APIs

	Interface
	Attribute/Method
	Operation Condition

	DOMImplementation
	

	
	hasFeature()
	required

	Document
	

	
	Doctype
	–

	
	implementation
	required

	
	documentElement
	required

	
	createElement()
	–

	
	createDocumentFragment()
	–

	
	createTextNode()
	–

	
	createComment()
	–

	
	createCDATASection()
	–

	
	createProcessingInstruction()
	–

	
	createAttribute()
	–

	
	createEntityReference()
	–

	
	getElementsByTagName()
	–

	Node
	

	
	nodeName
	–

	
	nodeValue
	–

	
	nodeType
	–

	
	parentNode
	required

	
	childNodes
	–

	
	firstChild
	required

	
	lastChild
	required

	
	previousSibling
	required

	
	nextSibling
	required

	
	Attributes
	–

	
	ownerDocument
	–

	
	insertBefore()
	–

	
	replaceChild()
	–

	
	removeChild()
	–

	
	appendChild()
	–

	
	hasChildNodes()
	–

	
	cloneNode()
	–

	CharacterData
	

	
	Data
	required

	
	length
	required

	
	substringData()
	–

	
	appendData()
	–

	
	insertData()
	–

	
	deleteData()
	–

	
	replaceData()
	–

	Element
	

	
	tagName
	required

	
	getAttribute()
	–

	
	setAttribute()
	–

	
	removeAttribute()
	–

	
	getAttributeNode()
	–

	
	setAttributeNode()
	–

	
	removeAttributeNode()
	–

	
	getElementsByTagName()
	–

	
	normalize()
	–

	Text
	

	
	splitText
	–

7 NCL: XML Application Declarative Language for Interactive Multimedia Presentations
7.1 Modular languages and language profiles
7.1.1 NCL modules
The modularization approach has been used in several W3C language recommendations.

Modules are collections of semantically-related XML elements, attributes, and attribute values that represent a unit of functionality. Modules are defined in coherent sets. This coherence is expressed in that the elements of these modules are associated with the same namespace.
NOTE
Namespaces are discussed in [Namespaces in XML, 1999].

A language profile is a combination of modules. Modules are atomic, i.e. they shall not be subset when included in a language profile. Furthermore, a module specification may include a set of integration requirements, to which language profiles that include the module shall comply.

NCL has been specified in a modular way, allowing the combination of its modules in language profiles. Each profile may group a subset of NCL modules, allowing the creation of languages according to the users’ needs. Moreover, NCL modules and profiles can be combined with other language modules, allowing the incorporation of NCL features into those languages and vice-versa.

Commonly, there is a language profile that incorporates nearly all the modules associated with a single namespace. This is the case of the NCL Language Profile.
Other language profiles can be specified as subsets of the larger one, or to incorporate a combination of modules associated with different namespaces. An example of the latter is the use of SMIL modules (for example the SMIL Transition Module) in NCL profiles. Examples of the first case are the Basic DTV and the Enhanced DTV profiles of NCL.
Subsets of the language profile modules used in the definition of the Basic DTV and Enhanced DTV profiles are defined to fit the language to the data TV broadcasting environment with its multiple possible presentation devices: TV set, mobile devices, etc.
NOTE
A similar approach is also found in other languages [SMIL 2.1 Specification, 2005] [XHTML 1.0, 2002].
The main purpose of language profile conformance is to enhance interoperability. The mandatory modules are defined in such a way that any document interchanged in a conforming language profile will yield a reasonable presentation. The document formatter, while supporting the associated mandatory module set, would ignore all other (unknown) elements and attributes.
NOTE
Document renderer, user agent, and player are other names used with the same meaning of document formatter.
The NCL 3.0 edition revises the functionalities contained in NCL 2.3 [NCL Main Profile, 2005], and is partitioned into thirteen functional areas, which are partitioned again into modules. From the thirteen functional areas, twelve are used to define the Enhanced DTV and the Basic DTV profiles. Besides the twelve NCL 3.0 functional areas, two functional areas have been imported from SMIL 2.0 to compose the Enhanced DTV profile. The fourteen used functional areas and their corresponding modules are:
1) Structure

Structure Module

2) Layout

Layout Module

3) Components

Media Module

Context Module

4) Interfaces

MediaContentAnchor Module

CompositeNodeInterface Module

PropertyAnchor Module

SwitchInterface Module

5) Presentation Specification

Descriptor Module

6) Linking

Linking Module

7) Connectors

ConnectorCommonPart Module

ConnectorAssessmentExpression Module

ConnectorCausalExpression Module

ConnectorTransitionAssessment Module

CausalConnector Module

CausalConnectorFunctionality Module

ConnectorBase Module

8) Presentation Control

TestRule Module

TestRuleUse Module

ContentControl Module

DescriptorControl Module

9) Timing

Timing Module

10) Reuse

Import Module

EntityReuse Module

ExtendedEntityReuse Module

11) Navigational Key

KeyNavigation Module

12) Animation

Animation Module

13) SMIL Transition Effects

TransitionBase Module

BasicTransition Module

TransitionModifiers Module

NOTE
the TransitionBase Module is a module defined by NCL 3.0; it does not exist in SMIL 2.0.
14) SMIL Meta-Information
Metainformation Module
7.1.2 Identifiers for NCL 3.0 module and language profiles

Each NCL profile should explicitly state the namespace URI that is to be used to identify it.

Documents authored in language profiles that include the NCL Structure module can be associated with the “application/x-ncl+xml” mime type. Documents using the “application/x-ncl+xml” mime type are required to be host language conformant.

The XML namespace identifiers for the complete set of NCL 3.0 modules, elements and attributes are contained within the following namespace: http://www.ncl.org.br/NCL3.0/

Each NCL module has a unique identifier associated with it. The identifiers for NCL 3.0 modules shall be in agreement with Table 7.

Each SMIL module has a unique identifier associated with it. The identifiers for SMIL 2.0 modules shall be in agreement with Table 8.
Modules may also be identified collectively. The following module collections are defined:

— modules used by the NCL 3.0 Language profile: http://www.ncl.org.br/NCL3.0/LanguageProfile
— modules used by the NCL 3.0 Causal Connector profile: http://www.ncl.org.br/NCL3.0/CausalConnectorProfile

— modules used by the NCL 3.0 Enhanced DTV profile: http://www.ncl.org.br/NCL3.0/EDTVProfile

— modules used by the NCL 3.0 Basic DTV profile: http://www.ncl.org.br/NCL3.0//BDTVProfile
Table 7 – The NCL 3.0 module identifiers

	Modules
	Identifiers

	Animation
	http://www.ncl.org.br/NCL3.0/Animation

	CompositeNodeInterface
	http://www.ncl.org.br/NCL3.0/CompositeNodeInterface

	CausalConnector
	http://www.ncl.org.br/NCL3.0/CausalConnector

	CausalConnectorFunctionality
	http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality

	ConnectorCausalExpression
	http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression

	ConnectorAssessmentExpression
	http://www.ncl.org.br/NCL3.0/ConnectorAssessmentExpression

	ConnectorBase
	http://www.ncl.org.br/NCL3.0/ConnectorBase

	ConnectorCommonPart
	http://www.ncl.org.br/NCL3.0/ConnectorCommonPart

	ConnectorTransitionAssessment
	http://www.ncl.org.br/NCL3.0/ConnectorTransitionAssessment

	ContentControl
	http://www.ncl.org.br/NCL3.0/ContentControl

	Context
	http://www.ncl.org.br/NCL3.0/Context

	Descriptor
	http://www.ncl.org.br/NCL3.0/Descriptor

	DescriptorControl
	http://www.ncl.org.br/NCL3.0/DescriptorControl

	EntityReuse
	http://www.ncl.org.br/NCL3.0/EntityReuse

	ExtendedEntityReuse
	http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse

	Import
	http://www.ncl.org.br/NCL3.0/Import

	Layout
	http://www.ncl.org.br/NCL3.0/Layout

	Linking
	http://www.ncl.org.br/NCL3.0/Linking

	Media
	http://www.ncl.org.br/NCL3.0/Media

	MediaContentAnchor
	http://www.ncl.org.br/NCL3.0/MediaContentAnchor

	KeyNavigation
	http://www.ncl.org.br/NCL3.0/KeyNavigation

	PropertyAnchor
	http://www.ncl.org.br/NCL3.0/PropertyAnchor

	Structure
	http://www.ncl.org.br/NCL3.0/Structure

	SwitchInterface
	http://www.ncl.org.br/NCL3.0/SwitchInterface

	TestRule
	http://www.ncl.org.br/NCL3.0/TestRule

	TestRuleUse
	http://www.ncl.org.br/NCL3.0/TestRuleUse

	Timing
	http://www.ncl.org.br/NCL3.0/Timing

	TransitionBase
	http://www.ncl.org.br/NCL3.0/TransitionBase

Table 8 – The SMIL 2.0 module identifiers used in NCL profiles

	Modules
	Identifiers

	BasicTransitions
	http://www.w3.org/2001/SMIL20/BasicTransitions

	Metainformation
	http://www.w3.org/2001/SMIL20/Metainformation

7.1.3 NCL Version information
The following processing instructions shall be written in an NCL document. They identify NCL documents that contain only the elements defined in this Norm, and the NCL version to which the document conforms.
<?xml version="1.0" encoding="ISO-8859-1"?>
<ncl id="any string" xmlns="http://www.ncl.org.br/NCL3.0/profileName">

The id attribute of an <ncl> element may receive any string as a value.

The version number of an NCL document specification consists of a major number and a minor number, separated by a dot. The numbers are represented as a decimal number character string with leading zeros suppressed. The initial standard version number is 3.0.
New NCL versions shall be released in accordance to the following versioning policy. If receivers that conform to older versions can still receive a document based on the revised specification, in relation to error corrections or operational reasons, the new version of NCL shall be released with the minor number updated. If receivers that conform to older versions cannot receive a document based on the revised specifications, the major number shall be updated.

A specific version is specified in the URI path http://www.ncl.org.br/NCLx.y/profileName, where the version number “x.y” is written immediately after the “NCL”.

The profileName, in the URI path, shall be EDTVProfile or BDTVProfile.

7.2 NCL Modules
7.2.1 General Remarks

The main definitions made by each NCL 3.0 modules that are present in the NCL 3.0 Basic DTV and the Enhanced DTV profiles are given in Sections 7.2.2 to 7.2.13.

The complete definition of these NCL 3.0 modules, using XML Schemas, is presented in Appendix A. Any ambiguity found in this text can be clarified by consulting the XML Schemas.

The main definitions made by each SMIL 2.0 modules that are present in the Enhanced DTV profile are given in Sections 7.2.14 and 7.2.15. The complete definition of the modules imported from the SMIL 2.0 specification can be found in [SMIL 2.1 Specification, 2005].

After discussing each module, a table is presented indicating the module elements and their attributes. For a given profile, the attributes and contents (child elements) of elements may be defined in the module itself or in the language profile that groups the modules. Therefore, the tables in this section show the attributes and contents that come from the NCL Enhanced DTV profile, besides those defined in the modules themselves. Tables in Section 7.3.3 show the attributes and contents that come from the NCL Basic DTV profile, besides those defined in the modules themselves. Element attributes that are required are underlined. In the tables, the following symbols are used: (?) optional (zero or one occurrence), (|) or, (*) zero or more occurrences, (+) one or more occurrences. The child element order is not specified in the tables.

7.2.2 Structure functionality

The Structure functionality has just one module, called Structure, which defines the basic structure of an NCL document. It defines the root element, called <ncl>, the <head> element and the <body> element, following the terminology adopted by other W3C standards. The <body> element of an NCL document is treated as an NCM context node [NCMCore, 2005].
In NCM, the conceptual data model of NCL, a node may be a context, a switch or a media object. All NCM nodes are represented by corresponding NCL elements. Context nodes (see 7.2.4) contain other NCM nodes and links.

The <ncl> and <body> elements may have the id attribute defined. The id attribute uniquely identifies an element within a document. Its value is an XML identifier.
The title attribute of <ncl> offers advisory information about the element. Values of the title attribute may be rendered by user agents in a variety of ways.
The xmlns attribute declares an XML namespace ― that is, it declares the primary collection of XML-defined constructs the document uses. The attribute’s value is the URL (Uniform Resource Locator) identifying where the namespace is officially defined. Three values are allowed for the xmlns attribute: http://www.ncl.org.br/NCL3.0/EDTVProfile, and http://www.ncl.org.br/NCL3.0/BDTVProfile, for the Enhanced and Basic DTV profiles, respectively, and http://www.ncl.org.br/NCL3.0/CausalConnectorProfile, for the Causal Connector profile. An NCL formatter shall know that the schemaLocation for these namespaces is, by default, respectively:

http://www.ncl.org.br/NCL3.0/profiles/NCL30EDTV.xsd,

http://www.ncl.org.br/NCL3.0/profiles/NCL30BDTV.xsd, and

http://www.ncl.org.br/NCL3.0/profiles/NCL30CausalConnector.xsd
Child elements of <head> and <body> are defined in other NCL modules. The order in which the <head> child elements should be declared is: importedDocumentBase?, ruleBase?, transitionBase?, regionBase*, descriptorBase?, connectorBase?, meta*, metadata*.
The elements of this module, their child elements, and their attributes shall be in agreement with Table 9.

Table 9 – Extended Structure module

	Elements
	Attributes
	Content

	ncl
	id, title, xmlns
	(head?, body?)

	head
	
	(importedDocumentBase?, ruleBase?, transitionBase?, regionBase*, descriptorBase?, connectorBase?, meta*, metadata*)

	body
	id
	(port| property| media| context| switch| link | meta | metadata)*

7.2.3 Layout functionality

The Layout functionality has a single module, named Layout, which specifies elements and attributes that define how objects will be initially presented inside regions of output devices. Indeed, this module defines initial values for homonym NCL properties defined in <media>, <body>, and <context> elements (see 7.2.4).

In short, a <regionBase> element, which shall be declared in the NCL document <head>, defines a set of <region> elements, each of which may contain another set of nested <region> elements, and so on, recursively.

The <regionBase> element may have the id attribute, and <region> elements shall have the id attribute. As usual, the id attribute uniquely identifies the element within a document.
Each <regionBase> element is associated with a device where presentation will take place. In order to identify the association, the <regionBase> element defines the device attribute, which may have the values: “systemScreen (i)” or “systemAudio(i)”. The chosen device defines global environment variables: systemScreenSize(i), systemScreenGraphicSize(i), and systemAudioType(i), as defined in Table 12 (see 7.2.4).
The interpretation of the region nesting inside a <regionBase> should be made by the software in charge of the document presentation orchestration (called formatter). In the SBTVD recommendation, a first nesting level shall be interpreted as defining the device area where the presentation would take place; the second nesting level as windows (that is, presentation areas in the screen) of the parent area; and the other levels as regions inside these windows.
A <region> can also define the following attributes: title, left, right, top, bottom, height, width, and zIndex. All these attributes have the usual meaning.
The position of a region, as specified by its top, bottom, left, and right attributes, is always relative to the parent geometry, which is defined by the parent <region> element or the total device area in the case of first nesting level regions. Attribute values may be non-negative “percentage” values, or integer pixel units. For pixel values, the author may omit the “px” unit qualifier (e.g. “100”). For percentage values, on the other hand, the “%” symbol shall be indicated (e.g. “50%”). The percentage is always relative to the parent’s width, in the case of right, left and width definitions, and parent’s height, in the case of bottom, top and height definitions.

The top and left attributes are the primary region positioning attributes. They place the left-top corner of the region in the specified distance away from the left-top edge of the parent region (or the device left-top edge in the case of the outermost region). Sometimes, explicitly setting the bottom and right attributes is helpful. Their values state the distance between the region’s right-bottom corner and the right-bottom corner of the parent region (or the device right-bottom edge in the case of the outermost region) (see Figure 2).
[image: image2.wmf]region

left

width

right

top

height

bottom

parent region

region

left

width

right

top

height

bottom

parent region

Figure 2 – Region positioning attributes

Regarding region sizes, when they are specified by declaring width and height attributes using the “%” notation, the size of the region is relative to the size of its parent geometry as aforementioned. Sizes declared as absolute pixel values maintain those absolute values. The intrinsic size of a region is equal to the size of the logical parent’s geometry. This means that, if a nested region doesn’t specify any positioning or size values, it will be assumed to have the same position and size values of its parent region. In particular, when a first level region doesn’t specify any positioning or size values, it will be assumed to be the whole device presentation area.
When the user specifies top, bottom and height information for the same <region>, spatial inconsistencies can occur. In this case, the top and height values shall have precedence over the bottom value. Analogously, when the user specifies inconsistent values for the left, right and width <region> attributes, the left and width values shall be used to compute a new right value. When any of these attributes is not specified and cannot have its value computed from the other attributes, it shall be inherited from the corresponding parent value. Another restriction is that child regions cannot stay outside the area established by their parent regions.
The zIndex attribute specifies the region superposition precedence, where regions with greater zIndex values are stacked on top of regions with smaller zIndex values. If two presentations generated by elements A and B have the same stack level then, if the display of an element B starts later than the display of an element A, the presentation of B is stacked on top of the presentation of A (temporal order); otherwise, if the display of the elements starts at the same time, the stacked order is chosen arbitrarily by the formatter. When not specified, the zIndex attribute shall be set equal to zero.
The Layout module also defines the region attribute to be used by a <descriptor> element (see 7.2.6) to refer a Layout <region> element.

The elements of this module, their child elements, and their attributes shall be in agreement with Table 10.
Table 10 – Extended Layout module

	Elements
	Attributes
	Content

	regionBase
	id, device
	(importBase|region)+

	region
	id, title, left, right, top, bottom, height, width, zIndex
	(region)*

7.2.4 Components functionality

The Components functionality is partitioned into two modules, called Media and Context.

The Media module defines basic media object types. For defining media objects, this module defines the <media> element. Each media object has two main attributes, besides its id attribute: src, which defines a URI of the object content, and type, which defines the object type.
The URI (Uniform Resource Identifier) shall be in agreement with Table 11.

Table 11 – Allowed URI
	Scheme
	Scheme-specific-part
	Use

	file:
	///file_path/#fragment_identifier
	for local files

	http:
	//server_identifier/file_path/#fragment_identifier
	for remote files downloaded from the interactive channel using the http protocol

	rstp:
	//server_identifier/file_path/#fragment_identifier
	for streams downloaded from the interactive channel using the rstp protocol

	rtp:
	//server_identifier/file_path/#fragment_identifier
	for streams downloaded from the interactive channel using the rtp protocol

	sbtvd-ts:
	//component_tag
	for elementary streams received from the transport stream

An absolute URI by itself contains all information needed to locate its resource. Relative URI are also allowed. Relative URI are incomplete addresses that are applied to a base URI to complete the location. The portions omitted are the URI scheme and server, and potentially part of URI path, as well.

The primary benefit of using relative URI is that documents and directories containing them may be moved or copied to other locations without requiring changing the URI attribute values within the documents. This is especially interesting when transporting documents from the server part (usually broadcasters) to the receivers. Relative URI paths are typically used as a short means of locating media files stored in the same directory as the current NCL document, or in a directory close to it. They often consist of just the filename (optionally with a fragment identifier into the file). They may also have a relative directory path before the filename.

It should be emphasized that references to streaming video or audio resources shall not cause tuning to occur. References that imply tuning to access a resource shall behave as if the resource were unavailable.

The type attribute’s allowed values depend on the NCL profile and shall follow MIME Media Types format (or, more simply, mimetypes). A mimetype is a character string that defines the class of media (audio, video, image, text, application) and a media encoding type (such as jpeg, mpeg, etc.). Mimetypes may be registered or informal. Registered mimetypes are controlled by the Internet Assigned Numbers Authority (IANA). Informal mimetypes are not registered with IANA, but are defined by common agreement; they usually have an “x-“before the media type name.
Five special types are defined: application/x-ginga-NCL; application/x-ginga-NCLua, application/x-ginga-NCLet, application/x-ginga-settings, and application/x-ginga-time.
The “application/x-ginga-NCL” type shall be applied to <media> elements with NCL code content (indeed, an NCL application can embed another NCL application). The application/x-ginga-NCLua type shall be applied to <media> elements with Lua procedural code content (See Section 10). The application/x-ginga-NCLet type shall be applied to <media> elements with Xlet procedural code content (See Section 11) and ABNT NBR 15606-4).
The application/x-ginga-settings shall be applied to a special <media> element (there may be only one in an NCL document) whose properties are global variables defined by the document author or reserved environment variables that may be manipulated by the NCL document processing. Table 12 states the already defined variables and their semantics.

Table 12 – Environment variables

	Group
	Variable
	Semantics
	Possible values

	system

· set of variables managed by the receiver system;

· they may be read, but they may not have their values changed by an NCL application, a Lua procedure or an Xlet procedure;
· receiver’s native applications may change the variables’ values;
· they shall persist during all receiver life cicle.
	system.language
	Audio language
	ISO 639-1 code

	
	system.caption
	Caption language
	ISO 639

	
	system.subtitle
	Subtitle Language
	ISO 639

	
	system.returnBitRate(i)
	Bit rate of the interactive channel (i) in Kbps
	real

	
	system.screenSize (i)
	Screen size of the device (i) in (lines, pixels/line
	(integer, integer)

	
	system.screenGraphicSize (i)
	Resolution set for the screen graphics plane of the device (i) in (lines, pixels/line)
	(integer, integer)

	
	system.audioType(i)
	Type of the audio of the device (i)
	“mono” | “stereo” | “5.1”

	
	system.CPU
	CPU performance in MIPS
	real

	
	system.memory
	Memory space in Mbytes
	integer

	
	system.operatingSystem
	Type of the Operating System
	string to be defined

	
	system.javaConfiguration
	Java configuration type and version supported by the receiver JVM
	string
(type immediately followed by version, as for example: “CLDC1.1”)

	
	system.javaProfile
	Java profile type and version supported by the receiver JVM
	string

(type immediately followed by version, as for example: “MIDP2.0”)

	
	system.luaVersion
	Version of the Lua engine supported by the receiver
	string

	
	system.xxx
	Any variable with the “system” prefix shall be reserved for future use
	

	user

· set of variables managed by the receiver system;

· they may be read, but they may not have their values changed by an NCL application, a Lua procedure or an Xlet procedure;
· receiver’s native applications may change the variables’ values;
· they shall persist during all receiver life cicle.
	user.age
	User age
	integer

	
	user.location
	User location (postal code number)
	string

	
	user.genre
	User genre
	“m”| “f”

	
	user.xxx
	Any variable with the “user” prefix shall be reserved for future use
	

	default

· set of variables managed by the receiver system;

· they may be read and have their values changed by an NCL application, a Lua procedure or an Xlet procedure;
· receiver’s native applications may change the variables’ values;
· they shall persist during all receiver life cicle, however, they shall be set to their initial values when a new channel is tunned.
	default.focusBorderColor
	Default color applied to the border of an element in focus
	“white” | “black” | “silver” | “gray” | “red” | “maroon” | “fuchsia” | “purple” | “lime” | “green” | “yellow” | “olive” | “blue” | “navy” | “aqua” | “teal”

	
	default.selBorderColor
	Default color applied to the border of an element in focus when activated
	“white” | “black” | “silver” | “gray” | “red” | “maroon” | “fuchsia” | “purple” | “lime” | “green” | “yellow” | “olive” | “blue” | “navy” | “aqua” | “teal”

	
	default.focusBorderWidth
	Default width (in pixels) applied to the border of an element in focus
	integer

	
	default.focusTransparency
	Default transparency applied to the border of an element in focus
	a real value between 0 and 1, or a real value in the range [0,100] ending with the character “%” (e.g. 30%), with “1” or “100%” meaning full transparency and “0” or “0%” meaning no transparency

	
	default.xxx
	Any variable with the “default” prefix shall be reserved for future use
	

	service

· set of variables managed by the NCL formatter;

· they may be read and have their values changed by an NCL application of the same service;
· they may be only read by a Lua procedure or an Xlet procedure of the same service; variable chances shall be done using NCL commands;
· they shall persist at least during the service life cicle.
	service.currentFocus
	The focusIndex value of the <media> element on focus
	integer

	
	service.currentKeyMaster
	Identifier (id) of the <media> element that controls the navigational keys; if the <media> element is not being presented or is not paused, the navigational key control pertains to the NCL Formatter
	string

	
	service.contenId
	Content identifier of a continuous media stream that is being presented (as the content is associated with a NPT time base, the identifier can also be thought as a reference to this NPT time base). The value of this property may not be changed by an NCL application.
NOTE The value of this variable should be obtained from the dsm_contentId field of the NPTReferenceDescriptor (see ABNT NBR 15606-3:2008).
	integer

	
	service.xxx
	Any variable with the “service” prefix shall follow the rules specified for the group
	

	si

· set of variables managed by the middleware;

· they may be read, but they may not have their values changed by an NCL application, a Lua procedure or an Xlet procedure;
· they shall persist at least till the next channel tuning.
	si.numberOfServices
	Number of services available in the country for the tuning channel.
NOTE The value for this variable should be obtained from the number of PMT tables specified in the PAT table of the transport stream received in the tuning channel (see ISO/IEC 13818-1:2007). The variable value should take into account only the PMT tables whose fields country_code, specified in the country_availability_descriptor (See Section 8.3.6 of ABNT NBR 15603-2:2007) related with the table, are equivalent to the value of the user.location variable of the Settings node.
	integer

	
	si.numberOfPartialServices
	Number of 1-seg services available in the country for the tuning channel.
NOTE The value for this variable should be obtained from the number of PMT tables specified in the PAT table of the transport stream received in the tuning channel (see ISO/IEC 13818-1:2007). The variable value should take into account only the PMT tables whose country_code fields, specified in the country_availability_descriptor (See Section 8.3.6 of ABNT NBR 15603-2:2007) related with the table, are equal to the value of the user.location variable of the Settings node, and whose program_number fields are equivalent to the service_id fields of the partial_reception_descriptor related with the NIT tables.
	integer

	
	si.channelNumber
	Number of the tuning channel.
NOTE The value for this variable should be obtained from the remote_control_key_id filed of the ts_information_descriptor (see Section 8.3.42 of ABNT NBR 15603-2:2007) of the NIT table (see Section 7.2.4 of ABNT NBR 15603-2:2007) that describes the current service.
	integer

	
	si.xxx
	Any variable with the “si” prefix shall follow the rules specified for the group
	

	channel

· set of variables managed by the NCL formatter;

· they may be read and have their values changed by an NCL application of the same channel;
· they may be only read by a Lua procedure or an Xlet procedure of the same channel; variable changes shall be done using NCL commands;
· they shall persist at least till the next channel tuning.
	channel.xxx
	Any variable with the “channel” prefix shall follow the rules specified for the group
	

	shared

· set of variables managed by the NCL formatter;

· they may be read and have their values changed by an NCL application;
· they may be only read by a Lua procedure or an Xlet procedure; variable changes shall be done using NCL commands;
· they shall persist at least during the life cicle of the service that has defined them.
	shared.xxx
	Any variable with the “shared” prefix shall follow the rules specified for the group
	

The application/x-ginga-time type shall be applied to a special <media> element (it may be only one in an NCL document), whose content is the Universal Time Coordinated (UTC). Note that any continuous <media> element with no source can be used to define a clock relative to the <media> element start time.
NOTE
The content of a <media> element of application/x-ginga-time type shall be specified according with the following syntax: Year“:”Month“:”Day“:”Hours“:”Minutes“:”Seconds“.”Fraction, where Year is an integer; Month is an integer in the [1,12] interval; Day is an integer in the [1,31] interval; Hours is an integer in the [0,23] interval; Minutes is an integer in the [0,59] interval; Seconds is an integer in the [0,59] interval; Fraction is a positive integer.
Table 13 shows some possible values of the type attribute for the Enhanced DTV and Basic DTV profiles and the associated file extensions. The required types are defined in ABNT NBR 15601. The type attribute is optional (except for <media> elements with no src attribute defined) and should be used to guide the player (presentation tool) choice by the formatter. When the type attribute is not specified, the formatter should use the content extension specification in the src attribute to make the player choice.
When there is more than one player for the type supported by the formatter, the <descriptor> element may specify which one will be used for presentation. Otherwise the formatter shall use a default player for that type of media.
Table 13 – MIME Media types for Ginga-NCL formatters

	Media type
	File extensions

	text/html
	htm, html

	text/plain
	txt

	text/css
	css

	text/xml
	xml

	image/bmp
	bmp

	image/png
	png

	image/gif
	gif

	image/jpeg
	jpg, jpeg

	audio/basic
	wav

	audio/mp3
	mp3

	audio/mp2
	mp2

	audio/mpeg
	mpeg, mpg

	audio/mpeg4
	mp4, mpg4

	video/mpeg
	mpeg, mpg

	application/x-ginga-NCL
	ncl

	application/x-ginga-NCLua
	lua

	application/x-ginga-NCLet
	class, jar

	application/x-ginga-settings
	no src (source)

	application/x-ginga-time
	no src (source)

The Context module is responsible for the definition of context nodes through <context> elements. An NCM context node is a particular type of NCM composite node and is defined as containing a set of nodes and a set of links. As usual, the id attribute uniquely identifies each <context> and <media> element within a document.
The instance, refer and descriptor attributes are extensions defined in other modules and are discussed in the definition of those modules.
NOTE
A <media> element of application/x-ginga-NCL type may not have the instance and refer attributes. It should not have child elements either.
The elements of these two modules, their child elements, and their attributes shall be in agreement with Tables 14 and 15.
Table 14 – Extended Media module

	Elements
	Attributes
	Content

	media
	id, src, refer, instance, type, descriptor
	(area|property)*

Table 15 – Extended Context module

	Elements
	Attributes
	Content

	context
	id, refer
	(port|property|media|context|link|switch|meta|metadata)*

7.2.5 Interfaces functionality

The Interfaces functionality allows the definition of node (media object or composite node) interfaces that will be used in relationships with other node interfaces. This functionality is partitioned into four modules:
· MediaContentAnchor, which allows content anchor (or area) definitions for media nodes (<media> elements);

· CompositeNodeInterface, which allows port definitions for composite nodes (<context> and <switch> elements);

· PropertyAnchor, which allows the definition of node properties as node interfaces; and

· SwitchInterface, which allows the definition of special interfaces for <switch> elements.

The MediaContentAnchor module defines the <area> element, which extends the syntax and semantics of the homonym element defined by SMIL and XHTML. As such, it allows the definition of content anchors representing spatial portions, through the coords attribute (as in XHTML); the definition of content anchors representing temporal portions, through begin and end attributes; and the definition of content anchors representing temporal and spatial portions through coords, begin and end attributes (as in SMIL). In addition, the <area> element allows the definition of textual anchors, through the text and position attributes that define the string and the string’s occurrence in the text, respectively. Besides, the <area> element may also define a content anchor based on the number of audio samples or video frames, through first and last attributes, which shall indicate the initial and final sample/frame. Moreover, the <area> element may also define a content anchor based on the label attribute, which specifies a string that should be used by the media player to identify a content region.
NOTE
The first and last attributes shall be specified according with one of the following syntax:

i) Samples”s”, where Samples is a positive integer;

ii) Frames”f”, where Frames is a positive integer;

iii) NPT”npt”, where NPT is the Normal Play Time value.
If the begin attribute is defined, but the end attribute is not specified, the end of the whole media content presentation shall be assumed as the anchor ending. On the other hand, if the end attribute is defined, but without an explicit begin definition, the start of the whole media content presentation shall be considered as the anchor beginning. Analogous behavior is expected from the first and last attributes. In the case of a <media> element of the application/x-ginga-time type, the begin and end attributes shall be always defined and shall assume an absolute value of the Universal Time Coordinated (UTC).
NOTE
Except for the <media> element of the application/x-ginga-time type, the begin and end attributes shall be specified according with one of the following syntax:

i) Hours“:”Minutes“:”Seconds“.”Fraction, Hours is an integer in the [0,23] interval; Minutes is an integer in the [0,59] interval; Seconds is an integer in the [0,59] interval; Fraction is a positive integer

ii) Seconds”s”, where Seconds is a positive real number.
NOTE
For the <media> element of the application/x-ginga-time type, the begin and end attributes shall be specified according with the following syntax: Year“:”Month“:”Day“:”Hours“:”Minutes“:”Seconds“.”Fraction, according to the country time zone. The NCL user agent is responsible for translating the value for the country time zone to the one corresponding to the UTC.
As usual, <area> elements shall have the id attribute, which uniquely identifies the element within a document.

The <area> element and its attributes shall be in agreement with Table 16.
Table 16 – Extended MediaContentAnchor module

	Elements
	Attributes
	Content

	area
	id, coords, begin, end, text, position, first, last, label
	empty

The CompositeNodeInterface module defines the <port> element, which specifies a composite node port with its respective mapping to an interface (interface attribute) of one of its components (specified by the component attribute).
In NCM, every node (media or context node) shall have an anchor with a region representing the whole content of the node. This anchor is called the whole content anchor and is declared by default in NCL documents. Every time an NCL component is referred without specifying one of its anchors, the whole content anchor is assumed.
The <port> element and its attributes shall be in agreement with Table 17.
Table 17 – Extended CompositeNodeInterface module

	Elements
	Attributes
	Content

	port
	id, component, interface
	empty

The PropertyAnchor module defines an element named <property>, which may be used for defining a node property or a group of node properties as one of its interfaces (anchors). The <property> element defines the name attribute, which indicates the name of the property or property group, and the value attribute, an optional attribute that defines an initial value for the name property. The parent element shall not have <property> elements with the same name attribute values.
It is possible to have NCL document players (formatters) that define some node properties as node interfaces, implicitly. However, in general, it is a good practice to explicitly define the interfaces. In the SBTVD Norm, all interfaces shall be explicitly defined.
The <body>, <context>, and <media> elements may have several embedded properties. Examples of these properties can be found among those that define the media object placement during a presentation, the presentation duration, and others that define additional presentation characteristics: top, left, bottom, right, width, height, plan, explicitDur, background, transparency, visible, fit, scroll, style, soundLevel, balanceLevel, trebleLevel, bassLevel, fontColor, fontFamily, fontStyle, fontSize, fontVariant, fontWeight, reusePlayer, playerLife, etc. These properties assume as their initial values those defined in homonym attributes of their node-associated descriptor and region (see 7.2.3 e 7.2.6). Some properties have their values defined by the middleware system, as for example, the contenId property (associated to a continuous-media object whose content is defined referring to an elementary stream), which has “null” as its initial value and is set to the identifier value transported in the NPT reference descriptor (in a field of the same name: contentId), as soon as the associated continuous-media object is started; and the standby property, set to “false” when the identifier value transported in the NPT reference descriptor (in a field of the same name: contentId) that is occurring
has the same value of the contentId property (otherwise it shall be set to “true”). However, when an embedded property is used in a relationship, it shall be explicitly declared as a <property> (interface) element.
NOTE
The visible property may also be associated with a <context> or <body> element. In these cases, when the property’s value is equal to “true”, the visible property of each child element of the composition shall be taken into account. When the property’s value is equal to “false”, all child elements of the composition shall be exhibited but hidden. In particular, when a document has its <body> element with its visible property set to “false” and its presentation event in the paused state, the document is said to be in stand-by. When an application is in stand-by, the service’s main video shall be dimensioned to 100% of the screen, and the main audio shall be set to 100% of volume.

A group of node properties may also be explicitly declared as a single <property> (interface) element, allowing authors to specify the value of several properties within a single property. The following groups shall be recognized by an NCL formatter: location, grouping (left, top), in this order; size, grouping (width, height), in this order; and bounds, grouping (left, top, width, height), in this order. When a formatter treats a change in a property group it shall only test the process consistency at its end. The words top, left, bottom, right, width, height, explicitDur, background, transparency, visible, fit, scroll, style, soundLevel, balanceLevel, trebleLevel, bassLevel, fontColor, fontFamily, fontStyle, fontSize, fontVariant, fontWeight, reusePlayer, playerLife, location, size and bounds are reserved words for values of the name attribute of the <property> element.
The <property> element and its attributes shall be in agreement with Table 18.
Table 18 – Extended PropertyAnchor module

	Elements
	Attributes
	Content

	property
	name, value
	empty

The SwitchInterface module allows the creation of <switch> element interfaces (see 7.2.4), which may be mapped to a set of alternative interfaces of internal nodes, allowing a link to anchor on the component chosen when the <switch> is processed (see [NCM Core, 2005]). This module introduces the <switchPort> element, which contains a set of mapping elements. A mapping element defines a path from the <switchPort> to an interface (interface attribute) of one of the switch components (specified by its component attribute).
It is important to remark that every element representing an object interface (<area>, <port>, <property>, and <switchPort>) shall have an identifier (id attribute).

The <switchPort> element, its child elements, and its attributes shall be in agreement with Table 19.

Table 19 – Extended SwitchInterface module

	Elements
	Attributes
	Content

	switchPort
	id
	mapping+

	mapping
	component, interface
	empty

7.2.6 Presentation Specification functionality

The Presentation Specification functionality has a single module named Descriptor. The purpose of this module is to specify temporal and spatial information needed to present each document component. This information is modeled by descriptor objects.
The Descriptor module allows the definition of <descriptor> elements, which contain a set of optional attributes, grouping all temporal and spatial definitions, which should be used according to the type of object to be presented. The definition of <descriptor> elements shall be included in the document head, inside the <descriptorBase> element, which specifies the set of descriptors of a document. The <descriptor> element shall have the id attribute and the <descriptorBase> element may have the id attribute, which, as usual, uniquely identifies the elements within a document.
A <descriptor> element may have temporal attributes: explicitDur and freeze, defined by the Timing module (see 7.2.10); an attribute named player, which identifies the presentation tool to be used; an attribute named region, which refers to a region defined by elements of the Layout module (see 7.2.3); and key-navigation attributes: moveLeft, moveRight, moveUp; moveDown, focusIndex, focusBorderColor; focusBorderWidth; focusBorderTransparency, focusSrc, selBorderColor, and focusSelSrc, defined by the KeyNavigation module (see 7.2.12); and transition attributes: transIn and transOut (see 7.2.14).
NOTE
A <descriptor> element of a <media> element of application/x-ginga-NCL type may only have the player attribute. In this case, an NCL player in a specific exhibition device shall be defined.
A <descriptor> element may also have <descriptorParam> child elements, which are used to parameterize the presentation control of the object associated with the descriptor element. These parameters can, for example, redefine some attribute values defined by the region attributes. They can also define new attributes such as plan, defining in which plan of a structured screen an object will be placed; background, specifying the background color used to fill the area of a region displaying media that is not filled by the media itself; visible, allowing the object presentation to be seen or hidden; fit, indicating how an object will be presented; scroll, which allows the specification of how an author would like to configure the scroll in a region; transparency, indicating the degree of transparency of an object presentation; style, which refers to a style sheet [Cascading Style Sheets, 1998] with information for text presentation, for example; and also specific attributes for audio objects, such as soundLevel, balanceLevel, trebleLevel and bassLevel. Besides, <descriptorParam> child elements can determine if a new player shall be instantiated or if a player already instantiated shall be used (reusePlayer), and specify what will happen to the player instance at the end of the presentation (playerLife). The words top, left, bottom, right, width, height, explicitDur, location, size, bounds, background, visible, fit, scroll, style, soundLevel, balanceLevel, trebleLevel, bassLevel, reusePlayer, and playerLife are reserved words for values of the name attribute of the <descriptorParam> element. The possible values for the reserved parameter/attribute names shall be in agreement with Table 20.
Table 20 – Reserved parameter/attribute and possible values

	Parameter/attribute name
	Value

	top, left, bottom, right, width, height
	A real number in the range [0,100] ending with the character “%” (e.g. 30%), or an integer value specifying the attribute in pixels (a non-negative integer, in the case of width and height).

	location
	Two numbers separated by comma, each one one following the value rule specified for left and top parameters, respectively

	size
	Two values separated by comma. Each value shall follow the same rule specified for width and height parameters, respectively

	bounds
	Four values separated by comma. Each value shall follow the same rule specified for left, top, width and height parameters, respectively.

	background
	Reserved color names: “white”, “black”, “silver”, “gray”, red”, “maroon”, fuchsia”, “purple”, “lime”, “green”, “yellow”, “olive”, “blue”, “navy”, “aqua”, or “teal”. Another option to specify the color value is stated in ABNT NBR 15606-1. The background value may also be the reserved value “transparent”. This can be helpful to present transparent images, like transparent GIFs, superposed on other images or videos. When not specified, the background attribute will take the default value “transparent”.

	visible
	“true” or “false”.

	transparency
	A real number in the range [0,1] or a real number in the range [0,100] ending with the character “%” (e.g. 30%), specifying the degree of transparency of an object presentation (“1” or “100%” means full transparency and “0” or “0%” means opaque).

	fit
	“fill”, “hidden”, “meet”, “meetBest”, “slice”.

“fill”: scale the object's media content so that it touches all edges of the box defined by the object’s width and height attributes.

“hidden”: if the intrinsic height (width) of the media content is smaller than the height (width) attribute, the object shall be rendered starting from the top (left) edge and have the remaining height (width) filled up with the background color; if the intrinsic height (width) of the media content is greater than the height (width) attribute, the object shall be rendered starting from the top (left) edge until the height (width) defined in the attribute is reached, and have the part of the media content below (to right of) the height (width) clipped.
“meet”: scale the visual media object while preserving its aspect ratio until its height or width is equal to the value specified by the height or width attributes. The media content left-top corner is positioned at the top-left coordinates of the box; the empty space at the right or the bottom shall be filled up with the background color.
“meetBest”: the semantic is identical to “meet” except that the image is not scaled greater than 100% in either dimension.
“slice”: scale the visual media content while preserving its aspect ratio until its height or width are equal to the value specified in the height and width attributes and the defined presentation box is completely filled. Some parts of the content may get clipped. Overflow width is clipped from the right of the media object. Overflow height is clipped from the bottom of the media object.

	scroll
	“none”, “horizontal”, “vertical”, “both”, or “automatic”

	style
	The locator of a stylesheet file.

	soundLevel, balanceLevel, trebleLevel, bassLevel
	A real number in the range [0, 1] or a real number in the range [0,100] ending with the character “%” (e.g. 30%).

	zIndex
	An integer number in the range [0, 255], where regions with greater zIndex values are stacked on top of regions with smaller zIndex values.

	fontColor
	Sets the font color (“white”, “black”, “silver”, “gray”, red”, “maroon”, fuchsia”, “purple”, “lime”, “green”, “yellow”, “olive”, “blue”, “navy”, “aqua”, or “teal”)

	fontFamily
	A prioritized list of font family names and/or generic family names

	fontStyle
	Sets the style of the font (“normal”,or “italic”)

	fontSize
	The size of a font

	fontVariant
	Displays text in a “small-caps” font or a “normal” font

	fontWeight
	Sets the weight of a font (“normal”, or “bold”)

	reusePlayer
	Boolean value: “false”, “true”. Default value = “false”

	playerLife
	“keep”, “close”. Default value = “close”

Besides all aforementioned attributes, the <descriptor> element may also have attributes defined in the SMIL transition effects functionality (see 7.2.14).

Note
If several values are specified for the same attribute, the value defined in a <property> element has precedence over the one defined in a <descriptorParam> element, which has precedence over the value defined in an attribute of the corresponding <descriptor> element (including the region attribute).

Besides the <descriptor> element, the Descriptor module defines a homonym attribute, which refers to an element of the document descriptor set. When a language profile uses the Descriptor module, it has to determine how descriptors will be associated with document components. Following NCM directives, this Norm establishes that the descriptor attribute is associated with any media node through <media> elements and through link endpoints (<bind> elements) (see 8.2.1).
It should be remarked that the set of descriptors of a document may contain <descriptor> elements or <descriptorSwitch> elements, which allow specifying alternative descriptors (see 7.2.9).

The elements of the Descriptor module, their child elements, and their attributes shall be in agreement with Table 21.
Table 21 – Extended Descriptor module

	Elements
	Attributes
	Content

	descriptor
	id, player, explicitDur, region, freeze, moveLeft, moveRight, moveUp, moveDown, focusIndex, focusBorderColor, focusBorderWidth, focusBorderTransparency, focusSrc,focusSelSrc, selBorderColor, transIn, transOut
	(descriptorParam)*

	descriptorParam
	name, value
	empty

	descriptorBase
	id
	(importBase|descriptor|descriptorSwitch)+

7.2.7 Linking functionality

The Linking functionality defines the Linking module, responsible for defining links using connectors. A <link> element may have an id attribute, which uniquely identifies the element within a document, and shall have an xconnector attribute, which refers to a hypermedia connector URI. The reference shall have the format: alias#connector_id, or documentURI_value#connector_id, for connectors defined in an external document (see 7.2.11); or simply connector_id, for connectors defined in the document itself.

The <link> element also contains child elements called <bind> elements, which allow to associate nodes with connector roles (see 7.2.8). In order to make this association, a <bind> element has four basic attributes. The first one is called role, which is used for referring to a connector role. The second one is called component, which is used for identifying the node. The third is an optional attribute called interface, used for making reference to the node interface. The fourth is an optional attribute called descriptor, used to refer to a descriptor to be associated with the node, as defined by the Descriptor module (see 7.2.6).

NOTE: The interface attribute may refer to any node interface, that is, an anchor, a property or a port, if it is a composite node. The interface attribute is optional. When it is not specified, the association will be done with the whole node content, as explained in 7.2.5.

If the connector element defines parameters (see 7.2.8), the <bind> or <link> elements should define parameter values, through child elements called <bindParam> and <linkParam>, respectively, both with name and value attributes. In this case the name attribute shall refer to the name of a connector parameter while the value attribute shall define a value to be assigned to the respective parameter.
The elements of the linking module, their attributes, and their child elements shall be in agreement with Table 22.

Table 22 - Extended Linking module

	Elements
	Attributes
	Content

	bind
	role, component, interface, descriptor
	(bindParam)*

	bindParam
	name, value
	empty

	linkParam
	name, value
	empty

	link
	id, xconnector
	(linkParam*, bind+)

7.2.8 Connectors functionality

The NCL 3.0 Connectors functionality is partitioned into eight basic modules: ConnectorCommonPart, ConnectorAssessmentExpression, ConnectorCausalExpression, ConnectorTransitionAssessment, CausalConnector, ConstraintConnector, ConnectorBase, and CompositeConnector.
The Connectors functionality modules are totally independent from the other NCL modules. These modules are the core by themselves of an XML application language (indeed other NCL 3.0 profiles) for the definition of connectors, which may be used to specify spatio-temporal synchronization relations, treating reference (user interaction) relations as a particular case of temporal synchronization relations.
Besides the basic modules, the connector functionality also defines modules that group sets of basic modules, in order to make it easy to define a language profile. This is the case of the CausalConnectorFunctionality module, used in the definition of the EDTV, BDTV and CausalConnector profiles. The CausalConnectorFunctionality module groups the following modules: ConnectorCommonPart, ConnectorAssessmentExpression, ConnectorCausalExpression, ConnectorTransitionAssessment, and CausalConnector.
A <causalConnector> element represents a causal relation that may be used for creating <link> elements in documents. In a causal relation, a condition shall be satisfied in order to trigger an action.

A <causalConnector> specifies a relation independently of relationships, that is, it does not specify which nodes (represented by <media>, <context>, <body>, and <switch> elements) will interact through the relation. A <link> element, in its turn, represents a relationship, of the type defined by its connector, interconnecting different nodes. Links representing the same type of relation, but interconnecting different nodes, may reuse the same connector, reusing all previous specifications. A <causalConnector> specifies, through its child elements, a set of interface points, called roles. A <link> element refers to a <causalConnector> and defines a set of binds (<bind> child elements of the <link> element), which associate each link endpoint (node interface) to a role of the used connector.

Relations in NCL are based on events. An event is an occurrence in time that may be instantaneous or have a measurable duration. NCL 3.0 defines the following types of events:

· presentation event, which is defined by the presentation of a subset of the information units of a media object, specified in NCL by the <area> element, or by the media node itself (whole content presentation). Presentation events may also be defined on composite nodes (represented by a <body>, <context>, or <switch> element), representing the presentation of the information units of any node inside a composite node);
· selection event, which is defined by the selection of a subset of the information units of a media object, specified in NCL by the <area> element, or by the media node itself (whole content presentation);
· attribution event, which is defined by the attribution of a value to a property of a node (represented by a <media>, <body>, <context>, or <switch> element), which shall be declared in a <property> child element of the node; and
· composition event, which is defined by the presentation of the structure of a composite node (represented by a <body>, <context>, or <switch> element). Composition events are used to present the composite map (composite organization).
Each event defines a state machine that should be maintained by the NCL formatter (see Figure 3). Moreover, every event has an associated attribute, named occurrences, which counts how many times the event transits from occurring to sleeping state during a document presentation. Events of presentation and attribution types have also an attribute named repetitions, which counts how many times the event shall be automatically restarted (transited from sleeping to occurring states) by the formatter. This attribute may contain the “indefinite” value, leading to an endless loop of the event occurrences until some external interruption.
[image: image3.emf]occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring

sleeping

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring prepared

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

occurring

sleeping

paused

start

abort

start |

resume

pause

stop |

abort

stop | natural end

Figure 3 - Event state machine

Transition names for the event state machine shall be in agreement with Table 23.
Table 23 - Transition names for an event state machine

	Transition (caused by action)
	Transition name

	sleeping(occurring (start)
	starts

	occurring(sleeping (stop or natural end)
	stops

	occurring(sleeping (abort)
	aborts

	occurring(paused (pause)
	pauses

	paused(occurring (resume or start)
	resumes

	paused(sleeping (stop)
	stops

	paused(sleeping (abort)
	aborts

A presentation event associated with a media node, represented by a <media> element, initializes in the sleeping state. At the beginning of the exhibition of its information units, the event goes to the occurring state. If the exhibition is temporarily suspended, the event stays in the paused state, while this situation lasts. A presentation event may change from occurring to sleeping as a consequence of the natural end of the presentation duration, or due to an action that stops the event. In both cases, the occurrences attribute is incremented, and the repetitions attribute is decremented by one. If after being decremented, the repetitions attribute value is greater than zero, the event is automatically restarted (set again to the occurring state). When the presentation of an event is abruptly interrupted, through an abort presentation command, the event also goes to the sleeping state, but without incrementing the occurrences attribute and setting the repetitions attribute value to zero. The duration of an event is the time it remains in the occurring state. This duration may be intrinsic to the media object, explicitly specified by an author (explicitDur attribute of a <descriptor> element), or derived from a relationship.
A presentation event associated with a composite node represented by a <body> or a <context> element stays in the occurring state while at least one presentation event associated with anyone of the composite child nodes is in the occurring state, or at least one context node child link is being evaluated. It is in the paused state if at least one presentation event associated with anyone of the composite child nodes is in the paused state and all other presentation events associated with the composite child nodes are in the sleeping or paused state. Otherwise, the presentation event is in the sleeping state.
NOTE: More details about the behavior of presentation event state machines for media and composite nodes are given in Chapter 8.

A presentation event associated with a switch node, represented by a <switch> element, stays in the occurring state while the switch child element chosen from the bind rules (selected node) is in the occurring state. It is in the paused state if the selected node is in the paused state. Otherwise, the presentation event is in the sleeping state.

A selection event initializes in the sleeping state. It stays in the occurring state while the corresponding anchor (subset of the information units of a media object) is being selected.

Attribution events stay in the occurring state while the corresponding property values are being modified. Obviously, instantaneous events, like attribution events for simple value assignments, stay in the occurring state only during an infinitesimal period of time.

A composition event (associated to a composite node represented by a <body>, <context> or <switch> element) stays in the occurring state while the composition map is being presented.

Relations are defined based on event states, changes on the event state machines, on event attribute values, and on node (<media>, <body>, <context> or <switch> element) property values. The CausalConnectorFunctionality module allows only the definition of causal relations, defined by the <causalConnector> element of the CausalConnector module.

A <causalConnector> element has a glue expression, which defines a condition expression and an action expression. When the condition expression is satisfied, the action expression shall be executed. The <causalConnector> element shall have the id attribute, which uniquely identifies the element within a document.

A condition expression may be simple (<simpleCondition> element) or composite (<compoundCondition> element), both elements defined by the ConnectorCausalExpression module.

The <simpleCondition> element has a role attribute, whose value shall be unique in the connector’s role set. As aforementioned, a role is a connector interface point, which is associated to node interfaces by a link that refers to the connector. A <simpleCondition> also defines an event type (eventType attribute) and to which transition it refers (transition attribute). The eventType and transition attributes are optional. They may be inferred by the role value if reserved values are used. Otherwise, the eventType and transition attributes are required.
Reserved values used for defining <simpleCondition> roles are stated in Table 24. If an eventType value is “selection”, the role can also define to which selection apparatus (for example, keyboard or remote control keys) it refers, through its key attribute. At least the following values (case sensitive) shall be accept for the key attribute: “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, “I”, “J”, “K”, “L”, “M”, “N”, “O”, “P”, “Q”, “R”, “S”, “T”, “U”, “V”, “W”, “X”, “Y”, “Z”, “*”, “#”, “MENU”, “INFO”, “GUIDE”, “CURSOR_DOWN”, “CURSOR_LEFT”, “CURSOR_RIGHT”, “CURSOR_UP”, “CHANNEL_DOWN”, “CHANNEL_UP”, “VOLUME_DOWN”, “VOLUME_UP”, “ENTER”, “RED”, “GREEN”, “YELLOW”, “BLUE”, “BACK”, “EXIT”, “POWER”, “REWIND”, “STOP”, “EJECT”, “PLAY”, “RECORD”, “PAUSE”.
Table 24 – Reserved condition role values associated to event state machines

	Role Value
	Transition Value
	Event Type

	onBegin
	starts
	presentation

	onEnd
	stops
	presentation

	onAbort
	aborts
	presentation

	onPause
	pauses
	presentation

	onResume
	resumes
	presentation

	onSelection
	starts
	selection

	onBeginAttribution
	starts
	attribution

	onEndAttribution
	stops
	attribution

The role cardinality specifies the minimal (min attribute) and maximal (max attribute) number of participants that may play the role (number of binds) when the <causalConnector> is used for creating a <link>. The minimal cardinality value shall always be a positive finite value, greater than zero and lesser than or equal to the maximal cardinality value. If minimal and maximal cardinalities are not informed, “1” shall be assumed as the default value for both parameters. When the maximal cardinality value is greater than one, several participants may play the same role, i.e., there may be several binds connecting diverse nodes to the same role. The “unbounded” value may be set to the max attribute, if the role may have unlimited binds associated with it. In these two latter cases, a qualifier attribute should be specified informing the logical relationship among the simple condition binds. As described in Table 25 the possible values for the qualifier attribute are: “or” or “and”. If the qualifier establishes an “or” logical operator, the link action will be fired whenever any condition occurs. If the qualifier establishes an “and” logical operator, the link action will be fired after all the simple conditions occur. If not specified, the default value “or” shall be assumed.

Table 25 – Simple condition qualifier values

	Role Element
	Qualifier
	Semantics

	simpleCondition
	or
	True whenever any associated simple condition occurs.

	simpleCondition
	and
	True immediately after all associated simple conditions had occurred.

A delay attribute may also be defined for a <simpleCondition> specifying that the condition is true after a time delay from the time the transition occurs.

The <compoundCondition> element has a Boolean operator attribute (“and” or “or”) relating its child elements: <simpleCondition>, <compoundCondition>, <assessmentStatement> and <compoundStatement>. A delay attribute may also be defined specifying that the compound condition is true after a time delay the expression relating its child elements is true. The <assessmentStatement> and <compoundStatement> elements are defined by the ConnectorAssessmentExpression module.

NOTE: When an “and” compound condition relates more than one trigger condition (that is, a condition that is satisfied only in an infinitesimal time instant – as for example, the end of an object presentation), the compound condition shall be considered true in the instant immediately after all the trigger conditions are satisfied.
An action expression captures actions that may be executed in causal relations and may be composed of a <simpleAction> or a <compoundAction> element, also defined by the ConnectorCausalExpression module.
The <simpleAction> element has a role attribute, which has to be unique in the connector role set. As usual, the role is a connector interface point, which is associated to node interfaces by a <link> that refers to the connector. A <simpleAction> also defines an event type (eventType attribute) and which event state transition it triggers (actionType). The eventType and actionType attributes are optional. They can be inferred by the role value if reserved values are used. Otherwise, the eventType and actionType are required. Reserved values used for defining <simpleAction> roles are stated in Table 26. If an eventType value is “attribution”, the <simpleAction> shall also define the value that shall be assigned, through its value attribute. If the value is specified as “$anyName” (where $ is a reserved symbol and anyName is any string, except reserved role names), the assigned value shall be retrieved from the property associated with the role=“anyName” and defined by a <bind> child element of the <link> element that refers the connector. If this value cannot be retrieved, no attribution shall be made.

Note: Declaring the role=“anyName” attribute in a <bind> element of a <link> implies having a role implicitly declared as attributeAssessment role=“anyName” eventType=“attribution” attributeType=“nodeProperty”/>. This is the only possible case of a <bind> element refering to a role that is not explicitly declared in a connector.
Note: In the case that value=“$anyName”, the value to be attributed shall be the value of a property (<property> element) of a component of the same composition where the link (<link> element) that refers to the event is defined, or a property of the composition where the link is defined, or a property of an element that can be reached through a <port> element of the composition where the link is defined, or even a property of an element that can be reached through a port (elementos <port> or <switchPort>) of a composition nested in the same composition where the link is defined.
As with <simpleCondition> elements the role cardinality specifies the minimal (min attribute) and maximal (max attribute) number of participants that may play the role (number of binds) when the <causalConnector> is used for creating a link. When the maximal cardinality value is greater than one, several participants may play the same role. When it has the “unbounded” value, the number of binds is unlimited. In these two later cases, a qualifier shall be specified. Table 27 presents possible qualifier values.

Table 26 – Reserved action role values associated to event state machines

	Role value
	Action type
	Event type

	start
	start
	presentation

	stop
	stop
	presentation

	abort
	sbort
	presentation

	pause
	pause
	presentation

	resume
	resume
	presentation

	set
	start
	attribution

Table27 – Action qualifier values

	Role element
	Qualifier
	Semantics

	simpleAction
	par
	All actions shall be executed in parallel

	simpleAction
	seq
	All actions shall be executed in the bind sequence

A delay attribute may also be defined for a <simpleAction> specifying that the action shall be fired only after waiting for the specified time. Besides, the <simpleAction> may also define a repeat attribute to be assigned to the repetitions attribute of the event, and a repeatDelay to be waited before repeating the action.

Besides all aforementioned attributes, the <simpleAction> element may also have attributes defined in the Animation Functionality (duration and by attributes), if its eventType value is “attribution” (see 7.2.13).

The <compoundAction> element has an operator attribute (“par” or “seq”) relating its child elements: <simpleAction> and <compoundAction>. Parallel (“par”) and sequential (“seq”) compound actions specify that the execution of actions shall be performed in any order or in a specific order, respectively. A delay attribute may also be defined specifying that the compound action shall be applied after the specified delay.

NOTE: When the sequential operator is used, actions shall be fired in the specified order. However, an action does not need to wait the previous one to be finished in order to be fired.
The ConnectorAssessmentExpression module defines four elements: <assessmentStatement>, <attributeAssessment>, <valueAssessment> and <compoundStatement>.

The <attributeAssessment> has a role attribute, which has to be unique in the connector role set. As usual, the role is a connector interface point, which is associated to node interfaces by a <link> that refers to the connector. An <attributeAssessment> also defines an event type (eventType attribute). If the eventType value is “selection”, the <attributeAssessment> should also define to which selection apparatus (for example, keyboard or remote control keys) it refers, through its key attribute. If the eventType value is “presentation”, the attributeType attribute specifies the event attribute (“occurrences” or “repetition”) or the event state (“state”); if the eventType value is “selection”, the attributeType attribute is optional and, if present, it may have the value “occurrences” (default) or “state”; if the eventType is “attribution” the attributeType is optional and may have the value “nodeProperty” (default), “occurrences”, “repetition” or “state”. In the first case, the event represents a node property to be evaluated, in the other ones the event represents the evaluation of the corresponding attribution event property or the attribution event state. An offset value may be added to an <attributeAssessment> before the comparison. For example, an offset may be added to an attribute assessment to specify: “the screen vertical position plus 50 pixels”.
The <valueAssessment> element has a value attribute that may assume an event state value, or any value to be compared with a node property or event attribute.
The <assessmentStatement> element has a comparator attribute that compares the values inferred from its child elements (<attributeAssessment> element and <valueAssessment> element). In the case of <attributeAssessment>: a node property value [eventType = “attribution” and the attributeType = “nodeProperty”]; or an event attribute value [eventType = (“presentation”, “attribution” or “selection”) and the attributeType = (“occurrences”, or “repetition”)]; or an event state [eventType = (“presentation”, “attribution” or “selection”) and the attributeType = “state”]. In the case of <valueAssessment>: a value of its value attribute.
The <compoundStatement> element has a Boolean operator attribute (“and” or “or”) relating its child elements: <assessmentStatement> or <compoundStatement>. An isNegated attribute may also be defined to specify that the <compoundStatement> child element shall be negated before the Boolean operation is evaluated.
The <causalConnector> element may have <connectorParam> child elements, which are used to parameterize connector attribute values. The ConnectorCommonPart module defines the type of the <connectorParam> element, which has name and type attributes. In order to specify which attributes receive parameter values defined by the connector, their values are specified as the parameter name preceded by the $ symbol. For instance, in order to parameterize the delay attribute, a parameter called actionDelay is defined (<connectorParam name=”actionDelay” type=”unsignedLong”/>) and the value “$actionDelay” is used in the attribute (delay=”$actionDelay”).
The elements of the CausalConnectorFunctionality module, their attributes, and their child elements shall be in agreement with Table 28.
Table 28 – Extended CausalConnectorFunctionality module
	Elements
	Attributes
	Content

	causalConnector
	id
	(connectorParam*, (simpleCondition | compoundCondition), (simpleAction | compoundAction))

	connectorParam
	name, type
	empty

	simpleCondition
	role, delay, eventType, key, transition, min, max, qualifier
	empty

	compoundCondition
	operator, delay
	((simpleCondition | compoundCondition)+, (assessmentStatement | compoundStatement)*)

	simpleAction
	role, delay, eventType, actionType, value, min, max, qualifier, repeat, repeatDelay, duration, by
	empty

	compoundAction
	operator, delay
	(simpleAction | compoundAction)+

	assessmentStatement
	comparator
	(attributeAssessment, (attributeAssessment | valueAssessment))

	attributeAssessment
	role, eventType, key, attributeType, offset
	empty

	valueAssessment
	value
	empty

	compoundStatement
	operator, isNegated
	(assessmentStatement | compoundStatement)+

The ConnectorBase module defines an element named <connectorBase>, which allows grouping connectors. As usual, the <connectorBase> element should have the id attribute, which uniquely identifies the element within a document. The exact content of a connector base is specified by the language profile that uses the Connectors Facility. However, since the definition of connectors is not easily done by naïve users, the idea is to have expert users defining connectors, storing them in libraries (connector bases) that may be imported, and making them available to others for creating links. Appendix C gives an extensive example of connector definitions that may be imported.
The element of the ConnectorBase module, its attributes, and its child elements shall be in agreement with Table 29.
Table 29 – Extended ConnectorBase module

	Elements
	Attributes
	Content

	connectorBase
	id
	(importBase|causalConnector)*

7.2.9 Presentation control functionality

The purpose of the Presentation Control functionality is to specify content and presentation alternatives for a document. This functional area is partitioned into four modules, named TestRule, TestRuleUse, ContentControl and DescriptorControl.
The TestRule module allows the definition of rules that, when satisfied, select alternatives for document presentation. The specification of rules in NCL 3.0 was done in a separate module, because they are useful for defining either alternative components or alternative descriptors.

The <ruleBase> element specifies a set of rules, and shall be defined as a child element of the <head> element. These rules may be simple, defined by the <rule> element, or composite, defined by the <compositeRule> element. Simple rules define an identifier (id attribute), a variable (var attribute), a value (value attribute), and a comparator (comparator attribute) relating the variable to the value. The variable shall be a property of the settings node (<media> element of application/x-ginga-settings type), that is, the var attribute shall have the same value of a <property> name attribute, defined as a child of the <media> element of application/x-ginga-settings type. Composite rules have an identifier (id attribute) and a Boolean operator (“and” or “or” – operator attribute) relating their child rules. As usual, the id attribute uniquely identifies the <rule> and <compositeRule> elements within a document.

The elements of the TestRule module, their attributes, and their child elements shall be in agreement with Table 30.
Table 30 – Extended TestRule module

	Elements
	Attributes
	Content

	ruleBase
	id
	(importBase|rule|compositeRule)+

	rule
	id, var, comparator, value
	empty

	compositeRule
	id, operator
	(rule | compositeRule)+

The TestRuleUse defines the <bindRule> element, which is used to associate rules with components of a <switch> or <descriptorSwitch> element, through its rule and constituent attributes, respectively.

The element of the TestRuleUse module and its attributes shall be in agreement with Table 31.
Table 31 – Extended TestRuleUse module

	Elements
	Attributes
	Content

	bindRule
	constituent, rule
	empty

The ContentControl module specifies the <switch> element, allowing the definition of alternative document nodes to be chosen during presentation time. Test rules used to choose the switch component to be presented are defined by the TestRule module or are test rules specifically defined and embedded in an NCL formatter implementation. The ContentControl module also defines the <defaultComponent> element, whose component attribute (also of IDREF type) identifies the default element that shall be selected if none of the bindRule rules is evaluated as true.
In order to allow links to anchor on the component chosen after evaluating the rules of a switch, a language profile should also include the SwitchInterface module, which allows the definition of special interfaces, named <switchPort>.
As usual, <switch> elements shall have the id attribute, which uniquely identifies the element within a document. The refer attribute is an extension defined in the Reuse module (see 7.2.11).

When a <context> is defined as a child of a <switch> element, the <link> elements recursively contained in the <context> shall be considered by an NCL player only if the <context> is selected after the switch evaluation. Otherwise, the <link> elements should be considered disabled and shall not interfere in the document presentation.

The ContentControl module elements, their attributes and their child elements shall be in agreement with a Table 32.
Table 32 – Extended ContentControl module

	Elements
	Attributes
	Content

	switch
	id, refer
	defaultComponent?, (switchPort | bindRule | media | context | switch)*)

	defaultComponent
	component
	empty

The DescriptorControl module specifies the <descriptorSwitch> element, which contains a set of alternative descriptors to be associated with an object. The <descriptorSwitch> elements shall have the id attribute, which uniquely identifies the element within a document. Analogous to the <switch> element, the <descriptorSwitch> choice is done during presentation time, using test rules defined by the TestRule module, or test rules specifically defined and embedded in an NCL formatter implementation. The DescriptorControl module also defines the <defaultDescriptor> element, whose descriptor attribute (also of IDREF type) identifies the default element that shall be selected if none of the bindRule rules is evaluated as true.
The DescriptorControl module elements, their attributes, and their child elements shall be in agreement with Table 33.
Table 33 – Extended DescriptorControl module

	Elements
	Attributes
	Content

	descriptorSwitch
	id
	(defaultDescriptor?, (bindRule | descriptor)*)

	defaultDescriptor
	descriptor
	empty

During a document presentation, from the moment on a <switch> is evaluated, it is considered resolved until the end of the current switch presentation, that is, while its corresponding presentation event is in the “occurring” or “paused” state. During a document presentation, from the moment on a <descriptorSwitch> is evaluated, it is considered resolved until the end of the presentation of the <media> element that was associated to it, that is, while any presentation event associated with the <media> element is in the “occurring” or “paused” state.

NOTE: NCL formatters should delay the switch evaluation to the moment that a link anchoring in the switch needs to be evaluated. The descriptorSwitch evaluation should be delayed until the object referring the descriptorSwitch needs to be prepared to be presented.

7.2.10 Timing functionality

The Timing functionality defines the Timing module. The Timing module allows the definition of temporal attributes for document components. Basically, this module defines attributes for specifying what will happen with an object at the end of its presentation (freeze), and the ideal duration of an object (explicitDur). These attributes may be incorporated by <descriptor> elements.

7.2.11 Reuse functionality

NCL allows intensive reuse of its elements. The NCL Reuse functionality is partitioned into three modules: Import, EntityReuse and ExtendedEntityReuse.
In order to allow an entity base to incorporate another already-defined base, the Import module defines the <importBase> element, which has two attributes: documentURI and alias. The documentURI refers to a URI corresponding to the NCL document containing the base to be imported. The alias attribute specifies a name to be used as prefix when referring to elements of this imported base. The alias name shall be unique in a document and its scope is constrained to the document that has defined the alias attribute. The reference would have the format: alias#element_id. The import operation is transitive, that is, if baseA imports baseB that imports baseC, then baseA imports baseC. However, the alias defined for baseC inside baseB shall not be considered by baseA.

When a language profile uses the Import module, the following specifications are allowed:

· the <descriptorBase> element may have a child <importBase> element referring to a URI corresponding to another NCL document containing the descriptor base (in fact its child elements) to be imported and nested. When a descriptor base is imported, the region base and the rule base, when present in the imported document, are also automatically imported to the corresponding region and rule bases of the importing document;
· the <connectorBase> element may have a child <importBase> element referring to a URI corresponding to another connector base (in fact its child elements) to be imported and nested;
· the <transitionBase> element may have a child <importBase> element referring to a URI corresponding to another transition base (in fact its child elements) to be imported and nested;
· the <ruleBase> element may have a child <importBase> element referring to a URI corresponding to another NCL document containing the rule base (in fact its child elements) to be imported and nested;
· the <regionBase> element may have a child <importBase> element referring to a URI corresponding to another NCL document containing the region base (in fact its child elements) to be imported and nested. Although NCL defines its layout model, nothing prevents an NCL document from using other layout models, since they define regions where objects may be presented, as for example SMIL 2.1 [SMIL 2.1 Specification, 2005] layout models. On importing a <regionBase>, an optional attribute named region may be specified within the <importBase> element. When present, the attribute shall identify the id of a <region> element declared in the <regionBase> element of the host document (the document that did the importing operation). As a consequence, all child <region> elements of the imported <regionBase> shall be considered as child <region> elements of the region referred by the <importBase>’s region attribute. If not specified, the child <region> elements of the imported <regionBase> shall be considered children of the host document <regionBase> element.
The <importedDocumentBase> element specifies a set of imported NCL documents, and shall be defined as a child element of the <head> element. In addition, <importedDocumentBase> elements shall have the id attribute, which uniquely identifies the element within a document.

An NCL document may be imported through the <importNCL> element. All bases defined inside an NCL document, as well as the document <body> element, are imported all at once through the <importNCL> element. The bases will be treated as if each one is imported by an <importBase> element. The imported <body> element will be treated as a <context> element. It should be stressed that the <importNCL> element does not “include” the referred NCL document but only makes the referred document visible to have its components reused by the document that has defined the <importNCL> element. Thus, imported <body>, as well as any of its contained nodes, may be reused inside the <body> element of the importing NCL document.

The <importNCL> element has two attributes: documentURI, and alias. The documentURI refers to a URI corresponding to the document to be imported. The alias attribute specifies a name to be used when referring an element of this imported document. As in the <importBase> element, the name shall be unique (type=ID) and its scope is constrained to the document that has defined the alias attribute. The reference would have the format: alias#element_id. It is important to note that the same alias should be used when referring to elements defined in the imported document bases (<regionBase>, <connectorBase>, <descriptorBase>, etc.). The <importNCL> element operation has also the transitive property, that is, if documentA imports documentB that imports documentC, then documentA imports documentC. However, the alias defined for documentC inside documentB shall not be considered by documentA.

The elements of the Import module, their child elements, and their attributes shall be in agreement with Table 34.
Table 34 – Extended Import module

	Elements
	Attributes
	Content

	importBase
	alias, documentURI, region
	empty

	importedDocumentBase
	id
	(importNCL)+

	importNCL
	alias, documentURI
	empty

The EntityReuse module allows an NCL element to be reused. This module defines the refer attribute, which refers to an element id that will be reused. Only <media>, <context>, <body> and <switch> may be reused. An element that refers to another element cannot be reused; that is, its id cannot be the value of any refer attribute.
NOTE: If the referred node is defined within an imported documentD, the refer attribute value shall have the format “alias#id”, where “alias” is the value of the alias attribute associated with the D import.

When a language profile uses this module, it may add the refer attribute to:

· a <media> or <switch> element. In this case, the referred element shall be, respectively, a <media> or <switch> element, which will represent the same node previously defined in the document <body> itself or in an external imported <body>. This referred element shall directly contain the definition of all its attributes and child elements;
· a <context> element. In this case, the referred element shall be a <context> or a <body> element that will represent the same context, which is previously defined in the document <body> itself or in an external imported <body>. This referred element shall directly contain the definition of all its attributes and child elements.
When an element declares a refer attribute, all attributes and child elements defined by the referred element are inherited. All other attributes and child elements, if they are defined by the referring element, shall be ignored by the formatter, except the id attribute that shall be defined. The only other exception is for <media> elements, in which new child <area> and <property> elements may be added, and a new attribute, instance, may be defined. If the new added <property> element has the same name attribute of an already existing <property> element (defined in the reused <media> element), the new added <property> shall be ignored. Similarly, if the new added <area> element has the same id attribute of an already existent <area> element (defined in the reused <media> element), the new added <area> shall be ignored. The instance attribute is defined in the ExtendedEntityReuse module and has “new” as its default string value.
The referred element and the element that refers to it shall be considered the same, regarding its data specification. In other words it means that a single NCM node [NCMCore, 2005] can be represented by more than one NCL element. As nodes contained in an NCM composite node define a set, an NCM node may be represented by no more than one NCL element inside a composition. This means that the id attribute of an NCL element representing an NCM node is not only a unique identifier for the element, but also the unique identifier for the NCM node in the composition.
EXAMPLE
Assume the NCL element (node1) that defines an NCM node. The NCL elements that refer to it (node1ReuseA, node1ReuseB) represent the same NCM node. In other words, the single NCM node is represented by more than one NCL element (node1, node1ReuseA, and node1ReuseB). Moreover, since nodes contained in an NCM composite node define a set, the NCL elements node1, node1ReuseA, and node1ReuseB shall each be declared inside a different composition.

The referred element and the element that refers to it shall also be considered the same regarding their presentation, if the instance attribute receives a “instSame” or “gradSame” value. Therefore, the following semantics shall be respected. Assume the set of <media> elements composed of the referred <media> element and all the referring <media> elements. If any element of the subset formed by the referred <media> element and all other <media> elements having the instance attribute equal to “instSame” or “gradSame” is scheduled to be presented, all other elements in this subset, which are not child descendents of a <switch> element, are also assumed as scheduled for presenting, and more than that, when they are being presented, they shall be represented by the same presentation instance. Descendent elements of a <switch> element shall also have the same behavior, if all rules needed to present these elements are satisfied; otherwise they shall not be scheduled for presenting. If the instance attribute is equal to “instSame”, all scheduled nodes of the subset shall be immediately presented through a unique instance (start instruction applied on all subset elements). If the instance attribute is equal to “gradSame”, all scheduled nodes of the subset shall be presented through a unique instance, but now gradually, as while start instructions are applied, coming from a link, etc. The common instance in presentation shall notify all events associated with the <area> and <property> elements defined in all <media> elements of this subset that were scheduled for presenting. On the other hand, the <media> elements in the set that have instance attribute values equal to “new” shall not be scheduled for presenting. When they are individually scheduled for presenting, no other element in the set is affected. Moreover, new independent presentation instances shall be created at each individual presentation starting.
7.2.12 Navigational Key Functionality

The Navigational Key functionality defines the KeyNavigation module that provides the extensions necessary to describe focus movement operations using a control device like a remote control. Basically, the module defines attributes that may be incorporated by <descriptor> elements.

The focusIndex attribute specifies an index for the <media> element to which the focus may be applied, when this element is in exhibition using the <descriptor> element that defined the attribute. When a <descriptor> element does not define this attribute, it is considered as if no focus could be set. In a certain presentation moment, if the focus has not been already defined, or is lost, a focus will be initially applied to the element that is being presented whose descriptor has the smallest index value. Values of focusIndex attribute shall be unique in an NCL document. Otherwise, the repeated attributes will be ignored if in a certain moment there is more than one <media> element to gain the focus. Moreover, when a <media> element refers to another <media> element (using the refer attribute specified in Section 7.2.11), it shall ignore the focusIndex specified by the <descriptor> element associated with the referred <media> element.
The moveUp attribute specifies a value equal to the focusIndex value associated to an element to which the focus should be applied when the “up arrow key” is pressed. The moveDown attribute specifies a value equal to the focusIndex value associated to an element to which the focus should be applied when the “down arrow key” is pressed. The moveRight attribute specifies a value equal to the focusIndex value associated to an element to which the focus should be applied when the “right arrow key” is pressed. The moveLeft attribute specifies a value equal to the focusIndex value associated to an element to which the focus should be applied when the “left arrow key” is pressed.
When the focus is applied to an element with the visible property set to false, or to an element that it is not being presented, the current focus does not move.

The focusSrc attribute can specify an alternative media source to be presented, instead of the current presentation, if an element receives the focus. This attribute follows the same rules of the src attribute of the <media> element.
When an element receives a focus, the square box defined by the element positioning attributes shall be decorated. The focusBorderColor attribute defines the decorative color and may receive the reserved color names: “white”, “black”, “silver”, “gray”, “red”, “maroon”, “fuchsia”, “purple”, “lime”, “green”, “yellow”, “olive”, “blue”, “navy”, “aqua”, or “teal”. The focusBorderWidth attribute defines the width in pixels of the decorative border (0 means that no border will appear, positive values means that the border is outside the object content, and negative values means that the border is drawn over the object content), and the focusBorderTransparency attribute defines the decorative color transparency. The focusBorderTransparency shall be a real value between 0 and 1, or a real value in the range [0,100] ending with the character “%” (e.g. 30%), with “1” or “100%” meaning full transparency and “0” or “0%” meaning no transparency. When the focusBorderColor, the focusBorderWidth, or the focusBorderTransparency are not defined, default values shall be assumed. These values are specified in properties of the <media> element of application/x-ginga-settings type: defaultFocusBorderColor, defaultFocusBorderWidth, defaultFocusTransparency, respectively.
When an element on focus is selected by pressing the activation (select or enter) key, the focusSelSrc attribute can specify an alternative media source to be presented, instead of the current presentation. This attribute follows the same rules of the src attribute of the <media> element. When selected, the square box defined by the element positioning attributes shall be decorated with the color defined by the selBorderColor attribute (default value specified by the defaultSelBorderColor of the <media> element of application/x-ginga-settings type), the width of the decorative border defined by the focusBorderWidth attribute, and the decorative color transparency defined by the focusBorderTransparency attribute.

When an element on focus is selected by pressing the “activate (select or enter) key”, the focus control shall be passed to the <media> element renderer (player). The player can then follow its own rules for navigation. The focus control shall be passed back to the NCL formatter when the “back key” is pressed. In this case, the focus goes to the element identified by the service.currentFocus atribute of the settings node (<media> element of application/x-ginga-settings type).
Note
The focus control may also be passed by setting the service.currentKeyMaster attribute of the settings node (<media> element of application/x-ginga-settings type). This may be done through a link action, through an imperative code command executed by an imperative-code node (NCLua or NCLet object), or by the player of a node that has the current control.
7.2.13 Animation functionality

Animation in the cartoon sense is actually a combination of two factors: support for object drawing and support for object motion ― or more correctly, support for object alteration as a function of time.

NCL is not a content format and, as such, does not have support for creating media objects and it does not have a generalized method for altering media object content. Instead, NCL is a scheduling and orchestration format. This means that NCL cannot be used to make cartoons, but can be used to render cartoon objects in the context of a general presentation, and to change the timing and rendering properties of a cartoon (or any other) object as a whole, while it is being displayed.

The animation primitives of NCL allow values of node properties to be changed during an active explicitly declared duration. Since NCL animation can be computationally intensive, it is only supported by the EDTV profile and only the properties that define numerical values and colors may be animated.
The Animation Functionality defines the Animation module that provides the extensions necessary to describe what happens when a node property value is changed. Basically, the module defines attributes that may be incorporated by <simpleAction> elements of a connector, if its eventType value is “attribution”. Two new attributes are defined: duration and by.
When setting a new value to a property the change is instantaneous by default (duration=(0(), but the change may also be carried out during an explicitly declared duration, specified by the duration attribute.
Also, when setting a new value to a property the change from the old value to the new one may be linear by default (by=(indefinite(), or carried out step by step, with the pace specified by the by attribute.

The combination of the duration and by attribute definitions gives how (discretely or linearly) the change shall be performed and its transforming interval.

7.2.14 SMIL Transition Effects functionality

The SMIL Transition Effects functionality is divided into three modules: TransitionBase, coming from NCL specifications, BasicTransitions and TransitionModifiers.
The TransitionBase module is defined by NCL 3.0 and consists on the <transitionBase> element that specifies a set of transition effects, and shall be defined as a child element of the <head> element.
The <transitionBase> element, its child elements, and its attributes shall be in agreement with Table 35.
Table 35 – Extended TransitionBase module

	Elements
	Attributes
	Content

	transitionBase
	id
	(importBase, transition)+

The BasicTransitions module is imported from SMIL 2.1 specification [SMIL 2.1 Specification, 2005]. It has just one element called <transition> element.

In NCL 3.0 Enhanced DTV profile, the <transition> element is specified in the <transitionBase> element and allows a transition template to be defined. Each <transition> element defines a single transition template and shall have an id attribute so that it may be referred inside a <descriptor> element.
The <transition> element attributes are: type; subtype; dur; startProgress; endProgress; direction; and fadeColor.

Transitions are classified according to a two-level taxonomy of types and subtypes. Each of the transition types describe a group of transitions which are closely related. Within that type, each of the individual transitions is assigned a subtype which emphasizes the distinguishing characteristic of that transition.

The type attribute is required and is used to specify the general transition. If the named type is not supported by the NCL formatter, the transition is ignored. Note that this is not an error condition, since implementations are free to ignore transitions.

The subtype attribute provides transition-specific control. This attribute is optional and, if specified, shall be one of the transition subtypes appropriate for the specified type. If this attribute is not specified then the transition reverts to the default subtype for the specified transition type. Only the default subtype for the five required transition types listed in Table 36 shall be supported.

Table 36 – Required transition types and subtypes
	Transition type
	Default transition subtype

	barWipe
	leftToRight

	irisWipe
	rectangle

	clockWipe
	clockwiseTwelve

	snakeWipe
	topLeftHorizontal

	fade
	crossfade

The dur attribute specifies the duration of the transition. The default duration is 1 second.

The startProgress attribute specifies the amount of progress through the transition at which to begin execution. Legal values are real numbers in the range [0.0,1.0]. For instance, we can want to begin a crossfade with the destination image being already 50% faded in. For this case, startProgress would be 0.5. The default value is 0.0.

The endProgress attribute specifies the amount of progress through the transition at which to end execution. Legal values are real numbers in the range [0.0,1.0], and the value of this attribute shall be greater than or equal to the value of the startProgress attribute. If endProgress is equal to startProgress, then the transition remains at a fixed progress for the duration of the transition. The default value is 1.0.

The direction attribute specifies the direction the transition will run. The legal values are “forward” and “reverse”. The default value is “forward”. Note that not all transitions will have meaningful reverse interpretations. For instance, a crossfade is not a geometric transition, and therefore has no interpretation of reverse direction. Transitions that do not have a reverse interpretation should have the direction attribute ignored and the default value of “forward” assumed.

If the value of the type attribute is “fade” and the value of the subtype attribute is “fadeToColor” or “fadeFromColor”, then the fadeColor attribute specifies the ending or starting color of the fade. If the value of the type attribute is not “fade”, or the value of the subtype attribute is not “fadeToColor” or “fadeFromColor”, then the fadeColor attribute shall be ignored. The default value is “black”.

The BasicTransition module also defines attributes to be used in <descriptor> elements to use the transition templates defined by <transition> elements: transIn and transOut attributes. Transitions specified with a transIn attribute will begin at the beginning of the media element's active duration (when the object presentation begins to occur). Transitions specified with a transOut attribute will end at the end of the media element's active duration (when the object presentation transits from occurring to sleeping state).
The transIn and transOut attributes are added to <descriptor> elements. The default value of both attributes is an empty string, which indicates that no transition shall be performed.

The value of the transIn and transOut attributes is a semicolon-separated list of transition identifiers. Each of the identifiers shall correspond to the value of the XML identifier of one of the transition elements previously defined in the <transitionBase> element. The purpose of the semicolon-separated list is to allow authors to specify a set of fallback transitions if the preferred transition is not available. The first transition in the list should be performed if the user-agent has implemented this transition. If this transition is not available, then the second transition in the list should be performed, and so on. If the value of the transIn or transOut attribute does not correspond to the value of the XML identifier of any one of the transition elements previously defined, then this is an error. In the case of this error, the value of the attribute should be considered to be the empty string and therefore no transition should be performed.

All the transitions defined in the SMIL BasicTransitions module accept four additional attributes that may be used to control the visual appearance of the transitions, as specified by the TransitionModifiers module. The horRepeat attribute specifies how many times to perform the transition pattern along the horizontal axis. The default value is 1 (the pattern occurs once horizontally). The vertRepeat attribute specifies how many times to perform the transition pattern along the vertical axis. The default value is 1 (the pattern occurs once vertically). The borderWidth attribute specifies the width of a generated border along a wipe edge. Legal values are integers greater than or equal to 0. If borderWidth value is equal to 0, then no border should be generated along the wipe edge. The default value is 0. If the value of the type attribute is not “fade”, then the borderColor attribute specifies the content of the generated border along a wipe edge. If the value of this attribute is a color, then the generated border along the wipe or warp edge is filled with this color. If the value of this attribute is "blend", then the generated border along the wipe blend is an additive blend (or blur) of the media sources. The default value for this attribute is "black".

The element of the Extended BasicTransition Module, its child elements, and its attributes shall be in agreement with Table 37.
Table 37 – Extended BasicTransition module

	Elements
	Attributes
	Content

	transition
	id, type, subtype, dur, startProgress, endProgress, direction, fadeColor, horRepeat, vertRepeat, borderWidth, borderColor
	empty

7.2.15 SMIL Metainformation functionality

Metainformation does not contain content information that is used or displayed during a presentation. Instead, it contains information about content that is used or displayed. The SMIL Metainformation Functionality is composed of the Metainformation module.

The Metainformation module contains two elements that allow description of NCL documents. The <meta> element specifies a single property/value pair in the name and content attributes, respectively. The <metadata> element contains information that is also related to metainformation of the document. It acts as the root element of the RDF tree. The <metadata> element may have as child elements: RDF elements and its sub-elements [RDF, 1999].

The elements of the Metainformation module, their child elements, and their attributes shall be in agreement with Table 38.
Table 38 – Extended Metainformation module

	Elements
	Attributes
	Content

	meta
	name, content
	empty

	metadata
	empty
	RDF tree

7.3 NCL language profiles for SBTVD
7.3.1 Profiles modules
Each NCL profile may group a subset of NCL modules, allowing the creation of languages according to user needs.

Any document in conformance with NCL profiles shall have the <ncl> element as its root element.

The NCL 3.0 Full profile, also called NCL 3.0 Language profile, is the “complete profile” of the NCL 3.0 language. It comprises all NCL modules (including those discussed in 7.2) and provides all facilities for declarative authoring of NCL documents.
The profiles defined for the SBTVD are:

a)
NCL 3.0 Enhanced DTV profile: includes the Structure, Layout, Media, Context, MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface, Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule, TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse, ExtendedEntityReuse KeyNavigation, Animation and TransitionBase modules of NCL 3.0, and also the BasicTransition, and Metainformation modules of SMIL2.0. The tables of 7.2 show each module element, already extended by the attributes and child elements inherited from other modules, for this profile.(see XML schemas in 7.3.2).
b)
NCL 3.0 CausalConnector profile: allows the creation of simple hypermedia connectors. This profile includes the Structure, CausalConnectorFunctionality, and ConnectorBase modules. In the profile, the <body> element of the Structure module is not used (see XML schemas in 7.3.3).
c)
NCL 3.0 Basic DTV profile: includes the Structure, Layout, Media, Context, MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface, Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule, TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse, ExtendedEntityReuse and KeyNavigation modules. The tables of 7.3.4 show each module element for this profile, already extended by the attributes and child elements inherited from other modules. (see XML schemas in 7.3.5).
7.3.2 The Schema of the NCL 3.0 Enhanced DTV Profile

NCL30EDTV.xsd

<!--

XML Schema for the NCL Language

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/profiles/NCL30EDTV.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:animation="http://www.ncl.org.br/NCL3.0/Animation"

 xmlns:compositeInterface="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 xmlns:connectorCausalExpression="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 xmlns:contentControl="http://www.ncl.org.br/NCL3.0/ContentControl"

 xmlns:context="http://www.ncl.org.br/NCL3.0/Context"

 xmlns:descriptor="http://www.ncl.org.br/NCL3.0/Descriptor"

 xmlns:entityReuse="http://www.ncl.org.br/NCL3.0/EntityReuse"

 xmlns:extendedEntityReuse="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 xmlns:descriptorControl="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 xmlns:import="http://www.ncl.org.br/NCL3.0/Import"

 xmlns:keyNavigation="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 xmlns:layout="http://www.ncl.org.br/NCL3.0/Layout"

 xmlns:linking="http://www.ncl.org.br/NCL3.0/Linking"

 xmlns:media="http://www.ncl.org.br/NCL3.0/Media"

 xmlns:mediaAnchor="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 xmlns:propertyAnchor="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"

 xmlns:switchInterface="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRule"

 xmlns:testRuleUse="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 xmlns:timing="http://www.ncl.org.br/NCL3.0/Timing"

 xmlns:transitionBase="http://www.ncl.org.br/NCL3.0/TransitionBase"

 xmlns:metainformation="http://www.w3.org/2001/SMIL20/Metainformation"

 xmlns:basicTransition="http://www.w3.org/2001/SMIL20/BasicTransitions"

 xmlns:profile="http://www.ncl.org.br/NCL3.0/EDTVProfile"

 targetNamespace="http://www.ncl.org.br/NCL3.0/EDTVProfile"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- import the definitions in the modules namespaces -->

 <import namespace="http://www.ncl.org.br/NCL3.0/Animation"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Animation.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CompositeNodeInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CausalConnectorFunctionality.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorBase.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCausalExpression.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ContentControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ContentControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Context"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Context.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Descriptor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Descriptor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30DescriptorControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/EntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30EntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ExtendedEntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Import"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Import.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30KeyNavigation.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Layout"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Layout.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Linking"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Linking.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Media"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Media.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30MediaContentAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30PropertyAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Structure"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Structure.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30SwitchInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRule"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRule.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRuleUse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Timing"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Timing.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TransitionBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TransitionBase.xsd"/>

 <import namespace="http://www.w3.org/2001/SMIL20/Metainformation"

 schemaLocation="http://www.w3.org/2001/SMIL20/smil20-Metainformation.xsd"/>

 <import namespace="http://www.w3.org/2001/SMIL20/BasicTransitions"

 schemaLocation="http://www.w3.org/2001/SMIL20/smil20-BasicTransitions.xsd"/>

 <!-- = -->

 <!-- Structure -->

 <!-- = -->

 <!-- extends ncl element -->

 <element name="ncl" substitutionGroup="structure:ncl"/>

 <!-- extends head element -->

 <complexType name="headType">

 <complexContent>

 <extension base="structure:headPrototype">

 <sequence>

 <element ref="profile:importedDocumentBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:ruleBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:transitionBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:regionBase" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="profile:descriptorBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:connectorBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:meta" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="profile:metadata" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>
 <element name="head" type="profile:headType" substitutionGroup="structure:head"/>

 <!-- extends body element -->

 <complexType name="bodyType">

 <complexContent>

 <extension base="structure:bodyPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:switch"/>

 <element ref="profile:link"/>

 <element ref="profile:meta"/>

 <element ref="profile:metadata"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="body" type="profile:bodyType" substitutionGroup="structure:body"/>

 <!-- = -->

 <!-- Layout -->

 <!-- = -->

 <!-- extends regionBase element -->

 <complexType name="regionBaseType">

 <complexContent>

 <extension base="layout:regionBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:region"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="regionType">

 <complexContent>

 <extension base="layout:regionPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="regionBase" type="profile:regionBaseType" substitutionGroup="layout:regionBase"/>

 <element name="region" type="profile:regionType" substitutionGroup="layout:region"/>

 <!-- = -->

 <!-- Media -->

 <!-- = -->

 <!-- extends Media elements -->

 <!-- media interface element groups -->

 <group name="mediaInterfaceElementGroup">

 <choice>

 <element ref="profile:area"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="mediaType">

 <complexContent>

 <extension base="media:mediaPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:mediaInterfaceElementGroup"/>

 </choice>

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 <attributeGroup ref="extendedEntityReuse:extendedEntityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="media" type="profile:mediaType" substitutionGroup="media:media"/>

 <!-- = -->

 <!-- Context -->

 <!-- = -->

 <!-- extends context element -->

 <!-- composite node interface element groups -->

 <group name="contextInterfaceElementGroup">

 <choice>

 <element ref="profile:port"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="contextType">

 <complexContent>

 <extension base="context:contextPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:link"/>

 <element ref="profile:switch"/>

 <element ref="profile:meta"/>

 <element ref="profile:metadata"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="context" type="profile:contextType" substitutionGroup="context:context"/>

 <!-- = -->

 <!-- MediaContentAnchor -->

 <!-- = -->

 <!-- extends area element -->

 <complexType name="componentAnchorType">

 <complexContent>

 <extension base="mediaAnchor:componentAnchorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="area" type="profile:componentAnchorType" substitutionGroup="mediaAnchor:area"/>

 <!-- = -->

 <!-- CompositeNodeInterface -->

 <!-- = -->

 <!-- extends port element -->

 <complexType name="compositeNodePortType">

 <complexContent>

 <extension base="compositeInterface:compositeNodePortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="port" type="profile:compositeNodePortType" substitutionGroup="compositeInterface:port"/>

 <!-- = -->

 <!-- PropertyAnchor -->

 <!-- = -->

 <!-- extends property element -->

 <complexType name="propertyAnchorType">

 <complexContent>

 <extension base="propertyAnchor:propertyAnchorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="property" type="profile:propertyAnchorType" substitutionGroup="propertyAnchor:property"/>

 <!-- = -->

 <!-- SwitchInterface -->

 <!-- = -->

 <!-- extends switchPort element -->

 <complexType name="switchPortType">

 <complexContent>

 <extension base="switchInterface:switchPortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="mapping" substitutionGroup="switchInterface:mapping"/>

 <element name="switchPort" type="profile:switchPortType" substitutionGroup="switchInterface:switchPort"/>

 <!-- = -->

 <!-- Descriptor -->

 <!-- = -->

 <!-- substitutes descriptorParam element -->

 <element name="descriptorParam" substitutionGroup="descriptor:descriptorParam"/>

 <!-- extends descriptor element -->

 <complexType name="descriptorType">

 <complexContent>

 <extension base="descriptor:descriptorPrototype">

 <attributeGroup ref="layout:regionAttrs"/>

 <attributeGroup ref="timing:explicitDurAttrs"/>

 <attributeGroup ref="timing:freezeAttrs"/>

 <attributeGroup ref="keyNavigation:keyNavigationAttrs"/>

 <attributeGroup ref="profile:transitionAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptor" type="profile:descriptorType" substitutionGroup="descriptor:descriptor"/>

 <!-- extends descriptorBase element -->

 <complexType name="descriptorBaseType">

 <complexContent>

 <extension base="descriptor:descriptorBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:descriptor"/>

 <element ref="profile:descriptorSwitch"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorBase" type="profile:descriptorBaseType" substitutionGroup="descriptor:descriptorBase"/>

 <!-- = -->

 <!-- Linking -->

 <!-- = -->

 <!-- substitutes linkParam and bindParam elements -->

 <element name="linkParam" substitutionGroup="linking:linkParam"/>

 <element name="bindParam" substitutionGroup="linking:bindParam"/>

 <!-- extends bind element and link element, as a consequence-->

 <complexType name="bindType">

 <complexContent>

 <extension base="linking:bindPrototype">

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="bind" type="profile:bindType" substitutionGroup="linking:bind"/>

 <!-- extends link element -->

 <complexType name="linkType">

 <complexContent>

 <extension base="linking:linkPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="link" type="profile:linkType" substitutionGroup="linking:link"/>

 <!-- = -->

 <!-- Connector -->

 <!-- = -->

 <!-- extends connectorBase element -->

 <complexType name="connectorBaseType">

 <complexContent>

 <extension base="connectorBase:connectorBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:causalConnector" />

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="simpleActionType">

 <complexContent>

 <extension base="connectorCausalExpression:simpleActionPrototype">

 <attributeGroup ref="animation:animationAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="connectorBase" type="profile:connectorBaseType" substitutionGroup="connectorBase:connectorBase"/>

 <element name="causalConnector" substitutionGroup="causalConnectorFunctionality:causalConnector"/>

 <element name="connectorParam" substitutionGroup="causalConnectorFunctionality:connectorParam"/>

 <element name="simpleCondition" substitutionGroup="causalConnectorFunctionality:simpleCondition"/>

 <element name="compoundCondition" substitutionGroup="causalConnectorFunctionality:compoundCondition"/>

 <element name="simpleAction" type="profile:simpleActionType" substitutionGroup="causalConnectorFunctionality:simpleAction"/>

 <element name="compoundAction" substitutionGroup="causalConnectorFunctionality:compoundAction"/>

 <element name="assessmentStatement" substitutionGroup="causalConnectorFunctionality:assessmentStatement"/>

 <element name="attributeAssessment" substitutionGroup="causalConnectorFunctionality:attributeAssessment"/>

 <element name="valueAssessment" substitutionGroup="causalConnectorFunctionality:valueAssessment"/>

 <element name="compoundStatement" substitutionGroup="causalConnectorFunctionality:compoundStatement"/>

 <!-- = -->

 <!-- TestRule -->

 <!-- = -->

 <!-- extends rule element -->

 <complexType name="ruleType">

 <complexContent>

 <extension base="testRule:rulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="rule" type="profile:ruleType" substitutionGroup="testRule:rule"/>

 <!-- extends compositeRule element -->

 <complexType name="compositeRuleType">

 <complexContent>

 <extension base="testRule:compositeRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="compositeRule" type="profile:compositeRuleType" substitutionGroup="testRule:compositeRule"/>

 <!-- extends ruleBase element -->

 <complexType name="ruleBaseType">

 <complexContent>

 <extension base="testRule:ruleBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:rule"/>

 <element ref="profile:compositeRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="ruleBase" type="profile:ruleBaseType" substitutionGroup="testRule:ruleBase"/>

 <!-- = -->

 <!-- TestRuleUse -->

 <!-- = -->

 <!-- extends bindRule element -->

 <complexType name="bindRuleType">

 <complexContent>

 <extension base="testRuleUse:bindRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="bindRule" type="profile:bindRuleType" substitutionGroup="testRuleUse:bindRule"/>

 <!-- = -->

 <!-- ContentControl -->

 <!-- = -->

 <!-- extends switch element -->

 <!-- switch interface element groups -->

 <group name="switchInterfaceElementGroup">

 <choice>

 <element ref="profile:switchPort"/>

 </choice>

 </group>

 <!-- extends defaultComponent element -->

 <complexType name="defaultComponentType">

 <complexContent>

 <extension base="contentControl:defaultComponentPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultComponent" type="profile:defaultComponentType" substitutionGroup="contentControl:defaultComponent"/>

 <complexType name="switchType">

 <complexContent>

 <extension base="contentControl:switchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:switchInterfaceElementGroup"/>

 <element ref="profile:bindRule"/>

 <element ref="profile:switch"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="switch" type="profile:switchType" substitutionGroup="contentControl:switch"/>

 <!-- = -->

 <!-- DescriptorControl -->

 <!-- = -->

 <!-- extends defaultDescriptor element -->

 <complexType name="defaultDescriptorType">

 <complexContent>

 <extension base="descriptorControl:defaultDescriptorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultDescriptor" type="profile:defaultDescriptorType" substitutionGroup="descriptorControl:defaultDescriptor"/>

 <!-- extends descriptorSwitch element -->

 <complexType name="descriptorSwitchType">

 <complexContent>

 <extension base="descriptorControl:descriptorSwitchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:descriptor"/>

 <element ref="profile:bindRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorSwitch" type="profile:descriptorSwitchType" substitutionGroup="descriptorControl:descriptorSwitch"/>

 <!-- = -->

 <!-- Timing -->

 <!-- = -->

 <!-- = -->

 <!-- Import -->

 <!-- = -->

 <complexType name="importBaseType">

 <complexContent>

 <extension base="import:importBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importNCLType">

 <complexContent>

 <extension base="import:importNCLPrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importedDocumentBaseType">

 <complexContent>

 <extension base="import:importedDocumentBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="importBase" type="profile:importBaseType" substitutionGroup="import:importBase"/>

 <element name="importNCL" type="profile:importNCLType" substitutionGroup="import:importNCL"/>

 <element name="importedDocumentBase" type="profile:importedDocumentBaseType" substitutionGroup="import:importedDocumentBase"/>

 <!-- = -->

 <!-- EntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- ExtendedEntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- KeyNavigation -->

 <!-- = -->

 <!-- = -->

 <!-- TransitionBase -->

 <!-- = -->

 <!-- extends transitionBase element -->

 <complexType name="transitionBaseType">

 <complexContent>

 <extension base="transitionBase:transitionBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:transition"/>

 <element ref="profile:importBase"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="transitionBase" type="profile:transitionBaseType" substitutionGroup="transitionBase:transitionBase"/>

 <!-- = -->

 <!-- BasicTransition -->

 <!-- = -->

 <attributeGroup name="transitionAttrs">

 <attribute ref="basicTransition:transIn"/>

 <attribute ref="basicTransition:transOut"/>

 </attributeGroup>

 <element name="transition" substitutionGroup="basicTransition:transition"/>

 <!-- = -->

 <!-- Metainformation -->

 <!-- = -->

 <element name="meta" substitutionGroup="metainformation:meta"/>

 <element name="metadata" substitutionGroup="metainformation:metadata"/>

</schema>

7.3.3 The schema of the NCL 3.0 CausalConnector profile

CausalConnector.xsd

<!--

XML Schema for the NCL Language

This is NCL

Copyright: 2000-2005 LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/profiles/CausalConnector.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"
 xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"

 xmlns:import="http://www.ncl.org.br/NCL3.0/Import"

 xmlns:profile="http://www.ncl.org.br/NCL3.0/CausalConnectorProfile"

 targetNamespace="http://www.ncl.org.br/NCL3.0/CausalConnectorProfile"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- import the definitions in the modules namespaces -->

 <import namespace="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CausalConnectorFunctionality.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorBase.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Structure"
 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Structure.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL30/Import"
 schemaLocation="http://www.ncl.org.br/NCL30/modules/NCL30Import.xsd"/>

 <!-- = -->

 <!-- Structure -->

 <!-- = -->

 <!-- extends ncl element -->

 <complexType name="nclType">

 <complexContent>

 <restriction base="structure:nclPrototype">

 <sequence>

 <element ref="structure:head" minOccurs="0" maxOccurs="1"/>

 <element ref="structure:body" minOccurs="0" maxOccurs="0"/>

 </sequence>

 </restriction>

 </complexContent>

 </complexType>

 <element name="ncl" type="profile:nclType" substitutionGroup="structure:ncl"/>

 <!-- extends head element -->

 <complexType name="headType">

 <complexContent>

 <extension base="structure:headPrototype">

 <all>

 <element ref="profile:connectorBase" />

 </all>

 </extension>

 </complexContent>

 </complexType>

 <element name="head" type="profile:headType" substitutionGroup="structure:head"/>

 <!-- = -->

 <!-- XConnector -->

 <!-- = -->

 <!-- extends connectorBase element -->

 <complexType name="connectorBaseType">

 <complexContent>

 <extension base="connectorBase:connectorBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:causalConnector" />

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="connectorBase" type="profile:connectorBaseType" substitutionGroup="connectorBase:connectorBase"/>

 <element name="causalConnector" substitutionGroup="causalConnectorFunctionality:causalConnector"/>

 <element name="connectorParam" substitutionGroup="causalConnectorFunctionality:connectorParam"/>

 <element name="simpleCondition" substitutionGroup="causalConnectorFunctionality:simpleCondition"/>

 <element name="compoundCondition" substitutionGroup="causalConnectorFunctionality:compoundCondition"/>

 <element name="simpleAction" substitutionGroup="causalConnectorFunctionality:simpleAction"/>

 <element name="compoundAction" substitutionGroup="causalConnectorFunctionality:compoundAction"/>

 <element name="assessmentStatement" substitutionGroup="causalConnectorFunctionality:assessmentStatement"/>

 <element name="attributeAssessment" substitutionGroup="causalConnectorFunctionality:attributeAssessment"/>

 <element name="valueAssessment" substitutionGroup="causalConnectorFunctionality:valueAssessment"/>

 <element name="compoundStatement" substitutionGroup="causalConnectorFunctionality:compoundStatement"/>

 <!-- = -->

 <!-- ImportBase -->

 <!-- = -->

 <element name="importBase" substitutionGroup="import:importBase">

</schema>

7.3.4 Attributes and elements of the NCL 3.0 Basic DTV profile
This section briefly describes the main definitions made by each NCL 3.0 module that are present in the NCL 3.0 Basic DTV profile. The elements, and their attributes, used in this profile are shown in the tables (see Tables 39 to 55). Note that attributes and contents (child elements) of elements may be defined in the module itself or in the NCL Basic DTV profile that groups the modules. Element attributes that are required are underlined. In the tables, the following symbols are used: (?) optional (zero or one occurrence), (|) or, (*) zero or more occurrences, (+) one or more occurrences.
Table 39 – Extended structure module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	ncl
	id, title, xmlns
	(head?, body?)

	head
	
	(importedDocumentBase? ruleBase?, regionBase*, descriptorBase?, connectorBase?),

	body
	id
	(port| property| media|context|switch|link)*

Table 40 - Extended layout module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	regionBase
	id, device
	(importBase|region)+

	Region
	id, title, left, right, top, bottom, height, width, zIndex
	(region)*

Table 41 – Extended media module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	media
	id, src, refer, instance, type, descriptor
	(area|property)*

Table 42 – Extended context module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	context
	id, refer
	(port|property|media|context|link|switch)*

Table 43 – Extended MediaContentAnchor module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	area
	id, coords, begin, end, text, position, first, last, label
	empty

Table 44 – Extended CompositeNodeInterface module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	port
	id, component, interface
	empty

Table 45 – Extended PropertyAnchor module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	property
	name, value
	empty

Table 46 – Extended SwitchInterface module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	switchPort
	id
	mapping+

	mapping
	component, interface
	empty

Table 47 – Extended descriptor module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	descriptor
	id, player, explicitDur, region, freeze, moveLeft, moveRight, moveUp; moveDown, focusIndex, focusBorderColor; focusBorderWidth; focusBorderTransparency, focusSrc,focusSelSrc, selBorderColor
	(descriptorParam)*

	descriptorParam
	name, value
	

	descriptorBase
	id
	(importBase | descriptor | descriptorSwitch)+

Table 48 - Extended linking module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	bind
	role, component, interface, descriptor
	(bindParam)*

	bindParam
	name, value
	empty

	linkParam
	name, value
	empty

	link
	id, xconnector
	(linkParam*, bind+)

Table 49 – Extended CausalConnector functionality module elements and attributes in the Basic DTV profile

	Elements
	Attributes
	Content

	causalConnector
	id
	(connectorParam*, (simpleCondition | compoundCondition), (simpleAction | compoundAction))

	connectorParam
	name, type
	empty

	simpleCondition
	role, delay, eventType, key, transition, min, max, qualifier
	empty

	compoundCondition
	operator, delay
	((simpleCondition | compoundCondition)+, (assessmentStatement | compoundStatement)*)

	simpleAction
	role, delay, eventType, actionType, value, min, max, qualifier, repeat, repeatDelay
	empty

	compoundAction
	operator, delay
	(simpleAction | compoundAction)+

	assessmentStatement
	comparator
	(attributeAssessment, (attributeAssessment | valueAssessment))

	attributeAssessment
	role, eventType, key, attributeType, offset
	empty

	valueAssessment
	value
	empty

	compoundStatement
	operator, isNegated
	(assessmentStatement | compoundStatement)+

Table 50 – Extended ConnectorBase module element and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	connectorBase
	id
	(importBase|causalConnector)*

Table 51 – Extended TestRule Module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	ruleBase
	id
	(importBase|rule|compositeRule)+

	rule
	id, var, comparator, value
	empty

	compositeRule
	id, operator
	(rule | compositeRule)+

Table 52 – Extended TestRuleUse module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	bindRule
	constituent, rule
	empty

Table 53 – Extended ContentControl module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	switch
	id, refer
	(defaultComponent?,(switchPort| bindRule|media| context | switch)*)

	defaultComponent
	component
	empty

Table 54 – Extended DescriptorControl module elements and attributes used in the Basic DTV profile

	Elements
	Attributes
	Content

	descriptorSwitch
	id
	(defaultDescriptor?, (bindRule | descriptor)*)

	defaultDescriptor
	descriptor
	empty

Table 55 – Extended import module elements and attributes used in the Basic DTV profile
	Elements
	Attributes
	Content

	importBase
	alias, documentURI, region
	empty

	importedDocumentBase
	id
	(importNCL)+

	importNCL
	alias, documentURI,
	empty

7.3.5 The schema of the NCL 3.0 Basic DTV profile

NCL30BDTV.xsd

<!--

XML Schema for the NCL Language

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/profiles/NCL30BDTV.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:compositeInterface="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 xmlns:contentControl="http://www.ncl.org.br/NCL3.0/ContentControl"

 xmlns:context="http://www.ncl.org.br/NCL3.0/Context"

 xmlns:descriptor="http://www.ncl.org.br/NCL3.0/Descriptor"

 xmlns:entityReuse="http://www.ncl.org.br/NCL3.0/EntityReuse"

 xmlns:extendedEntityReuse="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 xmlns:descriptorControl="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 xmlns:import="http://www.ncl.org.br/NCL3.0/Import"

 xmlns:keyNavigation="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 xmlns:layout="http://www.ncl.org.br/NCL3.0/Layout"

 xmlns:linking="http://www.ncl.org.br/NCL3.0/Linking"

 xmlns:media="http://www.ncl.org.br/NCL3.0/Media"

 xmlns:mediaAnchor="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 xmlns:propertyAnchor="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"

 xmlns:switchInterface="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRule"

 xmlns:testRuleUse="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 xmlns:timing="http://www.ncl.org.br/NCL3.0/Timing"

 xmlns:profile="http://www.ncl.org.br/NCL3.0/BDTVProfile"

 targetNamespace="http://www.ncl.org.br/NCL3.0/BDTVProfile"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- import the definitions in the modules namespaces -->

 <import namespace="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CompositeNodeInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CausalConnectorFunctionality.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorBase.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ContentControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ContentControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Context"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Context.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Descriptor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Descriptor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30DescriptorControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/EntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30EntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ExtendedEntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Import"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Import.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30KeyNavigation.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Layout"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Layout.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Linking"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Linking.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Media"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Media.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30MediaContentAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30PropertyAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Structure"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Structure.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30SwitchInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRule"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRule.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRuleUse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Timing"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Timing.xsd"/>

 <!-- = -->

 <!-- Structure -->

 <!-- = -->

 <!-- extends ncl element -->

 <element name="ncl" substitutionGroup="structure:ncl"/>

 <!-- extends head element -->

 <complexType name="headType">

 <complexContent>

 <extension base="structure:headPrototype">

 <sequence>

 <element ref="profile:importedDocumentBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:ruleBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:regionBase" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="profile:descriptorBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:connectorBase" minOccurs="0" maxOccurs="1"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <element name="head" type="profile:headType" substitutionGroup="structure:head"/>

 <!-- extends body element -->

 <complexType name="bodyType">

 <complexContent>

 <extension base="structure:bodyPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:switch"/>

 <element ref="profile:link"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="body" type="profile:bodyType" substitutionGroup="structure:body"/>

 <!-- = -->

 <!-- Layout -->

 <!-- = -->

 <!-- extends regionBase element -->

 <complexType name="regionBaseType">

 <complexContent>

 <extension base="layout:regionBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:region"/>

 <element ref="profile:importBase"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="regionType">

 <complexContent>

 <extension base="layout:regionPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="regionBase" type="profile:regionBaseType" substitutionGroup="layout:regionBase"/>

 <element name="region" type="profile:regionType" substitutionGroup="layout:region"/>

 <!-- = -->

 <!-- Media -->

 <!-- = -->

 <!-- extends Media elements -->

 <!-- media interface element groups -->

 <group name="mediaInterfaceElementGroup">

 <choice>

 <element ref="profile:area"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="mediaType">

 <complexContent>

 <extension base="media:mediaPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:mediaInterfaceElementGroup"/>

 </choice>

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 <attributeGroup ref="extendedEntityReuse:extendedEntityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="media" type="profile:mediaType" substitutionGroup="media:media"/>

 <!-- = -->

 <!-- Context -->

 <!-- = -->

 <!-- extends context element -->

 <!-- composite node interface element groups -->

 <group name="contextInterfaceElementGroup">

 <choice>

 <element ref="profile:port"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="contextType">

 <complexContent>

 <extension base="context:contextPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:link"/>

 <element ref="profile:switch"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="context" type="profile:contextType" substitutionGroup="context:context"/>

 <!-- = -->

 <!-- MediaContentAnchor -->

 <!-- = -->

 <!-- extends area element -->

 <complexType name="componentAnchorType">

 <complexContent>

 <extension base="mediaAnchor:componentAnchorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="area" type="profile:componentAnchorType" substitutionGroup="mediaAnchor:area"/>

 <!-- = -->

 <!-- CompositeNodeInterface -->

 <!-- = -->

 <!-- extends port element -->

 <complexType name="compositeNodePortType">

 <complexContent>

 <extension base="compositeInterface:compositeNodePortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="port" type="profile:compositeNodePortType" substitutionGroup="compositeInterface:port"/>

 <!-- = -->

 <!-- PropertyAnchor -->

 <!-- = -->

 <!-- extends property element -->

 <complexType name="propertyAnchorType">

 <complexContent>

 <extension base="propertyAnchor:propertyAnchorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="property" type="profile:propertyAnchorType" substitutionGroup="propertyAnchor:property"/>

 <!-- = -->

 <!-- SwitchInterface -->

 <!-- = -->

 <!-- extends switchPort element -->

 <complexType name="switchPortType">

 <complexContent>

 <extension base="switchInterface:switchPortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="mapping" substitutionGroup="switchInterface:mapping"/>

 <element name="switchPort" type="profile:switchPortType" substitutionGroup="switchInterface:switchPort"/>

 <!-- = -->

 <!-- Descriptor -->

 <!-- = -->

 <!-- substitutes descriptorParam element -->

 <element name="descriptorParam" substitutionGroup="descriptor:descriptorParam"/>

 <!-- extends descriptor element -->

 <complexType name="descriptorType">

 <complexContent>

 <extension base="descriptor:descriptorPrototype">

 <attributeGroup ref="layout:regionAttrs"/>

 <attributeGroup ref="timing:explicitDurAttrs"/>

 <attributeGroup ref="timing:freezeAttrs"/>

 <attributeGroup ref="keyNavigation:keyNavigationAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptor" type="profile:descriptorType" substitutionGroup="descriptor:descriptor"/>

 <!-- extends descriptorBase element -->

 <complexType name="descriptorBaseType">

 <complexContent>

 <extension base="descriptor:descriptorBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:descriptor"/>

 <element ref="profile:descriptorSwitch"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorBase" type="profile:descriptorBaseType" substitutionGroup="descriptor:descriptorBase"/>

 <!-- = -->

 <!-- Linking -->

 <!-- = -->

 <!-- substitutes linkParam and bindParam elements -->

 <element name="linkParam" substitutionGroup="linking:linkParam"/>

 <element name="bindParam" substitutionGroup="linking:bindParam"/>

 <!-- extends bind element and link element, as a consequence-->

 <complexType name="bindType">

 <complexContent>

 <extension base="linking:bindPrototype">

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="bind" type="profile:bindType" substitutionGroup="linking:bind"/>

 <!-- extends link element -->

 <complexType name="linkType">

 <complexContent>

 <extension base="linking:linkPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="link" type="profile:linkType" substitutionGroup="linking:link"/>

 <!-- = -->

 <!-- Connector -->

 <!-- = -->

 <!-- extends connectorBase element -->

 <complexType name="connectorBaseType">

 <complexContent>

 <extension base="connectorBase:connectorBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:causalConnector" />

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="connectorBase" type="profile:connectorBaseType" substitutionGroup="connectorBase:connectorBase"/>

 <element name="causalConnector" substitutionGroup="causalConnectorFunctionality:causalConnector"/>

 <element name="connectorParam" substitutionGroup="causalConnectorFunctionality:connectorParam"/>

 <element name="simpleCondition" substitutionGroup="causalConnectorFunctionality:simpleCondition"/>

 <element name="compoundCondition" substitutionGroup="causalConnectorFunctionality:compoundCondition"/>

 <element name="simpleAction" substitutionGroup="causalConnectorFunctionality:simpleAction"/>

 <element name="compoundAction" substitutionGroup="causalConnectorFunctionality:compoundAction"/>

 <element name="assessmentStatement" substitutionGroup="causalConnectorFunctionality:assessmentStatement"/>

 <element name="attributeAssessment" substitutionGroup="causalConnectorFunctionality:attributeAssessment"/>

 <element name="valueAssessment" substitutionGroup="causalConnectorFunctionality:valueAssessment"/>

 <element name="compoundStatement" substitutionGroup="causalConnectorFunctionality:compoundStatement"/>

 <!-- = -->

 <!-- TestRule -->

 <!-- = -->

 <!-- extends rule element -->

 <complexType name="ruleType">

 <complexContent>

 <extension base="testRule:rulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="rule" type="profile:ruleType" substitutionGroup="testRule:rule"/>

 <!-- extends compositeRule element -->

 <complexType name="compositeRuleType">

 <complexContent>

 <extension base="testRule:compositeRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="compositeRule" type="profile:compositeRuleType" substitutionGroup="testRule:compositeRule"/>

 <!-- extends ruleBase element -->

 <complexType name="ruleBaseType">

 <complexContent>

 <extension base="testRule:ruleBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:rule"/>

 <element ref="profile:compositeRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="ruleBase" type="profile:ruleBaseType" substitutionGroup="testRule:ruleBase"/>

 <!-- = -->

 <!-- TestRuleUse -->

 <!-- = -->

 <!-- extends bindRule element -->

 <complexType name="bindRuleType">

 <complexContent>

 <extension base="testRuleUse:bindRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="bindRule" type="profile:bindRuleType" substitutionGroup="testRuleUse:bindRule"/>

 <!-- = -->

 <!-- ContentControl -->

 <!-- = -->

 <!-- extends switch element -->

 <!-- switch interface element groups -->

 <group name="switchInterfaceElementGroup">

 <choice>

 <element ref="profile:switchPort"/>

 </choice>

 </group>

 <!-- extends defaultComponent element -->

 <complexType name="defaultComponentType">

 <complexContent>

 <extension base="contentControl:defaultComponentPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultComponent" type="profile:defaultComponentType" substitutionGroup="contentControl:defaultComponent"/>

 <complexType name="switchType">

 <complexContent>

 <extension base="contentControl:switchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:switchInterfaceElementGroup"/>

 <element ref="profile:bindRule"/>

 <element ref="profile:switch"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="switch" type="profile:switchType" substitutionGroup="contentControl:switch"/>

 <!-- = -->

 <!-- DescriptorControl -->

 <!-- = -->

 <!-- extends defaultDescriptor element -->

 <complexType name="defaultDescriptorType">

 <complexContent>

 <extension base="descriptorControl:defaultDescriptorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultDescriptor" type="profile:defaultDescriptorType" substitutionGroup="descriptorControl:defaultDescriptor"/>

 <!-- extends descriptorSwitch element -->

 <complexType name="descriptorSwitchType">

 <complexContent>

 <extension base="descriptorControl:descriptorSwitchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:descriptor"/>

 <element ref="profile:bindRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorSwitch" type="profile:descriptorSwitchType" substitutionGroup="descriptorControl:descriptorSwitch"/>

 <!-- = -->

 <!-- Timing -->

 <!-- = -->

 <!-- = -->

 <!-- Import -->

 <!-- = -->

 <complexType name="importBaseType">

 <complexContent>

 <extension base="import:importBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importNCLType">

 <complexContent>

 <extension base="import:importNCLPrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importedDocumentBaseType">

 <complexContent>

 <extension base="import:importedDocumentBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="importBase" type="profile:importBaseType" substitutionGroup="import:importBase"/>

 <element name="importNCL" type="profile:importNCLType" substitutionGroup="import:importNCL"/>

 <element name="importedDocumentBase" type="profile:importedDocumentBaseType" substitutionGroup="import:importedDocumentBase"/>

 <!-- = -->

 <!-- EntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- ExtendedEntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- KeyNavigation -->

 <!-- = -->

</schema>

8 Media objects in NCL presentations

8.1 A modular Ginga-NCL implementation
The presentation of an NCL document requires the synchronization control of several media objects specified through the <media> element. For each media object, a media player shall be loaded to control the object and its NCL events. A media player shall be able to receive presentation commands, to control the events’ state machines of the controlled media object, and answer queries coming from the formatter.
In order to favor the incorporation of third-party media players into the Ginga architecture implementation, a modular design of Ginga-NCL is recommended, aiming at separating the media players from the presentation engine (NCL formatter).

Figure 4 suggests a modular organization for the Ginga-NCL implementation. Note that media players are plug-in modules of the presentation engine. Since it can be interesting to use already existing media players that can have proprietary interfaces that are not compatible with the one required by the presentation engine, it will be necessary to develop modules to make the necessary adaptations. In this case, the media player will be constituted of an adapter besides the player itself.

[image: image4.emf]GINGA-NCL Presentation engine

Media Player

GINGA API

for Media Players

Player Proprietary API

Media Player

Non Compliant

Player

Adapter

Figure 4 – APIs for integrating media players with an NCL presentation engine implementation

As the Ginga-NCL architecture and implementation is a choice of each receiver developer, the next sections do not intend to standardize the syntax of the presentation engine API. The goal is just to define the expected behavior of a media player when controlling objects that take part in an NCL document. Sections 8.2 to 8.4 deal with media players for <media> elements whose content is not a procedural code, that is, <media> elements whose types are different from “application/x-ginga-NCLua” and “application/x-ginga-NCLet”. A <media> element of “application/x-ginga-NCL” type shall behave as if it is a composite node made up by its <body> element, as presented in Section 8.4. Section 8.5 deals with media players (Lua and Java engines) for <media> elements whose content are procedural codes.
8.2 Expected behavior of media players
8.2.1 start instruction
Before sending a start instruction, the formatter should find the more appropriate media player to be called based on the content type to be exhibited. For this sake, the formatter takes into consideration the player attribute of the <descriptor> element associated with the media object to be exhibit. If this attribute is not specified, the formatter shall take into account the type attribute of the <media> element. If this attribute is not specified either, the formatter shall consider the file extension specified in the src attribute of the <media> element.
The start instruction issued by a formatter shall inform the following parameters to the media player: the media object to be controlled, its associated descriptor, a list of events (presentation, selection or attribution) that need to be monitored by the media player, the presentation event that needs to be started (called here main-event), an optional offset-time and an optional delay-time.

The media object shall be derived from a <media> element, whose src attribute shall be used, by the media player, to locate the content and start its presentation. If the content cannot be located, or if the media player does not know how to handle the content type, the media player shall finish the starting operation without performing any action.

The descriptor shall be chosen by the formatter following the directives specified in the NCL document. If the start instruction results from a link action that has a descriptor explicitly declared in its <bind> element (descriptor attribute of the <link> element’s children <bind> element), the resulting descriptor informed by the formatter shall merge the attributes of the bind descriptor with the attributes of the descriptor specified in the corresponding <media> element, if this attribute was specified. For the common attributes, the <bind> descriptor information shall superpose the <media> descriptor data. If the <bind> element does not contain an explicit descriptor, the descriptor informed by the formatter shall be the <media> descriptor, if this attribute was specified. Otherwise, a default descriptor for that type of <media> shall be chosen by the formatter.

The list of events to be monitored by a media player should also be computed by the formatter, taking into account the NCL document specification. It shall check all links where the media object and the resulting descriptor participate. When computing the events to be monitored, the formatter shall take into account the media-object perspective, i.e., the path of <body> and <context> elements to reach the <media> element. Only links contained in these <body> and <context> elements should be considered to compute the monitored events.

The offset-time parameter is optional, it has “zero” as its default value, and it is meaningful only for continuous media or static media with explicit duration. In this case, this parameter defines a time offset from the beginning (beginning-time) of the main-event, from which the presentation of the main-event shall be immediately started (i.e., it commands the player to jump to the beginning-time + offset-time). Obviously, the offset-time value shall be lower than the main-event duration. If the offset-time is greater than zero, the media player shall put the main-event in the occurring state, but the event starts transition shall not be notified. If the offset-time is zero, the media player shall put the main-event in the occurring state and notify the starts transition occurrence. Events that would have their end-times previous to the beginning-time of the main-event and events that would have their beginning times after the end-time of the main-event do not need to be monitored by the media player (the formatter should do this verification when building the monitored event list). Monitored events that would have beginning-times before the beginning-time of the main-event and end-times after the beginning-time of the main-event shall be put in the occurring state, but their starts transitions shall not be notified (links that depend on this transition shall not be fired). Monitored events that would have their end times after the main-event beginning-time, but before the start time (beginning-time + offset-time) shall have their occurrences attribute incremented but the starts and stops transitions shall not be notified. Monitored events that have beginning-times before the start time (beginning-time + offset-time) and end time after the start time shall be put in the occurring state, but the corresponding starts transition shall not be notified.

The delay-time is also an optional parameter and its default value is “zero” too. If greater than zero, this parameter contains a time to be waited by the media player before starting the presentation. This parameter shall only be considered if the offset-time parameter is equal to “zero”.

If a media player receives a start instruction for an object already being presented (paused or not), it shall ignore the instruction and keep on controlling the ongoing presentation. In this case, the <simpleAction> element that has caused the start instruction shall not cause any transition on the corresponding event state machine.
8.2.2 stop instruction
The stop instruction only needs to identify a media object already being controlled. To identify the media object means to identify the <media> element, the corresponding descriptor and the media-object perspective. Therefore, if a <simpleAction> element with an actionType attribute equal to “stop” is bound through a link to a node interface, the interface shall be ignored when the action is performed.
If the object is not being presented (none of the events in the object list of events is in the occurring or paused state) and the media player is not waiting due to a delayed start instruction, the stop instruction shall be ignored. If the object is being presented, the main-event (the event passed as a parameter when the media object was started) and all monitored events in the occurring or in the paused state with end time equal or previous to the main-event end time shall transit to the sleeping state, and their stops transitions shall be notified. Monitored events in the occurring or in the paused state with end time posterior to the main-event end time shall be put in the sleeping state, but their stops transitions shall not be notified and their occurrences attribute shall not be incremented. The object content presentation shall be stopped. If the repetitions event attribute is greater than zero, it shall be decremented by one and the main-event presentation shall restart after the repeat delay time (the repeat delay shall having been passed to the media player as the start delay parameter). If the media object is waiting to be presented after a delayed start instruction and a stop instruction is issued, the previous start instruction shall be removed.

NOTE
When all media objects refering to the elementary stream that carries the service main video are in the sleeping state the main video shall be dimensioned to 100% of the screen. The main video can be redimensioned only using a media object in presentation. The same happens with the main audio. When all media objects refering to the elementary stream that carries the service main audio are in the sleeping state the main audio shall be presented with 100% of its volume.

8.2.3 abort instruction
The abort instruction only needs to identify a media object already being controlled. If a <simpleAction> element with an actionType attribute equal to “abort” is bound through a link to a node interface, the interface shall be ignored when the action is applied.

If the object is not being presented and is not waiting to be presented after a delayed start instruction, the abort instruction shall be ignored. If the object is being presented, the main-event and all monitored events in the occurring or in the paused state shall transit to the sleeping state, and their aborts transitions shall be notified. Any content presentation shall stop. If the repetitions event attribute is greater than zero, it shall be set to zero and the media object presentation shall not restart. If the media object is waiting to be presented after a delayed start instruction and an abort instruction is issued, the previous start instruction shall be removed.

8.2.4 pause instruction
The pause instruction only needs to identify a media object already being controlled. If a <simpleAction> element with an actionType attribute equal to “pause” is bound through a link to a node interface, the interface shall be ignored when the action is applied.

If the object is not being presented (the main-event, passed as a parameter when the media object was started, is not in the occurring state) and the media player is not waiting for the start delay, the instruction shall be ignored. If the object is being presented, the main-event and all monitored events in the occurring state shall transit to the paused state and their pauses transitions shall be notified. The object presentation shall be paused and the pause elapsed time shall not be considered as part of the object duration. As an example, if an object has an explicit duration of 30 s and, after 25 s it is paused, even if the object stays paused for 5 min, after resuming the object main-event shall stay occurring for 5 s. If the main-event is still not occurring because the media player is waiting for the start delay, the media object shall wait for a resume instruction to continue waiting for the remaining start delay.

8.2.5 resume instruction
The resume instruction only needs to identify a media object already being controlled. If a <simpleAction> element with an actionType attribute equal to “resume” is bound through a link to a node interface, the interface shall be ignored when the action is applied.

If the object is not paused (the main-event, passed as a parameter when the media object was started, is not in the paused state) or the media player is not paused (waiting for the start delay), the instruction shall be ignored. If the media player is paused waiting for the start delay, it shall resume the wait from the instant it was paused. If the main-event is in the paused state, the main-event and all monitored events in the paused state shall be put in the occurring state and their resumes transitions shall be notified.

8.2.6 set instruction
The set instruction may be applied to an object independent from the fact it is being presented or not (in this last case, although the object is not being presented, its media player shall be already instantiated). In the first case, the set instruction needs to identify the media object being controlled, a monitored attribution event and a value to be assigned to the attribute wrapped by the event. In the second case, the instruction shall also identify the <descriptor> element that will be used when presenting the object (as it is done for the start instruction). When setting a value to the attribute, the media player shall set the event state machine to the occurring state, and after finishing the attribution, again to the sleeping state, generating the starts transition and afterwards the stops transition.

For every monitored attribution event, if the media player changes by itself the corresponding attribute value, it shall also proceed as if it had received an external set instruction.
8.2.7 addEvent instruction
The addEvent instruction is issued in the case of live editing the NCL document (see Section 9). The instruction needs to identify a media object already being controlled and a new event that shall be included to be monitored. All rules applied to the intersection of monitored events with the main-event shall be applied to the new event. If the new event start time is previous to the object current time and the new event end time is posterior to the object current time, the new event shall be put in the same state of the main-event (occurring or paused), without notifying the corresponding transition.

8.2.8 removeEvent instruction
The removeEvent instruction is also issued in the case of live editing the NCL document. The instruction needs to identify a media object already being controlled and a monitored event that should be no more controlled. The event state shall be put in the sleeping state without generating any transition.

8.2.9 Natural end of a presentation

Events of an object, with an explicit or an intrinsic duration, normally end their presentations naturally, without needing external instructions. In this case, the media player shall transit the event to the sleeping state and notify the stops transition. The same shall be done for monitored events in the occurring state with the same end time of the main-event or with unknown end time, when the main-event ends. Events in the occurring state with end time posterior to the main-event end time shall be put in the sleeping state but without generating the stops transition and without incrementing the occurrences attribute. It is important to remark that if the main-event corresponds to an object internal temporal anchor, when this anchor presentation finishes, the whole media object presentation shall finish.

8.3 Expected behavior of media players after instructions applied to composite objects
NOTE
The concepts provided in this section also applies to a <media> element of “application/x-ginga-NCL” type that will behave as if it is a composite node made up by its <body> element and shall be treated accordingly.
8.3.1 Binding a composite node
A <simpleCondition> or <simpleAction> with eventType attribute value equal to “presentation” may be bound by a link to a composite node (represented by a <context> or <body> element) as a whole (i.e. without an interface being informed). As usual, the event state machine of the presentation event defined on the composite node shall be controlled as specified in 7.2.8. Analogously, an <attributeAssessment> with eventType attribute value equal to “presentation” and attributeType equal to “state”, “occurrences” or “repetitions” may be bound by a link to a composite node (represented by a <context> or <body> element) as a whole, and the attribute value should come from the event state machine of the presentation event defined on the composite node.
However, if a <simpleAction> with eventType attribute value equal to “presentation” is bound by a link to a composite node (represented by a <context> or <body> element) as a whole (i.e. without an interface being informed), the instruction shall also be reflected to the event state machines of the composite child nodes, as explained in the following subsections.
8.3.2 Starting a context presentation

If a <context> or <body> element participates on an action role whose action type is “start”, when this action is fired, the start instruction shall also be applied to all presentation events mapped by the <context> or <body> element’s ports.

If the author wants to start the presentation using a specific port, it shall in addition indicate the <port> id as the <bind> interface value.

8.3.3 Stopping a context presentation

If a <context> or <body> element participates on an action role whose action type is “stop”, when this action is fired, the stop instruction shall also be applied to all presentation events of the composite child nodes.

If the composite node contains links being evaluated (or with their evaluation paused), the evaluations shall be suspended and no action shall be fired.

8.3.4 Aborting a context presentation

If a <context> or <body> element participates on an action role whose action type is “abort”, when this action is fired, the abort instruction shall also be applied to all presentation events of the composite child nodes.

If the composite contains links being evaluated (or with their evaluation paused), the evaluations shall be suspended and no action shall be fired.

8.3.5 Pausing a context presentation

If a <context> or <body> element participates on an action role whose action type is “pause”, when this action is fired, the pause instruction shall also be applied to all presentation events of the composite child nodes that are in the occurring state.

If the composite contains links being evaluated, all evaluations shall be suspended until a resume, stop or abort action is issued.

If the composite contains child nodes with presentation events already in the paused state when the pause action is issued, these nodes shall be identified because if the composite receives a resume instruction, these events shall not be resumed.

8.3.6 Resuming a context presentation

If a <context> or <body> element participates on an action role whose action type is “resume”, when this action is fired, the resume instruction shall also be applied to all presentation events of the composite child nodes that are in the paused state, except those that were already paused before the composite has been paused.

If the composite contains links with paused evaluations, they shall be resumed.

8.4 Relation between the presentation-event state machine of a node and the presentation-event state machine of its parent-composite node
NOTE
The concepts provided in this section also applies to a <media> element of “application/x-ginga-NCL” type that will behave as if it is a composite node made up by its <body> element and shall be treated accordingly.
Whenever the presentation event of a node (media or composite) goes to the occurring state, the presentation event of the composite node that contains the node shall also enter in the occurring state.

When all child nodes of a composite node have their presentation events in the sleeping state, the presentation event of the composite node shall also be in the sleeping state.

Composite nodes do not need to infer aborts transitions from their child nodes. These transitions in presentation events of composite nodes shall occur only when instructions are applied directly to the composite node presentation event (see 8.3).

When all child nodes of a composite node have their presentation events in a state different from the occurring state and at least one child node have its main-event in the paused state, the presentation event of the composite node shall also be in the paused state.

If a <switch> element is started, but it does not define a default component and none of the <bindRule> referred rules is evaluated as true, the switch presentation shall not enter in the occurring state.

8.5 Expected behavior of media procedural players in NCL applications
Procedural objects may be inserted into NCL documents mainly to bring additional computational capabilities to declarative documents. The way to add a procedural object into an NCL document is to define a <media> element, whose content (located through the src attribute) is the procedural code to be executed. Both EDTV and BDTV profiles of NCL 3.0 allow two media types to be associated with the <media> element: application/x-ginga-NCLua, for Lua procedural codes (file extension .lua); and application/x-ginga-NCLet, for Java (Xlet) procedural codes (file extension .class or .jar).
Authors may define NCL links to start, stop, pause, resume or abort the execution of a procedural code. A procedural player (the language engine) shall interface the procedural execution environment with the NCL formatter.

Analogous to conventional media content players, procedural players shall control event state machines associated with the NCL procedural node (NCLua or NCLet). As an example, if the code finishes its execution, the player shall generate the stops transition in the event presentation state machine corresponding to the procedural execution.

NCL allows procedural code execution to be synchronized with other NCL objects (procedural or not). A <media> element containing a procedural code may also define anchors (through <area> elements) and properties (through <property> elements).
A procedural code span may be associated with an <area> element (using the label attribute). If external links start, stop, pause, resume or abort the anchor presentation, callbacks in the procedural code span shall be triggered. The way these callbacks are defined is responsibility of each procedural code associated with the NCL procedural object.
On the other hand, a procedural code span may also command the start, stop, pause or resume of its <area> elements through an API offered by the procedural language. These transitions may be used as conditions of NCL links to trigger actions on other NCL objects of the same document. Thus, a two-way synchronization can be established between the procedural code and the remainder of the NCL document.
The other way a procedural code may be synchronized with other NCL objects is through <property> elements. A <property> element defined as a child of a <media> element representing a procedural code may be mapped to a code span (function, method, etc.) or to a code attribute. When it is mapped to a code span, a link action “set” applied to the property shall cause the code span execution, with the set values interpreted as input parameters. The name attribute of the <property> element shall be used to identify the procedural code span. When the <property> element is mapped to a procedural code attribute the action “set” shall assign the value to the attribute. As usual, the event state machine associated with the property shall be controlled by the procedural player.
A <property> element defined as a child of a <media> element representing a procedural code may also be associated with an NCL link assessment role. In this case, the NCL formatter shall query the property value in order to evaluate the link expression. If the <property> element is mapped to a code attribute, the code attribute value shall be returned by the procedural player to the NCL formatter. If the <property> element is mapped to a code span, it shall be called and the output value resulting from its execution shall be returned by the procedural player to the NCL formatter.
The start instruction issued by a formatter shall inform the following parameters to the procedural player: the procedural object to be controlled, its associated descriptor, a list of events (defined by the <media> element’s <area> and <property> child elements) that need to be monitored by the procedural player, the <area> element id associated with the procedural code to be started, and an optional delay-time. From the src attribute, the procedural player tries to locate the procedural code and start its execution. If the content cannot be located, the procedural player shall finish the starting operation, without performing any action.
The list of events to be monitored by a procedural player should also be computed by the formatter, taking into account the NCL document specification. It shall check all links where the procedural object and the resulting descriptor participate. When computing the events to be monitored, the formatter shall take into account the procedural media-object perspective, i.e., the path of <body> and <context> elements to reach the <media> element. Only links contained in these <body> and <context> elements should be considered to compute the monitored events.

As with any other <media> element, the delay-time is an optional parameter and its default value is “zero”. If greater than zero, this parameter contains a time to be waited by the procedural player before starting the code execution.
Different from what is performed on other <media> elements, if a procedural player receives a start instruction for an event associated with an <area> element and this event is in the sleeping state, it shall start the execution of the procedural code span associated with the element, even though other portion of the object’s procedural code is being in execution (paused or not). However, if the event associated with the target <area> element is in the occurring or paused state, the start instruction shall be ignored by the procedural code player that keeps on controlling the ongoing execution. As a consequence, different from what happens for other <media> elements, a <simpleAction> element with an actionType attribute equal to “stop”, “pause”, “resume” or ”abort” shall be bound through a link to a procedural node interface, which shall not be ignored when the action is applied.

The set instruction issued by a formatter may be applied to a procedural object independent from the fact whether it is being executed or not (in the latter case, although the object is not being executed, its procedural player shall have already been instantiated). In the first case, the set instruction needs to identify the procedural object, a monitored attribution event, and a value to be passed to the procedural code wrapped by the event. In the second case, the instruction shall also identify the <descriptor> element that will be used when executing the object (as it is done for the start instruction).

For every monitored attribution event, if the procedural player changes by itself the corresponding attribute value, it shall also proceed as if it had received an external set instruction.
Procedural languages should also offer an API that allows procedural code to query any pre-defined or dynamic properties’ values of the NCL settings node (<media> element of “application/x-ginga-settings” type). However, it must be stressed that it is not allowed to directly set values to these properties. Properties of the application/x-ginga-settings node may only be changed trough using NCL links.
9 Content transmission and NCL events

9.1 Private bases
The core of the Ginga-NCL presentation engine is composed of the NCL Formatter and its Private Base Manager module.
The NCL Formatter is in charge of receiving an NCL document and controlling its presentation, trying to guarantee that the specified relationships among media objects are respected. The formatter deals with NCL documents that are collected inside a data structure known as private base. Ginga associates a private base with a TV channel. NCL documents in a private base may be started, paused, resumed, stopped and may refer to each other.

The Private Base Manager is in charge of receiving NCL document editing commands and maintaining the active NCL documents (documents being presented).

This section deals only with editing commands coming from the terrestrial broadcast channel.

NOTE: The same editing commands may also come from the interactive channel or from events generated by NCLua or NCLet imperative objects.

Ginga adopts specific MPEG-2 sections (identified by the tableID DSM-CC_section parameter) to transport editing commands in MPEG-2 TS elementary streams, when commands come from the terrestrial broadcast channel.
Editing commands are wrapped in a structure called event descriptors. Event descriptors have a structure composed basically of an id (identification), a time reference and a private data field. The identification uniquely identifies each event as an editing command. The time reference indicates the exact moment to trigger the event. A time reference equal to zero informs that the event shall be triggered immediately after being received (events carrying this type of time-reference are commonly known as “do it now” events). The private data field provides support for event parameters (see Figure 5).
	Syntax
	Number of bits

	EventDescriptor () {
	

	 descriptorTag
	8

	 descriptorLenght
	8

	 eventId
	16

	 reserved
	31

	 eventNPT
	33

	 privateDataLength
	8

	 commandTag
	8

	 sequenceNumber
	7

	 finalFlag
	1

	 privateDataPayload
	8 to 2008

	 FCS
	8

	}
	

Figure 5 - Editing command event descriptor

The commandTag uniquely identifies the editing commands, as specified in Table 56. In order to allow sending a complete command in more than one event descriptor, all descriptors of the same command shall be numbered and sent in sequence (that is, it cannot be multiplexed with other editing commands with the same commandTag), with the finalFlag equal to 1, except for the last descriptor that shall have the finalFlag field equal to 0. The privateDataPayload contains the editing-command parameters. Finally, the FCS field contains a checksum of the entire privateData field, including the privateDataLength.
EXAMPLE
DSM-CC stream events can be used to transport event descriptors. The DSM-CC object carousel protocol allows the cyclical transmission of event objects and file systems. Event objects are used to map stream event names into stream event ids. Event objects are used to inform Ginga about DSM-CC stream events that can be received. Event names allow specifying types of events, offering a higher abstraction level for middleware applications. The Private Base Manager, as well as NCL execution-objects (e.g. NCLua, NCLet), should, in this case, register themselves as listeners of stream events they handle, using event names.

NCL document files, and NCL media-object’s contents are organized in file system structures. XML-based editing command parameters may be directly transported in the payload of an event descriptor or, alternatively, organized in file system structures to be transported, each one, in the datacasting channel, or still be received from the interactivity channel.
EXAMPLE
A DSM-CC carousel generator can be used to join the file systems and stream event objects into a data elementary stream.
When an NCL document editing command needs to be sent, a DSM-CC event object could be created, mapping the string “nclEditingCommand” into a selected stream event id, and putting it as an object in a DSM-CC object carousel. One or more DSM-CC stream event descriptors with the previous selected id could then be created and sent in another MPEG-2 TS elementary stream. These stream events might have their time reference set to zero, but might also be postponed to be executed at a specific time. The Private Base Manager would have to register itself as a “nclEditingCommand” listener and would be notified when this stream event arrives.
The received commandTag is used by the Private Base Manager to interpret the complete command string semantics. If the XML-based command parameter is short enough it may be transported directly in the event descriptors’ payload. Otherwise, the privateDataPayload carries a set of reference pairs. In the case of pushed files (NCL documents or nodes), each pair relates a set of file paths with their respective location in the transport system. In the case of pulled files received from an interactivity channel or sited in the receiver itself, no reference pairs have to be sent, except the {uri, “null”} pair associated with the NCL document or XML node specification that is commanded to be added.
Table 56 shows the command strings and, surrounded by round brackets, the parameters carried as the payload content of an nclEditingCommand event descriptor. The commands are divided into three groups: the first one for private base operation (to open, close, activate, deactivate, and save private bases); the second one for document manipulation (to add, remove, and save a document in a private base and to start, pause, resume, and stop document presentations); and the last one for NCL entities handling. For each NCL entity, add and remove commands are defined. If an entity already exists, the add command has the update (altering) semantics.
NOTE: The first group of commands for private base operation do not usually come from the terrestrial broadcast channel. As aforementioned, editing commands may also come from the interactive channel or from events generated by NCLua or NCLet imperative objects. Editing commands can also be internally generated by the middleware.
Table56 – Editing commands for Ginga’s private base manager

	Command string
	Command tag
	Description

	openBase (baseId, location)
	0x00
	Opens an existing private base located with the location parameter. If the private base does not exist or the location parameter is not informed, a new base is created with baseId. The location attribute shall specify the device and the path for opening the base

	activateBase (baseId)
	0x01
	Turns on an opened private base

	deactivateBase (baseId)
	0x02
	Turns off an opened private base

	saveBase (baseId, location)
	0x03
	Saves all private base content into a persistent storage device (if available). The location attribute shall specify the device and the path for saving the base

	closeBase (baseId)
	0x04
	Closes the private base and disposes all private base content

	addDocument (baseId, {uri, id}+)
	0x05
	Adds an NCL document to a private base. The NCL document’s file can be:

i) sent in the datacast network as a set of pushed files; for these pushed files, each {uri,id} pair is used to relate a set of file paths in the NCL document specification with their respective locations in a transport system (see examples in Section 12);
NOTE The set of reference pairs shall be sufficient for the middleware to map any file reference present in the NCL document specification to its concrete location in the receiver memory.
ii) received from an interactivity channel as a set of pulled files, or may be files already present in the receiver; for these pulled files, no {uri, id} pairs have to be sent, except the {uri, “null”} pair associated with the NCL document specification that the editing command request to be added in baseId, if this NCL document is not received as a pushed file.

	removeDocument (baseId, documentId)
	0x06
	Removes an NCL document from a private base

	startDocument (baseId, documentId, interfaceId, offset, refDocumentId, refNodeId)
NOTE The offset parameter is a time value.
	0x07
	Starts playing an NCL document in a private base, beginning the presentation from a specific document interface. The time reference provided in the eventNPT field defines the initial time positioning of the document with regards to the NPT time base value of the refNodeId content of refDocumentId document being received. Three cases may happen:
i) If eventNPT is greater than or equal to the NPT time base value of the refNodeId content being received, the document presentation shall wait until NPT has the value specified in eventNPT to be started from its beginning time+offset.
ii) If eventNPT is less than the NPT time base value of the refNodeId content being received, the document shall be started immediately from its beginning time+offset+(NPT – eventNPT)seconds
NOTE Only in this case, the offset parameter value may be a negative time value, but offset+(NPT – eventNPT)seconds shall be a positive time value.
iii) If eventNPT is equal to 0, the document shall start its presentation imediatelly from its beginning time+offset.

	stopDocument (baseId, documentId)
	0x08
	Stops the presentation of an NCL document in a private base. All document events that are occurring shall be stopped

	pauseDocument (baseId, documentId)
	0x09
	Pauses the presentation of an NCL document in a private base. All document events that are occurring shall be paused

	resumeDocument (baseId, documentId)
	0x0A
	Resumes the presentation of an NCL document in a private base. All previously document events that were paused by the pauseDocument editing command shall be resumed.

	saveDocument (baseId, documented, location)
	0x2E
	Saves an NCL document into a persistent storage device (if available). The location attribute shall specify the device and the path for saving the document. If the NCL document to be saved is running in the private base, first stops its presentation (all document events that are occurring shall be stopped).

	addRegion (baseId, documentId, regionBaseId, regionId, xmlRegion)
	0x0B
	Adds a <region> element as a child of another <region> in the <regionBase> or as a child of the <regionBase> (regionId=”null”) of an NCL document in a private base

	removeRegion (baseId, documentId, regionId)
	0x0C
	Removes a <region> element from a <regionBase> of an NCL document in a private base

	addRegionBase (baseId, documentId, xmlRegionBase)
	0x0D
	Adds a <regionBase> element to the <head> element of an NCL document in a private base. The XML specification of the regionBase is sent in the object carousel as a file system; the xmlRegionBase parameter is just a reference to this content in the carousel

	removeRegionBase (baseId, documentId, regionBaseId)
	0x0E
	Removes a <regionBase> element from the <head> element of an NCL document in a private base

	addRule (baseId, documentId, xmlRule)
	0x0F
	Adds a <rule> element to the <ruleBase> of an NCL document in a private base

	removeRule (baseId, documentId, ruleId)
	0x10
	Removes a <rule> element from the <ruleBase> of an NCL document in a private base

	addRuleBase (baseId, documentId, xmlRuleBase)
	0x11
	Adds a <ruleBase> element to the <head> element of an NCL document in a private base. The XML specification of the ruleBase is sent in the object carousel as a file system; the xmlRuleBase parameter is just a reference to this content in the carousel

	removeRuleBase (baseId, documentId, ruleBaseId)
	0x12
	Removes a <ruleBase> element from the <head> element of an NCL document in a private base

	addConnector (baseId, documentId, xmlConnector)
	0x13
	Adds a <connector> element to the <connectorBase> of an NCL document in a private base

	removeConnector (baseId, documentId, connectorId)
	0x14
	Removes a <connector> element from the <connectorBase> of an NCL document in a private base

	addConnectorBase (baseId, documentId, xmlConnectorBase)
	0x15
	Adds a <connectorBase> element to the <head> element of an NCL document in a private base. The XML specification of the connectorBase is sent in the object carousel as a file system; the xmlConnectorBase parameter is just a reference to this content in the carousel

	removeConnectorBase (baseId, documentId, connectorBaseId)
	0x16
	Removes a <connectorBase> element from the <head> element of an NCL document in a private base

	addDescriptor (baseId, documentId, xmlDescriptor)
	0x17
	Adds a <descriptor> element to the <descriptorBase> of an NCL document in a private base

	removeDescriptor (baseId, documentId, descriptorId)
	0x18
	Removes a <descriptor> element from the <descriptorBase> of an NCL document in a private base

	addDescriptorSwitch (baseId, documentId, xmlDescriptorSwitch)
	0x19
	Adds a <descriptorSwitch> element to the <descriptorBase> of an NCL document in a private base. The XML specification of the descriptorSwitch is sent in the object carousel as a file system; the xmlDescriptorSwitch parameter is just a reference to this content

	removeDescriptorSwitch (baseId, documentId, descriptorSwitchId)
	0x1A
	Removes a <descriptorSwitch> element from the <descriptorBase> of an NCL document in a private base

	addDescriptorBase (baseId, documentId, xmlDescriptorBase)
	0x1B
	Adds a <descriptorBase> element to the <head> element of an NCL document in a private base. The XML specification of the descriptorBase is sent in the object carousel as a file system; the xmlDescriptorBase parameter is just a reference to this content in the carousel

	removeDescriptorBase (baseId, documentId, descriptorBaseId)
	0x1C
	Removes a <descriptorBase> element from the <head> element of an NCL document in a private base

	addTransition (baseId, documentId, xmlTransition)
	0x1D
	Adds a <transition> element to the <transitionBase> of an NCL document in a private base

	removeTransition (baseId, documentId, transitionId)
	0x1E
	Removes a <transition> element from the <transitionBase> of an NCL document in a private base

	addTransitionBase (baseId, documentId, xmlTransitionBase)
	0x1F
	Adds a <transitionBase> element to the <head> element of an NCL document in a private base. The XML specification of the transitionBase is sent in the object carousel as a file system; the xmlTransitionBase parameter is just a reference to this content in the carousel

	removeTransitionBase (baseId, documentId, transitionBaseId)
	0x20
	Removes a <transitionBase> element from the <head> element of an NCL document in a private base

	addImportBase (baseId, documentId, docBaseId, xmlImportBase)
	0x21
	Adds an <importBase> element to the base (<regionBase>, <descriptorBase>, <ruleBase>, <transitionBase>, or <connectorBase> element) of an NCL document in a private base

	removeImportBase (baseId, documentId, docBaseId, documentURI)
	0x22
	Removes an <importBase> element, whose documentURI attribute is identified by the documentURI parameter, from the base (<regionBase>, <descriptorBase>, <ruleBase>, <transitionBase>, or <connectorBase> element) of an NCL document in a private base

	addImportedDocumentBase (baseId, documentId, xmlImportedDocumentBase)
	0x23
	Adds an <importedDocumentBase> element to the <head> element of an NCL document in a private base.

	removeImportedDocumentBase (baseId, documentId, importedDocumentBaseId)
	0x24
	Removes an <importedDocumentBase> element from the <head> element of an NCL document in a private base.

	addImportNCL (baseId, documentId, xmlImportNCL)
	0x25
	Adds a <importNCL> element to the <importedDocumentBase > element of an NCL document in a private base.

	removeImportNCL (baseId, documentId, documentURI)
	0x26
	Removes an <importNCL> element, whose documentURI attribute is identified by the documentURI parameter, from the <importedDocumentBase > element of an NCL document in a private base

	addNode (baseId, documentId, compositeId, {uri, id}+)
	0x27
	Adds a node (<media>, <context>, or <switch> element) to a composite node (<body>, <context>, or <switch> element) of an NCL document in a private base. The XML specification of the node and its media content may be:
i) sent in the datacast network as a set of pushed files; the {uri,id} pair is used to relate file paths in the datacast provider with their respective locations in a transport system (see examples in Section 12);
NOTE: The set of reference pairs shall be sufficient for the middleware to map any file reference present in the node specification to its concrete locations in the receiver memory.

ii) received from an interactivity channel as s set of pulled files, or may be files already present in the receiver; for these pulled files, no {uri, id} pairs have to be sent, except the {uri, “null”} pair associated with the XML node specification that the editing command request to be added in compositeId, if this XML document is not received as a pushed file.

	removeNode(baseId, documentId, compositeId, nodeId)
	0x28
	Removes a node (<media>, <context>, or <switch> element) from a composite node (<body>, <context>, or <switch> element) of an NCL document in a private base

	addInterface (baseId, documentId, nodeId, xmlInterface)
	0x29
	Adds an interface (<port>, <area>, <property>, or <switchPort>) to a node (<media>, <body>, <context>, or <switch> element) of an NCL document in a private base

	removeInterface (baseId, documentId, nodeId, interfaceId)
	0x2A
	Removes an interface (<port>, <area>, <property>, or <switchPort>) from a node (<media>, <body>, <context>, or <switch> element) of an NCL document in a private base. The interfaceID shall identify a <property> element’s name attribute or a <port>, <area>, or <switchPort> element’s id attribute

	addLink (baseId, documentId, compositeId, xmlLink)
	0x2B
	Adds a <link> element to a composite node (<body>, <context>, or <switch> element) of an NCL document in a private base

	removeLink (baseId, documentId, compositeId, linkId)
	0x2C
	Removes a <link> element from a composite node (<body>, <context>, or <switch> element) of an NCL document in a private base

	setPropertyValue(baseId, documentId, nodeId, propertyId, value)
	0x2D
	Sets the value for a property. The propertyId shall identify a <property> element’s name attribute or a <switchPort> element’s id attribute. The <property> or <switchPort> shall belong to a node (<body>, <context>, <switch> or <media> element) of an NCL document in a private base identified by the parameters

Receivers that only implement the NCL Basic DTV profile cannot handle the following commands: pauseDocument, resumeDocument, addTransition, removeTransition, addTransitionBase and removeTransitionBase.

Ginga associates a private base with a TV channel. When a channel is tunned, its corresponding private base is opened and activated by the Private Base Manager; other private bases shall be deactivated. For security reasons, only one private base may be active at a time. The simplest and most restricted way to manage private bases is having only one private base opened at a time. Thus, if the user changes the selected channel, the current private base should be closed. In this case, the openBase command is always followed by the activateBase command, and the deactivateBase command is never used. However, the number of private bases that may be kept opened is a specific middleware implementation decision.
Add commands always have NCL entities as their arguments (XML-based command parameters). Whether the specified entity already exists or not, document consistency shall be maintained by the NCL formatter, in the sense that all entity attributes classified as required shall be defined. The entities are defined using a syntax notation identical to that used by the NCL schemas, with the exception of the addInterface command: the begin attribute of an <area> element may receive the “now” value, specifying the current NPT of the nodeId, which shall be the main MPEG video being played by the hardware decoder.

The identifiers used in the commands shall be in agreement with Table 57.

Table 57 – Identifiers used in editing commands

	Identifiers
	Definition

	baseId
	Broadcast channel identifiers specified by the SBTVD

	documentId
	The id attribute of an <ncl> element of an NCL document

	refDocumentId
	The id attribute of an <ncl> element of an NCL document

	refNodeId
	The id attribute of a <media> element of an NCL document

	regionId
	The id attribute of a <region> element of an NCL document

	ruleId
	The id attribute of a <rule> element of an NCL document

	connectorId
	The id attribute of a <connector> element of an NCL document

	descriptorId
	The id attribute of a <descriptor> element of an NCL document

	descriptorSwitchId
	The id attribute of a <descriptorSwitch> element of an NCL document.

	transitionId
	The id attribute of a <transition> element of an NCL document

	regionBaseId
	The id attribute of a <regionBase> element of an NCL document

	ruleBaseId
	The id attribute of a <ruleBase> element of an NCL document

	connectorBaseId
	The id attribute of a <connectorBase> element of an NCL document.

	descriptorBaseId
	The id attribute of a <descriptorBase> element of an NCL document

	transitionBaseId
	The id attribute of a <transitionBase> element of an NCL document

	docBaseId
	The id attribute of a <regionBase>, <ruleBase>, <connectorBase>, <descriptorBase>, or <transitionBase> element of an NCL document

	documentURI
	The documentURI attribute of an <importBase> element or an <importNCL> element of an NCL document

	importedDocumentBaseId
	The id attribute of a <importedDocumentBase> element of an NCL document

	compositeID
	The id attribute of a <body>, <context> or <switch> element of an NCL document

	nodeId
	The id attribute of a <body>, <context>, <switch> or <media> element of an NCL document

	interfaceId
	The id attribute of a <port>, <area>, <property> or <switchPort> element of an NCL document

	linkId
	The id attribute of a <link> element of an NCL document

	propertyId
	The id attribute of a <property> or <switchPort> element of an NCL document

9.2 Command parameters XML schemas
NCL entities used in editing commands shall be a document in conformance with the NCL 3.0 Command profile defined by the XML Schema that follows. Receivers that only implement the NCL Basic DTV profile should ignore the XML elements and attributes related to Meta-Information and Transitions functionalities.

Note that different from NCL documents, several <ncl> elements may be the root element in the XML command parameters.
NCL30EdCommand.xsd

<!--

XML Schema for the NCL Language

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/profiles/NCL30EdCommand.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:animation="http://www.ncl.org.br/NCL3.0/Animation"

 xmlns:compositeInterface="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 xmlns:connectorCausalExpression="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 xmlns:contentControl="http://www.ncl.org.br/NCL3.0/ContentControl"

 xmlns:context="http://www.ncl.org.br/NCL3.0/Context"

 xmlns:descriptor="http://www.ncl.org.br/NCL3.0/Descriptor"

 xmlns:entityReuse="http://www.ncl.org.br/NCL3.0/EntityReuse"

 xmlns:extendedEntityReuse="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 xmlns:descriptorControl="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 xmlns:import="http://www.ncl.org.br/NCL3.0/Import"

 xmlns:keyNavigation="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 xmlns:layout="http://www.ncl.org.br/NCL3.0/Layout"

 xmlns:linking="http://www.ncl.org.br/NCL3.0/Linking"

 xmlns:media="http://www.ncl.org.br/NCL3.0/Media"

 xmlns:mediaAnchor="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 xmlns:propertyAnchor="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"

 xmlns:switchInterface="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRule"

 xmlns:testRuleUse="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 xmlns:timing="http://www.ncl.org.br/NCL3.0/Timing"

 xmlns:transitionBase="http://www.ncl.org.br/NCL3.0/TransitionBase"

 xmlns:metainformation="http://www.w3.org/2001/SMIL20/Metainformation"

 xmlns:basicTransition="http://www.w3.org/2001/SMIL20/BasicTransitions"

 xmlns:profile="http://www.ncl.org.br/NCL3.0/EdCommandProfile"

 targetNamespace="http://www.ncl.org.br/NCL3.0/EdCommandProfile"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- import the definitions in the modules namespaces -->

 <import namespace="http://www.ncl.org.br/NCL3.0/Animation"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Animation.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CompositeNodeInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CausalConnectorFunctionality"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30CausalConnectorFunctionality.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorBase.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCausalExpression.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ContentControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ContentControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Context"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Context.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Descriptor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Descriptor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30DescriptorControl.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/EntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30EntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ExtendedEntityReuse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Import"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Import.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30KeyNavigation.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Layout"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Layout.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Linking"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Linking.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Media"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Media.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30MediaContentAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30PropertyAnchor.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Structure"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Structure.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30SwitchInterface.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRule"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRule.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TestRuleUse.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/Timing"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30Timing.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/TransitionBase"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30TransitionBase.xsd"/>

 <import namespace="http://www.w3.org/2001/SMIL20/Metainformation"

 schemaLocation="http://www.w3.org/2001/SMIL20/smil20-Metainformation.xsd"/>

 <import namespace="http://www.w3.org/2001/SMIL20/BasicTransitions"

 schemaLocation="http://www.w3.org/2001/SMIL20/smil20-BasicTransitions.xsd"/>

 <!-- = -->

 <!--EditingCommand -->

 <!-- = -->

 <!--defines the command element -->

 <!--This is a pseudo-element, only defined to show the elements that may be used in the root of the command parameters XML document-->

 <!--

 <complexType name="commandType">

 <choice minOccurs="1" maxOccurs="1">

 <element ref="profile:ncl"/>

 <element ref="profile:region"/>

 <element ref="profile:rule"/>

 <element ref="profile:connector"/>

 <element ref="profile:descriptor"/>

 <element ref="profile:descriptorSwitch"/>

 <element ref="profile:transition"/>

 <element ref="profile:regionBase"/>

 <element ref="profile:ruleBase"/>

 <element ref="profile:connectorBase"/>

 <element ref="profile:descriptorBase"/>

 <element ref="profile:transitionBase"/>

 <element ref="profile:importBase"/>

 <element ref="profile:importedDocumentBase"/>

 <element ref="profile:importNCL"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:switch"/>

 <element ref="profile:port"/>

 <element ref="profile:area"/>

 <element ref="profile:property"/>

 <element ref="profile:switchPort"/>

 <element ref="profile:link"/>

 </choice>

 </complexType>
 <element name="command" type="profile:commandType"/>

-->
 <!-- = -->

 <!-- Structure -->

 <!-- = -->

 <!-- extends ncl element -->

 <element name="ncl" substitutionGroup="structure:ncl"/>

 <!-- extends head element -->

 <complexType name="headType">

 <complexContent>

 <extension base="structure:headPrototype">

 <sequence>

 <element ref="profile:importedDocumentBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:ruleBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:transitionBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:regionBase" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="profile:descriptorBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:connectorBase" minOccurs="0" maxOccurs="1"/>

 <element ref="profile:meta" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="profile:metadata" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <element name="head" type="profile:headType" substitutionGroup="structure:head"/>

 <!-- extends body element -->

 <complexType name="bodyType">

 <complexContent>

 <extension base="structure:bodyPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:switch"/>

 <element ref="profile:link"/>

 <element ref="profile:meta"/>

 <element ref="profile:metadata"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="body" type="profile:bodyType" substitutionGroup="structure:body"/>

 <!-- = -->

 <!-- Layout -->

 <!-- = -->

 <!-- extends regionBase element -->

 <complexType name="regionBaseType">

 <complexContent>

 <extension base="layout:regionBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:region"/>

 <element ref="profile:importBase"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="regionType">

 <complexContent>

 <extension base="layout:regionPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="regionBase" type="profile:regionBaseType" substitutionGroup="layout:regionBase"/>

 <element name="region" type="profile:regionType" substitutionGroup="layout:region"/>

 <!-- = -->

 <!-- Media -->

 <!-- = -->

 <!-- extends Media elements -->

 <!-- media interface element groups -->

 <group name="mediaInterfaceElementGroup">

 <choice>

 <element ref="profile:area"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="mediaType">

 <complexContent>

 <extension base="media:mediaPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:mediaInterfaceElementGroup"/>

 </choice>

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 <attributeGroup ref="extendedEntityReuse:extendedEntityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="media" type="profile:mediaType" substitutionGroup="media:media"/>

 <!-- = -->

 <!-- Context -->

 <!-- = -->

 <!-- extends context element -->

 <!-- composite node interface element groups -->

 <group name="contextInterfaceElementGroup">

 <choice>

 <element ref="profile:port"/>

 <element ref="profile:property"/>

 </choice>

 </group>

 <complexType name="contextType">

 <complexContent>

 <extension base="context:contextPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:contextInterfaceElementGroup"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 <element ref="profile:link"/>

 <element ref="profile:switch"/>

 <element ref="profile:meta"/>

 <element ref="profile:metadata"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="context" type="profile:contextType" substitutionGroup="context:context"/>

 <!-- = -->

 <!-- MediaContentAnchor -->

 <!-- = -->

 <!-- extends area element -->

 <complexType name="componentAnchorType">

 <complexContent>

 <extension base="mediaAnchor:componentAnchorPrototype">

 <attribute name="now" type="string" use="optional"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="area" type="profile:componentAnchorType" substitutionGroup="mediaAnchor:area"/>

 <!-- = -->

 <!-- CompositeNodeInterface -->

 <!-- = -->

 <!-- extends port element -->

 <complexType name="compositeNodePortType">

 <complexContent>

 <extension base="compositeInterface:compositeNodePortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="port" type="profile:compositeNodePortType" substitutionGroup="compositeInterface:port"/>

 <!-- = -->

 <!-- PropertyAnchor -->

 <!-- = -->

 <!-- extends property element -->

 <complexType name="propertyAnchorType">

 <complexContent>

 <extension base="propertyAnchor:propertyAnchorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="property" type="profile:propertyAnchorType" substitutionGroup="propertyAnchor:property"/>

 <!-- = -->

 <!-- SwitchInterface -->

 <!-- = -->

 <!-- extends switchPort element -->

 <complexType name="switchPortType">

 <complexContent>

 <extension base="switchInterface:switchPortPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="mapping" substitutionGroup="switchInterface:mapping"/>

 <element name="switchPort" type="profile:switchPortType" substitutionGroup="switchInterface:switchPort"/>

 <!-- = -->

 <!-- Descriptor -->

 <!-- = -->

 <!-- substitutes descriptorParam element -->

 <element name="descriptorParam" substitutionGroup="descriptor:descriptorParam"/>

 <!-- extends descriptor element -->

 <complexType name="descriptorType">

 <complexContent>

 <extension base="descriptor:descriptorPrototype">

 <attributeGroup ref="layout:regionAttrs"/>

 <attributeGroup ref="timing:explicitDurAttrs"/>

 <attributeGroup ref="timing:freezeAttrs"/>

 <attributeGroup ref="keyNavigation:keyNavigationAttrs"/>

 <attributeGroup ref="profile:transitionAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptor" type="profile:descriptorType" substitutionGroup="descriptor:descriptor"/>

 <!-- extends descriptorBase element -->

 <complexType name="descriptorBaseType">

 <complexContent>

 <extension base="descriptor:descriptorBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:descriptor"/>

 <element ref="profile:descriptorSwitch"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorBase" type="profile:descriptorBaseType" substitutionGroup="descriptor:descriptorBase"/>

 <!-- = -->

 <!-- Linking -->

 <!-- = -->

 <!-- substitutes linkParam and bindParam elements -->

 <element name="linkParam" substitutionGroup="linking:linkParam"/>

 <element name="bindParam" substitutionGroup="linking:bindParam"/>

 <!-- extends bind element and link element, as a consequence-->

 <complexType name="bindType">

 <complexContent>

 <extension base="linking:bindPrototype">

 <attributeGroup ref="descriptor:descriptorAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="bind" type="profile:bindType" substitutionGroup="linking:bind"/>

 <!-- extends link element -->

 <complexType name="linkType">

 <complexContent>

 <extension base="linking:linkPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="link" type="profile:linkType" substitutionGroup="linking:link"/>

 <!-- = -->

 <!-- Connector -->

 <!-- = -->

 <!-- extends connectorBase element -->

 <complexType name="connectorBaseType">

 <complexContent>

 <extension base="connectorBase:connectorBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:causalConnector" />

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <complexType name="simpleActionType">

 <complexContent>

 <extension base="connectorCausalExpression:simpleActionPrototype">

 <attributeGroup ref="animation:animationAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="connectorBase" type="profile:connectorBaseType" substitutionGroup="connectorBase:connectorBase"/>

 <element name="causalConnector" substitutionGroup="causalConnectorFunctionality:causalConnector"/>

 <element name="connectorParam" substitutionGroup="causalConnectorFunctionality:connectorParam"/>

 <element name="simpleCondition" substitutionGroup="causalConnectorFunctionality:simpleCondition"/>

 <element name="compoundCondition" substitutionGroup="causalConnectorFunctionality:compoundCondition"/>

 <element name="simpleAction" type="profile:simpleActionType" substitutionGroup="causalConnectorFunctionality:simpleAction"/>

 <element name="compoundAction" substitutionGroup="causalConnectorFunctionality:compoundAction"/>

 <element name="assessmentStatement" substitutionGroup="causalConnectorFunctionality:assessmentStatement"/>

 <element name="attributeAssessment" substitutionGroup="causalConnectorFunctionality:attributeAssessment"/>

 <element name="valueAssessment" substitutionGroup="causalConnectorFunctionality:valueAssessment"/>

 <element name="compoundStatement" substitutionGroup="causalConnectorFunctionality:compoundStatement"/>

 <!-- = -->

 <!-- TestRule -->

 <!-- = -->

 <!-- extends rule element -->

 <complexType name="ruleType">

 <complexContent>

 <extension base="testRule:rulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="rule" type="profile:ruleType" substitutionGroup="testRule:rule"/>

 <!-- extends compositeRule element -->

 <complexType name="compositeRuleType">

 <complexContent>

 <extension base="testRule:compositeRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="compositeRule" type="profile:compositeRuleType" substitutionGroup="testRule:compositeRule"/>

 <!-- extends ruleBase element -->

 <complexType name="ruleBaseType">

 <complexContent>

 <extension base="testRule:ruleBasePrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="profile:importBase"/>

 <element ref="profile:rule"/>

 <element ref="profile:compositeRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="ruleBase" type="profile:ruleBaseType" substitutionGroup="testRule:ruleBase"/>

 <!-- = -->

 <!-- TestRuleUse -->

 <!-- = -->

 <!-- extends bindRule element -->

 <complexType name="bindRuleType">

 <complexContent>

 <extension base="testRuleUse:bindRulePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="bindRule" type="profile:bindRuleType" substitutionGroup="testRuleUse:bindRule"/>

 <!-- = -->

 <!-- ContentControl -->

 <!-- = -->

 <!-- extends switch element -->

 <!-- switch interface element groups -->

 <group name="switchInterfaceElementGroup">

 <choice>

 <element ref="profile:switchPort"/>

 </choice>

 </group>

 <!-- extends defaultComponent element -->

 <complexType name="defaultComponentType">

 <complexContent>

 <extension base="contentControl:defaultComponentPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultComponent" type="profile:defaultComponentType" substitutionGroup="contentControl:defaultComponent"/>

 <complexType name="switchType">

 <complexContent>

 <extension base="contentControl:switchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <group ref="profile:switchInterfaceElementGroup"/>

 <element ref="profile:bindRule"/>

 <element ref="profile:switch"/>

 <element ref="profile:media"/>

 <element ref="profile:context"/>

 </choice>

 <attributeGroup ref="entityReuse:entityReuseAttrs"/>

 </extension>

 </complexContent>

 </complexType>

 <element name="switch" type="profile:switchType" substitutionGroup="contentControl:switch"/>

 <!-- = -->

 <!-- DescriptorControl -->

 <!-- = -->

 <!-- extends defaultDescriptor element -->

 <complexType name="defaultDescriptorType">

 <complexContent>

 <extension base="descriptorControl:defaultDescriptorPrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="defaultDescriptor" type="profile:defaultDescriptorType" substitutionGroup="descriptorControl:defaultDescriptor"/>

 <!-- extends descriptorSwitch element -->

 <complexType name="descriptorSwitchType">

 <complexContent>

 <extension base="descriptorControl:descriptorSwitchPrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:descriptor"/>

 <element ref="profile:bindRule"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="descriptorSwitch" type="profile:descriptorSwitchType" substitutionGroup="descriptorControl:descriptorSwitch"/>

 <!-- = -->

 <!-- Timing -->

 <!-- = -->

 <!-- = -->

 <!-- Import -->

 <!-- = -->

 <complexType name="importBaseType">

 <complexContent>

 <extension base="import:importBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importNCLType">

 <complexContent>

 <extension base="import:importNCLPrototype">

 </extension>

 </complexContent>

 </complexType>

 <complexType name="importedDocumentBaseType">

 <complexContent>

 <extension base="import:importedDocumentBasePrototype">

 </extension>

 </complexContent>

 </complexType>

 <element name="importBase" type="profile:importBaseType" substitutionGroup="import:importBase"/>

 <element name="importNCL" type="profile:importNCLType" substitutionGroup="import:importNCL"/>

 <element name="importedDocumentBase" type="profile:importedDocumentBaseType" substitutionGroup="import:importedDocumentBase"/>

 <!-- = -->

 <!-- EntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- ExtendedEntityReuse -->

 <!-- = -->

 <!-- = -->

 <!-- KeyNavigation -->

 <!-- = -->

 <!-- = -->

 <!-- TransitionBase -->

 <!-- = -->

 <!-- extends transitionBase element -->

 <complexType name="transitionBaseType">

 <complexContent>

 <extension base="transitionBase:transitionBasePrototype">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="profile:transition"/>

 <element ref="profile:importBase"/>

 </choice>

 </extension>

 </complexContent>

 </complexType>

 <element name="transitionBase" type="profile:transitionBaseType" substitutionGroup="transitionBase:transitionBase"/>

 <!-- = -->

 <!-- BasicTransition -->

 <!-- = -->

 <attributeGroup name="transitionAttrs">

 <attribute ref="basicTransition:transIn"/>

 <attribute ref="basicTransition:transOut"/>

 </attributeGroup>

 <element name="transition" substitutionGroup="basicTransition:transition"/>

 <!-- = -->

 <!-- Metainformation -->

 <!-- = -->

 <element name="meta" substitutionGroup="metainformation:meta"/>

 <element name="metadata" substitutionGroup="metainformation:metadata"/>

</schema>

10 Lua procedural objects in NCL presentations
10.1 Lua language - Removed functions in the Lua library
The scripting language adopted by Ginga-NCL to implement procedural objects in NCL documents is Lua (<media> elements of type application/x-ginga-NCLua). The complete definition of Lua is presented in Appendix B.
The following functions are platform dependent and were removed in the implementation:

1) in module package: loadlib;
2) in module io: all functions;
3) in module os: clock, execute, exit, getenv, remove, rename, tmpname and setlocale;
4) in module debug: all functions.

10.2 Execution model

The lifecycle of an NCLua object is controlled by the NCL formatter. The formatter is responsible for triggering the execution of an NCLua object and for mediating the communication among an NCLua object and other nodes in an NCL document, as defined in Section 8.5.
As with all media object players, once instantiated, the Lua player shall execute an initialization procedure. However, different from other media players, this initialization code is specified by the NCLua object author. This initialization procedure is executed only once, for each instance, and creates functions and objects that may be used during the NCLua object execution and, in particular, registers one (or more) event handler for communication with the NCL formatter.

After the initialization, the execution of the NCLua object becomes event oriented in both directions. That is, any action commanded by the NCL formatter reaches the registered event handlers, and any NCL event state change notification is sent as an event to the NCL formatter (as for example, the natural end of a procedure execution). The Lua Player is then ready to perform any start or set instruction (see 8.5).
10.3 Additional modules

10.3.1 Required modules
Besides the Lua standard library, the following modules shall be implemented and automatically loaded:

1) module canvas: offers an API to draw graphical primitives and manipulate images;
2) module event: allows NCLua applications to communicate with the middleware through events (NCL and key events);
3) module settings: exports a table with variables defined by the NCL document author and reserved environment variables contained in an "application/x-ginga-settings" node;
4) module persistent: exports a table with persistent variables, which may be manipulated only by procedural objects.
The definition of each function in the above modules use the following naming convention:

funcname (parnameI: partypeI [; optnameI: opttypeI]) -> retname: rettype

10.3.2 The canvas module
10.3.2.1 The canvas object

When an NCLua media object is initialized, the corresponding region of the <media> element (of type application/x-ginga-NCLua) is available as the global canvas variable for the Lua script. If the <media> element has no associated region defined (left, right, top and bottom properties), then the value for canvas is set to “nil”.

As an example, assume an NCL document region defined as:

<region id="luaRegion" width="300" height="100" top="200" left="20"/>

The canvas variable in a NCLua media object referring to “luaRegion” is bound to a canvas object of size 300x100, associated with the specified region at (20,200).

A canvas offers a graphical API to be used in an NCLua application. Using the API, it is possible to draw lines, rectangles, font, images, etc.

A canvas keep in its state a set of attributes under which the drawing primitives operate. For instance, if its color attribute is blue, a call to canvas:drawLine() will draw a blue line on the canvas.

The coordinates are always relative to the top/leftmost point in canvas (0,0).

10.3.2.2 Constructors

From any canvas object, it is possible to create new canvas and combine them through composite operations.

canvas:new (image_path: string) -> canvas: object

Arguments
image_path
Image path
Return values

canvas
Canvas representing the image
Description

Retorns a new canvas whose content is the image received as a parameter.

The new canvas shall keep the transparency aspects of the original image.

canvas:new (width, height: number) -> canvas: object

Arguments

width
Canvas width
height
Canvas height
Return values

canvas
New canvas
Description

Returns a new canvas with the received size.

Initially, all pixels shall be transparent.

10.3.2.3 Attributes

All attribute methods have the prefix “attr” and are used to get and set attributes (with the exceptions specified).

When a method is invoked without input parameters, the current attribute value is returned. On the other hand, when a method is invoked with input parameters, these parameters must be used as the new attribute values.

canvas:attrSize () -> width, height: number

Arguments

Return values

width
Canvas width
height
Canvas height
Description

Returns the canvas dimensions.

It is important to note that it is not possible to change the dimensions of an existing canvas.

canvas:attrColor (R, G, B, A: number)

Arguments

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Change canvas’ attribute color.

The colors are given in RGBA, where A varies from 0 (full transparency) to 255 (full opacity).

The primitives (see 10.3.3.4) are drawn with the color set to this attribute.

The initial value is ‘0,0,0,255’ (black).

canvas:attrColor (clr_name: string)

Arguments

clr_name
Color name

Change canvas’ attribute color.

The colors are given as a string corresponding to one of the 16 pre-defined NCL colors:

'white', 'aqua', 'lime', 'yellow', 'red', 'fuchsia', 'purple', 'maroon',

'blue', 'navy', 'teal', 'green', 'olive', 'silver', 'gray', 'black'

The values given have their alpha equal to full opacity (“A = 255”).

The primitives (see 10.3.3.4) are drawn with the color set in this attribute.

The initial value is ‘black’.

canvas:attrColor () -> R, G, B, A: number

Return values

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Retorns the canvas’ color.

canvas:attrFont (face: string; size: number; style: string)

Arguments

face
Font name

size
Font size

style
Font style

Description

Changes canvas’ font attribute.

The following fonts shall be available: ‘Tiresias’ and ‘Verdana’.

The size is in pixels, and it represents the maximum height of a line written with the chosen font.

The possible style values are: 'bold', 'italic', 'bold-italic' and ‘nil’. A ‘nil’ value assumes that no style will be used.
Any invalid input value shall raise an error.

The initial font value is undefined.

canvas:attrFont () -> face: string; size: number; style: string

Return values

face
Font name
size
Font size

style
Font style

Description

Returns the canvas font.

canvas:attrClip (x, y, width, height: number)

Arguments

x
Clipping area coordinate

y
Clipping area coordinate

width
Clipping area width

height
Clipping area height
Description

Changes the canvas clipping area.

The drawing primitives (see 10.2.3.4) and the method canvas:compose() only operate inside this clipping region.

The initial value is the whole canvas.

canvas:attrClip () -> x, y, width, height: number

Return values

x
Clipping area coordinate

y
Clipping area coordinate

width
Clipping area width

height
Clipping area height

Description

Returns the canvas clipping area.

canvas:attrCrop (x, y, w, h: number)

Arguments

x
Crop region coordinate

y
Crop region coordinate

w
Crop region width

h
Crop region height

Description

Changes the canvas crop region.

Only the set region is affected by operations following graphical compositions.

The initial crop region is the whole canvas.

The main canvas cannot have its crop region changed as it is controlled by the NCL formatter.
canvas:attrCrop () -> x, y, w, h: number

Return values

x
Crop region coordinate

y
Crop region coordinate

w
Crop region width

h
Crop region height

Description

Returns the canvas crop region.

canvas:attrFlip (horiz, vert: boolean)

Arguments

horiz
If canvas should be flipped horizontally

vert
If canvas should be flipped vertically

Description

Sets the canvas flipping mode used when the canvas is composed.

The main canvas cannot be flipped as it is controlled by the NCL formatter.

canvas:attrFlip () -> horiz, vert: boolean

Return values

horiz
If canvas is flipped horizontally

vert
If canvas is flipped vertically

Description

Returns the current canvas’ flipping setup.

canvas:attrOpacity (opacity: number)

Argument

opacity
Canvas opacity

Description

Changes canvas opacity.

The opacity values varies between 0 (full transparency) to 255 (full opacity).

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrOpacity () -> opacity: number

Return value

opacity
Canvas opacity

Description

Returns the current canvas opacity.

canvas:attrRotation (degrees: number)

Argument

degrees
Canvas rotation in degrees.

Description

Sets the canvas rotation attribute that must be multiple of 90o.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrRotation () -> degrees: number

Return value

degrees
Canvas rotation in degrees

Description

Returns the current canvas rotation value.

canvas:attrScale (w, h: number)

Arguments

w
Canvas scaling height

h
Canvas scaling width

Description

Scales the canvas by given width and height.

One of the given values may be true, indicating that the aspect ratio must be kept.

The scaling attribute is independent of the size attribute, which shall remain the same.

The main canvas cannot have its value changed as it is controlled by the NCL formatter.

canvas:attrScale () -> w, h: number

Return values

w
Canvas scaling width

h
Canvas scaling height

Description

Returns the current canvas scaling values.

10.3.2.4 Primitives

All the following methods take the canvas’ attributes into account.

canvas:drawLine (x1, y1, x2, y2: number)

Arguments

x1
Line extremity 1 coordinate

y1
Line extremity 1 coordinate

x2
Line extremity 2 coordinate

y2
Line extremity 2 coordinate

Description

Draws a line with its extremities in (x1,y1) and (x2,y2).

canvas:drawRect (mode: string; x, y, width, height: number)

Arguments

mode
Drawing mode
x
Rectangle coordinate

y
Rectangle coordinate
width
Rectangle width

height
Rectangle height

Description

Method for rectangle drawing and filling.

The parameter mode may receive 'frame' or ‘fill’ values, for drawing the rectangle with no-fill or filling it, respectively.

canvas:drawRoundRect (mode: string; x, y, width, height, arcWidth, arcHeight: number)

Arguments

mode
Drawing mode

x
Rectangle coordinate

y
Rectangle coordinate

width
Rectangle width

height
Rectangle height

arcWidth
Rounded edge arc width

arcHeight
Rounded edge arc height

Description

Function for rounded rectangle drawing and filling.

The parameter mode may be 'frame' in order to draw the rectangle frame or 'fill' to fill it.

canvas:drawPolygon (mode: string) -> drawer: function

Arguments

mode
Drawing mode
Return values

f
Drawing function
Description

Method for polygon drawing and filling.

The parameter mode may receive the 'open' value, to draw the polygon not linking the last point to the first; the 'close' value, to to draw the polygon linking the last point to the first; or the 'fill' value, to draw the polygon linking the last point to the first and painting the region inside.

The function canvas:drawPolygon returns an anonymous function “drawer” with the signature:

function (x, y) end

The returned function, receives the next polygon vertex coordinates and returns itself as the result. This recurrent procedure allows the idiom:

canvas:drawPolygon('fill')(1,1)(10,1)(10,10)(1,10)()

When the function "drawer" receives ‘nil’ as input, it completes the chained operation. Any subsequent call shall raise an error.

canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end: number)

Arguments

mode
Drawing mode

xc
Ellipse center

yc
Ellipse center

width
Ellipse width

height
Ellipse height

ang_start
Starting angle

ang_end
Ending angle

Description

Draws an ellipse and other similar primitives as circle, arcs and sectors.

The parameter mode may receive ‘arc’ to only draw the circunference or ‘fill’ for internal painting.

canvas:drawText (x, y: number; text: string)

Arguments

x
Text coordinate

y
Text coordinate

text
Text do be drawn

Description

Draws the given text at (x,y) in the canvas, using the font set by canvas:attrFont().
10.3.2.5 Miscellaneous

canvas:clear ([x, y, w, h: number])

Arguments

x
Clear area coordinate

y
Clear area coordinate

w
Clear area width

h
Clear area height

Description

Clears the canvas with the color set to attrColor.

If the area parameters are not given, all the canvas should be cleared.

canvas:flush ()

Description

Flushes the canvas after a set of drawing and composite operations.

It’s enough to call this method only once, after a sequence of operations.

canvas:compose (x, y: number; src: canvas; [src_x, src_y, src_width, src_height: number])

Arguments

x
Position of the composition
y
Position of the composition
src
Canvas to compose with
src_x
Position in the canvas src
src_y
Position in the canvas src
src_width
Composition width in the canvas src
src_height
Composition height in the canvas src
Description

Composes pixel by pixel the canvas src on the current canvas (destination canvas) at position (x,y).

The other parameters are optionals and indicate which region in the canvas src is used to compose with. When absent the whole canvas is used.

This operation calls src:flush() automatically before the composition.

The operation satisfies the following equation:

Cd = Cs*As + Cd*(255 - As)/255

Ad = As*As + Ad*(255 - As)/255

where:

Cd = color of the destination canvas (canvas)

Ad = alpha of the destination canvas (canvas)

Cs = color of the source canvas (src)

As = alpha of the source canvas (src)

After the operations the destination canvas has the resulting content and the canvas src remains intact.

canvas:pixel (x, y, R, G, B, A: number)

Arguments

x
Pixel position

y
Pixel position

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component
Description

Changes the pixel color.

canvas:pixel (x, y: number) -> R, G, B, A: number

Arguments

x
Pixel position

y
Pixel position

Return values

R
Color red component

G
Color green component

B
Color blue component

A
Color alpha component

Description

Returns the pixel color.

canvas:measureText (text: string) -> dx, dy: number

Arguments

x
Text coordinate

y
Text coordinate

text
Text to be measured

Return values

dx
text width
dy
text height
Description

Returns the border coordinates for the given text, as if it were drawn at (x,y) with the configured font of canvas:attrFont().
10.3.3 The event module
10.3.3.1 General View

This module offers an API for event handling. Using the API, the NCL formatter may communicate with an NCLua application asynchronously.

An application may also use this mechanism internally, using the “user” event class.

The typical use of NCLua application is to handle events: NCL events (see Section 7.2.8) or events coming from user interactions (for example, through the remote control).

During its initiation, before becoming event oriented, a Lua script has to register an event handler function. After the initialization any action performed by the script will be in response to an event notified to the application, that is, to the event handler function.

=== example.lua ===

... -- initializing code
function handler (evt)

 ... -- handler code

end

event.register(handler) -- register as an event listener

=== end ===

Among the event types that may be received by the handler function are all those generated by the NCL formatter. As aforementioned, a Lua script is also capable of generating events, called “spontaneous”, trough a call to the event.post(evt) function.

10.3.3.2 Functions

event.post ([dst: string]; evt: event) -> sent: boolean; err_msg: string
Arguments

dst
Event destination
evt
Event to be posted

Return values

sent
If the event was successfully sent

err_msg
Error message in case of errors

Description

Posts the given event.

The parameter "dst" is the event destination and may assume the values "in" (send to itself) and "out" (send to the NCL formatter). The default value is ‘out’.
event.timer (time: number, f: function) -> cancel: function
Arguments

time
Time in milliseconds
f
Callback function
Return value

unreg
Function to cancel the timer

Description

Creates a timer that expires after a timeout (in milliseconds) and then call the callback function f.

The signature of f is simple, no parameters are received or returned:

function f () end

Once created, it’s not possible to cancel the timer.

The value of 0 milliseconds is valid. In this case, event.timer() shall return immediately and f shall be called as soon as possible.

event.register ([pos: number]; f: function; [class: string]; […: any])

Arguments

pos
Register position (optional)

f

Callback function

class
Class filter (optional)

…

Class dependent filter (optional)

Description

Registers the given function as an event listener, that is, whenever an event happens, f is called (the function f is an event handler).
The parameter pos is optional.It indicates the position where f is registered. If it is not given, the function is registered in the last position.

The parameter class is optional and indicates which class of events the function shall receive. If class is specified, other class dependent filters may be defined. A nil value in any position indicates that the parameter shall not be filtered..

The signature for f is:

function f (evt) end -> handled: boolean
Where evt is the event that triggers the function.

The function may return “true”, to sinalize that the event was handled and, therefore, should not be sent to other handlers.

It is recommended that the function, defined by the application, returns fast, since while it is running no other event may be processed.

The NCL formatter shall notify the listeners in the order they were registered and if any of them returns true, the formatter shall not notify the remaining listeners.

event.unregister (f: function)

Arguments

f
Callback function
Description

Unregisters the given function as a listener, that is, new events will no longer be notified to f.

event.uptime () -> ms: number

Return values

ms
Time in milliseconds
Description

Returns the number of milliseconds elapsed since the beginning of the application.

10.3.3.3 Event classes

The function event.post() and the registered handler in event.register() receive events as parameters.

An event is described by a common Lua table, where the class field is mandatory and identifies the event class.

The following event classes are defined:

key class:

evt = { class='key', type: string, key: string}

* type may be 'press' or 'release'.

* key is the key value; the "event.keys" table holds all keycodes available in the NCL.

Example

evt = { class='key', type='press', key=’0’}
NOTE
In the key class, the class dependent filter could be type and key, in this order.
ncl class:

Relations among NCL media nodes are based on events. Lua has access to these events through ncl Class.

Events may act in two directions, that is, the formatter may send action events to change the state of the Lua player, which in its turn may trigger transition events to signal state changes.
In events, the type field shall assume one of the three values:

'presentation', 'selection' or 'attribution'

Events may be directed to specific anchors or to the whole node, this is identified by area field, that assumes the whole node when absent.

In the case of an event generated by the formatter, the action field shall have one of the following values:

'start', 'stop', 'abort', 'pause' and 'resume'

Type ‘presentation’:

evt = { class='ncl', type='presentation', area='?', action='start'/'stop'/'abort'/'pause'/'resume' }

Type ‘attribution’:

evt = { class='ncl', type='attribution', area='?', action='start' }

For events generated by the Lua player, the "action" field shall assume one of the following values:

'start', 'stop', 'abort', 'pause ,and 'resume'

Type ‘presentation’:

evt = { class='ncl', type='presentation', area='?', action='start'/'stop'/'abort'/'pause'/'resume' }

Type ‘selection’:

evt = { class='ncl', type='selection', area='?', action='stop' }

Type ‘attribution’:

evt = { class='ncl', type='attribution', area='?', action='stop' }

NOTE
In the ncl class, the class dependent filter could be type, area, and action, in this order.
edit class:

This class reproduces the editing commands for the Private Base manager (see Section 9). However, there is an important difference between editing commands coming from DSM-CC stream events (see Section 9), and the editing commands performed by Lua scripts (NCLua objects). The first ones alter not only the NCL document presentation, but also the NCL document specification. That is, in the end of the process a new NCL document is generated incorporating all editing results. On the other hand, editing commands coming from NCLua media objects only alter the NCL document presentation. The original document is preserved during all editing process.

Just like in other event classes, an editting command is represented by a Lua table. All events shall contain the command field: a string with the command name. The other fields depend on the command type(see Table 56 in Section 9). The unique difference is with regards to the field that defines the {uri,ior} reference pairs, named data field in the edit class. This field’s values may be not only the reference pairs mentioned in Table 56, but also XML strings with the content to be added.

Exemple:
evt = {

 command = ‘addNode’,

 compositeId = ‘someId’,

 data = ‘<media>...’,

}

The baseId e documentId fields are optional (when applicable) and they assume by default the base and document identifiers where the NCLua object is in execution.

The event describing the editting command may also receive a time reference as an optional parameter (optional parameters are indicated in the function signatures as arguments between brackets). This optional parameter may be used to specify the exact moment when the editing command shall be executed. If this parameter is not provided in the function call, the editing command shall be executed immediately. When provided, this parameter may have two different types of values, with two different meanings. If it is a number value, it defines the amount of time, in seconds, for how long the command shall be postponed. However, this parameter may also specify the exact moment, in absolute values, the command shall be executed. In this case, this parameter shall be a table value with the following fields: year (four digits), month (1-12), day (1-31), hour (0-23), min (0-59), sec (0-61), and isdst (a daylight saving flag, a boolean).

tcp class:

The use of the return channel is done through this class of events..

In order to send or receive a tcp data, a connection shall be firstly established trough posting an event in the form:
evt = { class='tcp', type='connect', host=addr, port=number, [timeout=number] }
The connection result is returned in a pre-registered event handler for the class. The returned event is in the form:
evt = { class='tcp', type='connect', host=addr, port=number, connection=identifier, error=<err_msg>}
The error and connection fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the connection identifier is returned in the connection field.
An NCLua application sends data, using a return channel, through posting events in the form:

evt = { class=’tcp’, type='data', connection=identifier, value=string, [timeout=number] }

Similarly, an NCLua application receives data transported in a return channel using events in the form:

evt = { class=’tcp’, type=’data’, connection=identifier, value=string, error=msg}

The error and value fields are mutually exclusive. When there is a communication error, a message is returned in the error field. When the communication is succeeded, the message is passed in the value field.
In order to close the connection, the following event shall be posted:
evt = { class='tcp', type='disconnect', connection=identifier }

NOTE
An specific middleware implementation should handle issues like authentication.

NOTE
In the tcp class, the class dependent filter could only be connection.
sms class:

The behaviour for sending and receiveing data using SMS is very similar to the one of the tcp class. The sms class is optional in the Ginga implementation for full-seg receivers.

An NCLua application sends data, using SMS, through posting events in the form:

evt = { class=’sms’, to=’phone number’, value=string }

Similarly, an NCLua application receives data transported by SMS using events in the form:

evt = { class=’sms’, from=’phone number’, value=string }

NOTE
An specific middleware implementation should handle issues like authentication, etc.
NOTE
In the sms class, the class dependent filter could only be from.
si class:
The si event class provides access to a set of information multiplexed in a transport stream and periodically transmitted.

The information acquisition process shall be performed in two steps:

1) A request is made calling the asynchronous event.post() function;

2) An event, to be delivered to the registered-event handlers of an NCLua script, whose data field contains a set of subfields and is represented by a Lua table. The set of subfields depends on requested information.

NOTE
In the si class, the class dependent filter could only be type.
Four event types are defined by the following tables:
type = ‘services’
The table of ‘services’ event type is made up by a set of vectors, each one with information related with a multiplexed service of the tuned transport stream.

Each request for a table of ‘services’ event type shall be carried out through the following call:

event.post('out', { class='si', type='services'[, index=N][, fields={field_1, field_2,…, field_j}]}),

where:

i) the index field defines the service index, when specified; if not specified, all services of the tuned transport stream shall be present in the returned event;

ii) the fields table may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'services',

 data = {

 [i] = { -- each service for each i

 id = <number>,

 isAvailable = <boolean>,

 isPartialReception = <boolean>,

 parentalControlRating = <number>,

 runningStatus = <number>,

 serviceType = <number>,

 providerName = <string>,

 serviceName = <string>,

 stream = {

 [j] = {

 pid = <number>,

 componentTag = <number>,

 type = <number>,

 regionSpecType = <number>,

 regionSpec = <string>,

 }

 }

 }

}

NOTE
In order to compute the values of the data-table subfields to be returned in events of services type, SI tables should be used as a basis, as well as descriptors associated with the service [i].

The values of the id and runningStatus data-table subfields should be computed according to the values of service_id and running_status fields, respectively, of the SDT table (see Table 13 of ABNT NBR 15603-2:2007) that describes the service [i].

The values of the providerName and serviceName data-table subfields should be computed according to the values of service_name and service_provider_name fields, respectively, of the service_descriptor (see ABNT NBR 15603-2:2007) that describes the service [i].

The value of the parentalControlRating data-table subfield should be computed according to the value of the rating field of the parental_rating_descriptor that has the country_code field with the equivalent country value that has the user.location variable of the Settings node.

The value of the isAvaiable data-table subfield should be computed according to the value of the country_code field (with the available set of countries) of the country_availability_descriptor (see Section 8.3.6 of ABNT NBR 15603-2:2007) related with service [i]. The “true” value shall be assigned only if the country_code field has a country value equivalent to the value of the user.location variable of the Settings node.

The value of the isPartualReception data-table subfield should be computed according to the value of service_id field of the partial_reception_descriptor (see Section 8.3.32 of ABNT NBR 15603-2:2007).

The semantics of the serviceType data-table subfield should be defined by Table H.2 (see ABNT NBR 15603-2:2007).

The semantics of the runningStatus data-table subfield should be defined by Table 14 of ABNT NBR 15603-2:2007).

The value of the pid stream-table subfield should have the same value of the pid field of the elementary stream [i] header (see ISO/IEC 13818-1).

The value of the componentTag stream-table subfield should be computed according to the value of component_tag field of the stream_identifier_descriptor (See Section 8.3.16 of ABNT NBR 15603-2:2007) related with the elementary stream [i].

The semantics of the type stream-table subfield should be defined according to Table 2-34 of the ITU-T Rec. H.222.0 | ISO/IEC 13818-1: 2008, related with the elementary stream [i].

The coding method for the regionSpec stream-table subfield should be defined by regionSpecType stream-table subfield, according to the semantics defined in Table 53 of ABNT NBR 15603-2:2007.

The value of the regionSpec stream-table subfield should define the region for which the elementary stream [i] is designated.

The regionSpec and regionSpecType stream-table subfields should also be computed based on the target_region_descriptor (See ABNT NBR 15603-2:2007).
type = ‘mosaic’
The table of the ‘mosaic’ event type is made up by a set of information for building the mosaic, and is provided in a matrix format.

Each request for a table of ‘mosaic’ event type shall be carried out through the following call:

event.post('out', { class='si', type='mosaic'[, fields={field_1, field_2,…, field_j}]}),

where the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'mosaic',

 data = {

 [i] = {

 [j] = {

 logicalId = <number>,

 presentationInfo = <number>,

 id = <number>,

 linkageInfo = <number>,

 bouquetId = <number>,

 networkId = <number>,

 tsId = <number>,

 serviceId = <number>,

 eventId = <number>,

 }

 }

 }

}

NOTE
In order to compute the values of the data-table subfields to be returned in events of mosaic type, SI tables should be used as a basis, as well as descriptors associated with the mosaic.

The maximum values for [i] and [j], as well as the values of the logicalId, presentationInfo, id, linkageInfo, bouquetId, networkId, tsId, serviceId and eventId data-table subfields should be computed according to the values of number_of_horizontal_elementary_cells, number_of_vertical_elementary_cells, logical_cell_id, logical_cell_presentation_info, id, cell_linkage_info, bouquet_id, original_network_id, transport_stream_id, service_id and event_id fields, respectively of the mosaic_descriptor (See Section 8.3.9 of ABNT NBR 15603-2:2007)
type = ‘epg’
The table of the ‘epg’ event type is made up by a set of vectors. Each vector contains information about an event of the content being transmitted.

Each request for a table of ‘epg’ event type shall be carried out through one of the following possible calls:

1) event.post('out', { class='si', type='epg', stage=’current’[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the current event of the content being transmitted.

2) event.post('out', {class='si', type='epg', stage='next'[, eventId=<number>][, fields={field_1, field_2,…, field_j}]})

where:

i) the eventid field, when specified, identifies the event immediately before the event whose information is required. When not specified, the requested information is for the event that immediately follows the curresnt event.

ii) the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to the event immediately after the event defined in eventId, or information regarding to the event immediately after the current event, when eventId is not specified.

3) event.post('out', {class='si', type='epg', stage=’schedule’, startTime=<date>, endTime=<date>[, fields={field_1, field_2,…, field_j}]})

where the fields list may have as a value any subset of subfields defined for the data table of the returned event (thus, field_i represents one of the subfields of the data table, as defined in what follows). If the fields list is not specified, all subfields of the data table shall be filled.

Description: returns information regarding to events within the time interval defined by the startTime and endTime fields, which have tables in the <date> format as values.

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'epg',

 data = {

 [i] – {

 startTime = <date>,

 endTime = <date>,

 runningStatus = <number>,

 name = <string>,

 originalNetworkId = <number>,

 shortDescription = <string>,

 extendedDescription = <string>,

 copyrightId = <number>,

 copyrightInfo = <string>,

 parentalRating = <number>,

 parentalRatingDescription = <string>,

 audioLanguageCode = <string>,

 audioLanguageCode2 = <string>,

 dataContentLanguageCode = <string>,

 dataContentText = <string>,

 hasInteractivity = <boolean>,

 logoURI = <string>,

 contentDescription = {

 [1] = <content_nibble_1>,

 [2] = <content_nibble_2>,

 [3] = <user_nibble_1>,

 [4] = <user_nibble_2> }

 },

 linkage = {

 tsId = <number>,

 networkId = <number>,

 serviceId = <number>,

 type = <number>,

 data = <string>,

 },

 hyperlink = {

 type = <number>,

 destinationType = <number>,

 tsId = <number>,

 networkId = <number>,

 eventId = <number>,

 componentTag = <number>,

 moduleId = <number>,

 serviceId = <number>,

 contentId = <number>,

 url = <string>,

 },

 series = {

 id = <number>,

 repeatLabel = <number>,

 programPattern = <number>,

 episodeNumber = <number>,

 lastEpisodeNumber = <number>,

 name = <string>,

 },

 eventGroup = {

 type = <number>,

 [j] = {

 id = <number>,

 tsId = <number>,

 networkId = <number>,

 serviceId = <number>,

 }

 },

 componentGroup = {

 type = <number>,

 [j] = {

 id = <number>,

 totalBitRate = <number>,

 description = <string>,

 caUnit = {

 id = <number>,

 component = {

 [k] = tag (<number>)

 }

 },

 }

 }

 }

 }

}

NOTE
In order to compute the values of the data-table subfields to be returned in events of epg type, SI tables should be used as a basis, as well as descriptors associated with the event [i].

The values of the startTime, endTime, runningStatus and originalNetworkId data-table subfields should be computed according to the values of the start_time, (duration + start_time), running_status and original_network_id fields, respectively, of the SI table event_information_section (see Table 15 of ABNT NBR 15603-2:2007).

The values of the name and shortDescription data-table subfields should be computed according to the values of the event_name_char and text_char fields, respectively, of the short_event_descriptor (see Section 8.3.15 of ABNT NBR 15603-2:2007).

The value of the extendedDescription data-table subfield should be computed according to the value of the text_char field of the extended_event_descriptor (see Section 8.3.7 of ABNT NBR 15603-2:2007).

The values of the copyrightId e copyrightInfo data-table subfields should be computed according to the values of the copyright_identifier and additional_copyright_info fields, respectively, of the copyright_descriptor (see Table 2-63 of ITU-T Rec. H.222.0 | ISO/IEC 13818-1: 2008).

The semantics of the parentalRating data-table subfield should be defined according to Table 33 of ABNT NBR 15603-2:2007. Its value should be computed according to the value of the country_code field of the parental_rating_descriptor and the environment variable (Settings node) user.location.

The semantics of the parentalRatingDescription data-table subfield should be defined according to Table 32 of ABNT NBR 15603-2:2007. Its value should be computed according to the value of the country_code field of the parental_rating_descriptor and the environment variable (Settings node) user.location.

The values of the audioLanguageCode and audioLanguageCode2 data-table subfields should be computed according to the values of the ISO_639_language_code and text_char fields, respectively, of the data_content_descriptor (see Table 54 of ABNT NBR 15603-2:2007).

The values of the dataContentLanguageCode and dataContextText data-table subfields should be computed according to the values of the ISO_639_language_code and text_char fields, respectively, of the data_content_descriptor (see Table 54 of ABNT NBR 15603-2:2007).

The value of the hasInteractivity data-table subfield shall have the “true” value when event [i] has an interactive application available.

The value of the logoURI data-table subfield should define the logotype location transmitted in a CDT Table (see Section 8.3.44 of ABNT NBR 15603-2:2007).

The subfield values of the contentDescription table should be computed according to corresponding fields of the content_descriptor (See Section 8.3.5 of ABNT NBR 15603-2:2007).

The values of the tsId, networkId, serviceId, type and data linkage-table subfields should be computed according to the values of the transport_stream_id, original_network_id, original_service_id, description_type and user_defined fields, respectively, of the linkage_descriptor (see Section 8.3.40 of ABNT NBR 15603-2:2007).

The values of the type, destinationType, tsId, networkId, eventId, componentTag, moduleId, contentId and url hyperlink-table subfields should be computed according to the values of the hyper_linkage_type, link_destination_type, transport_stream_id, original_network_id, event_id, component_tag, moduleId, content_id and url_char fields, respectively, of the hyperlink_descriptor (see Section 8.3.29 of ABNT NBR 15603-2:2007).

The values of the id, repeatLabel, programPattern, episodeNumber, lastEpisodeNumber and name series-table subfields should be computed according to the values of the series_id, repeat_label, program_pattern, episode_number, last_episode_number and series_name_char fields, respectively, of the series_descriptor (see Section 8.3.33 of ABNT NBR 15603-2:2007).

The values of the type, id, tsId, networkId and serviceId eventGroup-table subfields should be computed according to the values of the group_type, event_id, transport_stream_id, original_network_id and service_id fields, respectively, of the event_group_descriptor (see Section 8.3.34 of ABNT NBR 15603-2:2007).

The values of the type, id, totalBitRate, description, caUnit.id, caUnit.component[k].tag, tsId, networkId and serviceId componentGroup-table subfields should be computed according to the values of the component_group_type, component_group_id, total_bit_rate, text_char, CA_unit_id and component_tag fields, respectively, of the component_group_descriptor (see Section 8.3.37 of ABNT NBR 15603-2:2007).
type=’time’

The table of the ‘time’ event type contains information about the current UTC (Universal Time Coordinated) date and time, but in the official country time zone in which the receptor is located.

Each request for a table of ‘time’ event type shall be carried out through the following call:

event.post('out', { class='si', type=’time’})

The returned event is created after all request information is processed by the middleware (information that is not broadcasted within the maximum interval specified by Table 6 of ABNT NBR 15603-2:2007 shall be returned as ‘nil’). The data table is returned as follows:

evt = {

 class = 'si',

 type = 'time',

 data = {

 year = <number>,

 month = <number>,

 day = <number>,

 hours = <number>,

 minutes = <number>,

 seconds = <number>

 }

NOTE
In order to compute the values of the data-table subfields to be returned in events of time type, the TOT table should be used as a basis, as well as the local_time_offset_descriptor, according to Section 7.2.9 of ABNT NBR 15603-2:2007.
user class:

By using the class user, applications may extend their functionalities, create their own events.

In this class, no fields are defined (with the exception of the class field).

NOTE
In the user class, the class dependent filter could be type, if this field is defined.
10.3.4 The settings module
Exports the settings table with the reserved environment variables and the variables defined by the NCL document author, as defined in the application/x-ginga-settings node.

It is not allowed to set values to the fields representing variables in the settings node. An error shall be raised in this case. Properties of the application/x-ginga-settings node may only be changed trough using NCL links.

The settings table splits its groups into several subtables, corresponding to each application/x-ginga-settings node’s group. For instance, in an NCLua object, the settings node’s variable “system.CPU” is referred to as settings.system.CPU.

Examples of use:

lang = settings.system.language

age = settings.user.age

val = settings.default.selBorderColor

settings.service.myVar = 10
settings.user.age = 18 --> ERROR!

10.3.5 The persistent module
NCLua applications may save data in a restricted middleware area and recover it between executions. Lua player allows an NCLua application to persist a value to be used by itself or by another procedural object. In order to do that it defines a reserved area, inaccessible to non-procedural NCL media objects. This area is split into the groups “service”, “channel” and “shared”, with same semantics of the homonym groups of the NCL settings node. There are no predefined or reserved variables in these groups, and procedural objects are allowed to change variable’s values directly. Other procedural languages, in particular Java for NCLet objects (<media> elements of type application/x-ginga-NCLet) should offer an API to access this same area.

In this module, Lua offers an API to export the persistent table with the variables defined in the reserved area.

The use of the persistent table is very similar to the settings table, except that, in this case, procedural codes may change field values.

Examples of use:

persistent.service.total = 10

color = persistent.shared.color

10.4 Lua-API for Ginga-J
10.4.1 Mapping

Depending on the middleware configuration, it is possible to have access in Lua to the same API provided by Ginga-J, in order to have access to some set-top box resources and Ginga facilities. The API provided in Lua is optional, but when provided it shall follow the same specification defined for Ginga-J, and thus Section 10.4 only describes how the Java API provided by Ginga-J is mapped to Lua.

10.4.2 Packages

The hierarchies of Java packages that compose the Ginga-J API are mapped to equivalent hierarchies of Lua packages that have a common root package, called ginga. More specifically, a package “x” in Ginga-J API is mapped to an equivalent Lua package ginga.x. In this context, an equivalent Lua package means a package that contains classes and sub-packages equivalent to those defined in the Java package.

The set of Ginga-J packages that will be available in the execution environment of a Lua script may be restricted by security policies. If a package “x” of the Ginga-J API is available in the Lua environment, ginga.x will hold a reference to a Lua table with all definitions related to “x” (classes and sub-packages). Otherwise, ginga.x is a nil reference. Some examples of name mappings of Ginga-J packages to Lua packages are presented in Table 58.

Table 58 – Examples of name mappings between Ginga-J packages and Lua packages

	Ginga-J package
	Lua package

	org.sbtvd.net.tuning
	ginga.org.sbtvd.net.tuning

	org.sbtvd.media
	ginga.org.sbtvd.media

	javax.media
	ginga.javax.media

	org.dvb
	ginga.org.dvb

	org.havi
	ginga.org.havi

	org.davic
	ginga.org.davic

10.4.3 Basic types

The Java’s basic data types, used in the Ginga-J API, are mapped to Lua’s basic data types. These mappings shall be in agreement with Table 59. In addition to the primitive types of Java, this table also specifies the mapping of strings and arrays.

Table 59 – Mapping of basic data types

	Java type
	Lua type

	short
	number

	int
	number

	long
	number

	float
	number

	double
	number

	byte
	number

	char
	string (with only one character)

	boolean
	boolean

	Array objects
	table

	String objects
	string

10.4.4 Classes

Every Java class of the Ginga-J API is represented in Lua as a table, defined in its respective package. For instance, the class

org.sbtvd.net.tuning.ChannelManager

is represented in Lua as an entry ChannelManager in the package ginga.org.sbtvd.net.tuning, that is, this class is accessed through

ginga.org.sbtvd.net.tuning.ChannelManager.

All static members of a Java class are mapped to fields of the equivalent Lua table. Every class represented in Lua also has a newInstance operation that plays the role of a constructor.

10.4.5 Objects

Every time the newInstance method provided by a class represented in Lua is called, it returns a new instance (object) of that class. The returned object is a Lua table that has all instance members specified by its class (public fields and methods).

10.4.6 Callback objects (listeners)

Many methods defined in the Ginga-J API expect to receive a listener object as parameter. These listener objects may be implemented in Lua as tables that have all methods specified in the listener’s interface.

10.4.7 Exceptions

Java exceptions are also mapped to Lua tables, following the same rules to map Java objects to Lua. To raise an exception, a listener object implemented in Lua should use the function error provided by Lua (see Appendix B). To catch an exception raised by an API method, the Lua script should use the function pcall (see Appendix B).

11 Bridge

11.1 A review
The two-way bridge between Ginga-NCL and Ginga-J is done:

— in one way, through NCL relationships, defined in <link> elements that refer to <media> elements representing Xlet (application/x-ginga-NCLet type) codes supported by Ginga-J; and through Lua scripts (<media> elements of the application/x-ginga-NCLua type) referencing Ginga-J methods;

— in the reverse way, through Ginga-J functions that may monitor any NCL event and may also command changes in NCL elements and properties, through relationships defined in <link> elements or through NCL editing commands.
NOTE
Section 11 is a brief review of previous sections that have already detailed the two-way bridge between Ginga-NCL and Ginga-J.

11.2 The bridge through <link> and <media> NCL elements
As aforementioned, Ginga-NCL may act on Ginga-J through <link> elements and through <media> elements of the application/x-ginga-NCLet type.

Analogous to conventional media content, NCL allows Xlet code to be synchronized with other NCL objects (procedural or not). NCL authors may define NCL links to start, stop, pause, resume or abort the execution of an Xlet procedural code (represented by a <media> element of the application/x-ginga-NCLet type), as they do for usual presentation contents (see Section 8.5). An NCLet player (based on the Java engine) shall interface the procedural execution environment with the NCL formatter (see Section 8.5).
A <media> element containing a Java code may define anchors (through <area> elements) and attributes (through <property> elements). The player shall control the state machine of events associated with these interface elements.
Xlet code may be associated with an <area> element. If external links start, stop, pause or resume the anchor presentation, callbacks in the Xlet code shall be triggered. On the other hand, the Xlet code may command the start, stop, pause, resume or abort of these anchors through an API offered by the procedural language. The transitions caused by these commands may be used as conditions of NCL links to trigger actions on other NCL objects of the same document. Thus, a two-way synchronization may be established between the Xlet code and the remainder of the NCL document.

A <property> element defined as a child of a <media> element of the application/x-ginga-NCLet type may be mapped to an XLet-code method or to an Xlet-code attribute. When it is mapped to a code method, a link action “set” applied to the property shall cause the method execution, with the set values interpreted as parameters passed to the method. The name attribute of the <property> element shall be used to identify the procedural code method. When the <property> element is mapped to an Xlet code attribute, the action “set” shall assign a value to the attribute. The <property> element may also be associated with an NCL link assessment role. In this case, the NCL formatter shall query the attribute value in order to evaluate the link expression. If the <property> element is mapped to a code attribute, the code attribute value shall be returned by the Xlet player to the NCL formatter. If the <property> element is mapped to a code method, the method shall be called and its output value shall be returned by the Xlet player to the NCL formatter.

11.3 The bridge through Lua functions and Ginga-J methods
Depending on the middleware configuration, it is possible to have access in Lua to the same API provided by the Ginga-J, in order to have access to some set-top box resources and Ginga facilities. The API provided in Lua shall follow the same specification presented for Ginga-J.
Ginga-J also offers an API that allows Xlet code to query any pre-defined or dynamic properties’ values of the NCL settings node (<media> element of “application/x-ginga-settings” type).

Moreover, Ginga-J offers NCL APIs that provides a set of methods to support NCL’s editing commands and Private Base Manager commands.

12 Media coding requirements and transmission methods referred in NCL documents

12.1 Interactive channel use
An NCL formatter shall successfully ignore any coding or transmission method that is not supported by the browser. In order to acquire data content that is referred by <media> elements through a specific interactive channel protocol, the mechanisms specified for the interactive channel shall be used.
12.2 Video coding and transmission methods - Video data referred by <media> elements
12.2.1 Transmission of MPEG-1 video

12.2.1.1 Transmission as video elementary stream

To transmit MPEG-1 video content as a video elementary stream, the video data shall be transmitted as an MPEG-2 packetized elementary stream (video PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x01 for ISO/IEC 11172-2 video).

12.2.1.2 Transmission in MPEG-2 Sections
To transmit MPEG-1 video data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of multiplexed stream in MPEG-1 systems (see ISO/IEC 11172-1).

2) As a file of MPEG-1 video elementary stream.

3) As a file of multiplexed stream in the TS format specified in Section 12.4.

12.2.2 Transmission of MPEG-2 video

12.2.2.1 Transmission as video Elementary Stream

To transmit MPEG-2 video content as a video elementary stream, the video data shall be transmitted as an MPEG-2 packetized elementary stream (video PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x02 for ISO/IEC 13818-2 video).
12.2.2.2 Transmission in MPEG-2 Sections

To transmit MPEG-2 video data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of MPEG-2 video elementary stream.

2) As a file of multiplexed stream into the TS format specified in 12.4.

12.2.3 Transmission of MPEG-4 video and H.264|MPEG-4 AVC

12.2.3.1 Transmission as video Elementary Stream

To transmit MPEG-4 video content as a video elementary stream, the video data shall be transmitted as an MPEG-2 packetized elementary stream (video PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x10 for ISO/IEC 14496 video and H.264|MPEG-4 AVC).
12.2.3.2 Transmission in MPEG-2 Sections
To transmit MPEG-4 video or H.264|MPEG-4 AVC data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1); one of the following transmission methods shall be used:

1) As a file of MPEG-4 video (or H.264|MPEG-4 AVC) elementary stream.

2) As a file of multiplexed stream into the TS format specified in 12.4.

12.3 Audio coding and transmission methods - Audio data referred by <media> elements
12.3.1 Transmission of MPEG-1 audio

12.3.1.1 Transmission as audio elementary stream

To transmit MPEG-1 audio content as an audio elementary stream, the audio data shall be transmitted as an MPEG-2 packetized elementary stream (audio PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x03 for ISO/IEC 11172-3 audio).
12.3.1.2 Transmission in object MPEG-2 Sections
To transmit MPEG-1 audio data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of multiplexed stream in MPEG-1 systems (see ISO/IEC 11172-1).

2) As a file of MPEG-1 audio elementary stream.

3) As a file of multiplexed stream into the TS format specified in 12.4.

12.3.2 Transmission of MPEG-2 audio

12.3.2.1 Transmission as audio elementary stream

To transmit MPEG-2 AAC audio content as an audio elementary stream, the audio data shall be transmitted as an MPEG-2 packetized elementary stream (audio PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x0F for ISO/IEC 13818-7 Audio).

To transmit MPEG-2 BC audio content as an audio elementary stream, the audio data shall be transmitted as an MPEG-2 packetized elementary stream (PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x04 for ISO/IEC 13818-3 Audio).

12.3.2.2 Transmission in MPEG-2 Sections

To transmit MPEG-2 audio data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of MPEG-2 audio elementary stream.

2) As a file of multiplexed stream into the TS format specified in 12.4.

12.3.3 Transmission of MPEG-4 audio

12.3.3.1 Transmission as audio elementary stream

To transmit MPEG-4 audio content as an audio elementary stream, the audio data shall be transmitted as an MPEG-2 packetized elementary stream (audio PES), with the stream type specified as the stream type assignment of ISO/IEC 13818-1 (value of 0x11 for ISO/IEC 14496-3 Audio).

12.3.3.2 Transmission in MPEG-2 Sections

To transmit MPEG-4 audio data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of MPEG-4 audio elementary stream.

2) As a file of multiplexed stream into the TS format specified in 12.4.

12.3.4 Transmission of AC3 audio
12.3.4.1 Transmission as audio elementary stream

To transmit AC3 audio content as an audio elementary stream, the audio data shall be transmitted as an MPEG-2 packetized elementary stream (audio PES), with the stream type specified as 0x81.

12.3.4.2 Transmission in MPEG-2 Sections

To transmit AC3 audio data through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1), one of the following transmission methods shall be used:

1) As a file of AC3 audio elementary stream.

2) As a file of multiplexed stream into the TS format specified in 12.4.

12.3.5 Transmission of PCM (AIFF-C) audio

AIFF-C PCM audio should be transmitted as a file through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-1).

12.4 TS format for MPEG video/audio transmission - Data encoding specification

12.4.1 Transmission of Video and audio multiplexed
To transmit MPEG-1/2/4 Video or H.264|MPEG-4 AVC data along with MPEG-1/2/4 or AC3 Audio data in multiplexed files in specific MPEG-2 Sections, each multiplexed video/audio file is coded in a TS format as defined in ISO/IEC 13818-1.

12.4.2 Required PSI

A PAT shall be described. Any PAT shall be described with program_number whose value is other than 0 and that shall represent a PID of the PMT. The available values of program_number are defined in an operational standard regulation.

A PMT shall be described. Any stream identification descriptor indicating a second loop shall contain a PMT descriptor. Otherwise, a descriptor may be placed as required.

It is recommended that the available values to component_tag, and the occurrence rules of component_tag in a default ES and PMT descriptors in a second loop are equivalent to an operational standard regulation used for the main stream of the media type responsible for transmitting the concerned stream.

In an implementation in which a transport stream is decoded from a file, which has been transmitted based on the data encoding specification defined in this section, is presented in a high-speed digital interface, an SIT shall be described (see ABNT NBR 15606-1). In other cases, SITs are not required, unless otherwise specified explicitly.

Any table other than PAT, PMT, and SIT (e.g. CAT, NIT, SDT, BAT, EIT, RST, TDT, TOT, PCAT, SDTT, and ST (see ABNT NBR 15601) shall not be described.

A PAT shall occur in a stream at a frequency of not less than one time per 100 milliseconds. A PMT shall occur in a stream at a frequency of not less than one time per 100 milliseconds.

As far as the single TS format file, a PAT/PMT shall not be modified or updated.

12.4.3 Transmission in MPEG-2 Sections

To transmit a file coded with the data encoding specification defined in Section 12.6 in specific MPEG-2 Sections, the transmission shall comply with the ABNT NBR 15606-3.
12.4.4 Constraints in playing

To perform receiving a broadcasting service and playing a TS file, received from specific MPEG-2 Sections, two separate transport stream processing systems are required. The constraints in integrating and coordinating a content/event received via a broadcasting service and a TS file is not described in this Recommendation.

12.5 Coding scheme and transmission of still pictures and bitmap graphics data referred by <media> elements
12.5.1 Transmission of MPEG-2 I-frame, MPEG-4 I-VOP, and H.264|MPEG-4 AVC I-picture

12.5.1.1 Transmission in video PES for linear playback

To transmit a still picture in MPEG-2 I-frames through a video PES component, the coding scheme shall conform to the conventions defined in ABNT NBR 15606-1. The PES component shall be transmitted as a stream with the stream type value of 0x02.

To transmit a still picture in MPEG-4 I-VOP through a video PES component, the coding scheme shall conform to the conventions defined in ABNT NBR 15606-1. The PES component shall be transmitted as a stream with the stream type value of 0x10.

To transmit a still picture in H.264|MPEG-4 AVC I-picture through a video PES component, the coding scheme shall conform to the conventions defined in ABNT NBR 15606-1. The PES component shall be transmitted as a stream with the stream type value of 0x1B.

12.5.1.2 Transmission in carousel module for interactive playback

To transmit a still picture in MPEG-2 I frames in MPEG-2 Sections, the coding scheme shall conform to the conventions in ABNT NBR 15606-1. The still picture shall be transmitted as a file in the MPEG-2 Section.

To transmit a still picture in MPEG4-I-VOP in MPEG-2 Sections, the coding scheme shall conform to the conventions in ABNT NBR 15606-1. The still picture shall be transmitted as a file in the MPEG-2 Section.

To transmit a still picture in H.264|MPEG-4 AVC I-picture in MPEG-2 Sections, the coding scheme shall conform to the conventions in ABNT NBR 15606-1. The still picture shall be transmitted as a file in the MPEG-2 Section.

In these cases, the stream type value of the MPEG-2 Section shall be in agreement with ISO/IEC 13818-1.

12.5.2 Transmission of JPEG still picture

JPEG still pictures shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6).
12.5.3 Coding scheme and transmission of PNG bitmap

For the PNG bitmap data that is displayed only under the control of the CLUT data specified separately, the palette data within the PNG data may be abbreviated.

PNG bitmap graphic shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6).
12.5.4 Coding scheme and transmission of MNG animation

For the PNG bitmap graphic data in the MNG animation format that is displayed only under the control of CLUT data specified separately from this Recommendation, the palette data within the PNG data may be omitted. MNG bitmap animation graphic shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6).
12.5.5 Coding scheme and transmission of GIF graphic data and animation

GIF graphic data and animation graphics shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6)..

12.6 Character coding and transmission - External text files referred by <media> elements
A text file encoded in ISO-8859-1 shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6)..

12.7 Transmission of XML documents
12.7.1 Transmission of NCL documents and other XML documents used in editing commands
To transmit an NCL document or another XML document file used in NCL editing command parameter, one of the following transmission methods shall be used:

1) through an interactive channel protocol;
2) through specific MPEG-2 Sections.

If an interactive channel protocol is used to download an NCL Document or another XML Document file referred in a addNode editing command parameter, the uri parameter of the addDocument or addNode editing command (see Section 9) shall not have its schema equal to “x-sbtvd”, and its corresponding id parameter shall be set to NULL. The uri parameter shall specify the document location and the protocol schema used to transmit the document.
If specific MPEG-2 sections are used, several alternatives are possible, as follows. The alternative choose for SBTVD shall be in conformance with ABNT NBR 15606-3.
12.7.1.1 DSM-CC transport of Editing Commands using stream-event descriptors and object carousels
In Digital TV environments, it is usual to adopt DSM-CC to transport editing commands in MPEG-2 TS elementary streams.

Editing commands are transported in DSM-CC stream-event descriptors. DSM-CC stream-event descriptors have exactly the same structure of event descriptors presented in Figure 5, as shown in Figure 6.
	Syntax
	Number of bits

	StreamEventDescriptor () {
	

	 descriptorTag
	8

	 descriptorLenght
	8

	 eventId
	16

	 reserved
	31

	 eventNPT
	33

	 privateDataLength
	8

	 commandTag
	8

	 sequenceNumber
	7

	 finalFlag
	1

	 privateDataPayload
	8 to 2008

	 FCS
	8

	}
	

Figure 6 - Editing command stream event descriptor

The DSM-CC object carousel protocol allows the cyclical transmission of event objects and file systems. Event objects are used to map stream event names into stream event ids. Event objects are used to inform about DSM-CC stream events that may be received. Event names allow specifying types of events, offering a higher abstraction level for applications. The Private Base Manager should register themselves as listeners of stream events they handle, using event names, in this case: “nclEditingCommand”.

Besides event objects, the DSM-CC object carousel protocol can also be used to transport files organized in directories. A DSM-CC demultiplexer is responsible for mounting the file system at the receiver device.

In order to transmit NCL Document files or other XML Document files, used in addDocument or addNode editing command parameters, through an object carousel, the stream type value of 0x0B shall be used. In the same object carousel that carries the XML specification, an event object shall be transmitted in order to map the name “gingaEditingCommand” to the eventId of the DSM-CC stream event descriptor, which shall carry an addDocument or addNode editing command, as described in Chapter 9. The privateDataPayload of the stream event descriptor shall carry a set of {uri, id} reference pairs. The uri parameter of the first pair shall have the “x-sbtvd” schema and the local absolute path of the NCL document or the NCL node specification (the path in the data server). The corresponding ior parameter in the pair shall refer to the NCL Document or to the NCL Node specification IOR (carouselId, moduleId, objectKey; see ABNT NBR 15606-3 and ISO/IEC 13818-6) in the object carousel. If other file systems has to be transmitted using other object carousels in order to complete the addDocument or addNode command with media content, other {uri, id} pairs shall be present in the command. In this case, the uri parameter shall have the “x-sbtvd” schema and the local absolute path of file system root (the path in the datacast server), and the corresponding ior parameter in the pair shall refer to the IOR (carouselId, moduleId, objectKey; see ABNT NBR 15606-3 and ISO/IEC 13818-6) of any root-child file or directory in the object carousel (the IOR of the carousel service gateway).
Figure 7 depicts an example of an NCL document transmission through an object carousel. In this example, a content provider wants to transmit an interactive program named “weatherConditions.ncl” stored in one of its data servers (Local File System, in Figure 7). An object carousel shall then be generated (Service Domain = 1, in Figure 7) carrying all the interactive program contents (.ncl file and all media files) and also an event object (moduleId = 2 and objectKey = 2, in Figure 7) mapping the “gingaEditingCommand” name to the eventId value (value “3”, in Figure 7). A stream event descriptor shall also be transmitted with the appropriated eventId value, in the example “3”, and the commandTag value “0x05”, which indicates an addDocument command (see Section 9). The uri parameter shall have the “x-sbtvd” schema and the absolute path of the NCL document (“C:\nclRepository\weather”, in Figure 7). Finally, the IOR of the NCL document in the object carousel is carried in the xmlDocument parameter (carouselId = 1, moduleId = 1, objectKey = 2, in Figure 7).

[image: image5]
Figure 7 – Example of an NCL document transmission

12.7.1.2 Transport of Editing Commands Using Event Descriptors and MPEG-2 Sections

Event descriptors (defined in Section 9) can be sent in MPEG-2 TS elementary stream, for example, using DSM-CC stream event as discussed in appendix Section 12.7.1.1, or using any protocol for pushed data transmission.

Three data structure types can be defined to support the NCL editing command transmission, besides the already defined event descriptor: maps, metadata and data files.

For map structures, the mappingType field identifies the map type. If the mappingType is equal to “0x01” (“events”), an event-map is characterized. In this case, after the mappingType field comes a list of event identifiers as defined in Table 60. Other mappingType values may also be defined, but they are not relevant for this Norm.

Table 60 – List of event identifiers defined by the mapping structure

	Syntax
	Number of bits

	mappingStructure () {
	

	 mappingType
	8

	 for (i=1; i<N; i++){
	

	 eventId
	8

	 eventNameLength
	8

	 eventName
	8 to 255

	 }
	

	}
	

Maps of type “events” (event maps) are used to map event names into eventIds of event descriptors (see Figure 5). Event maps are used to inform which events shall be received. Event names allow specifying types of events, offering a higher abstraction level for middleware applications. The Private Base Manager, as well as NCL execution-objects (e.g. NCLua, NCLet), should register themselves as listeners of events they handle, using event names.

When an NCL editing command needs to be sent, an event map shall be created, mapping the string “nclEditingCommand” into a selected event descriptor id (see Figure 5). One or more event descriptors with the previous selected id are then created and sent. These event descriptors may have their time reference set to zero, but may be postponed to be executed at a specific time. The Private Base Manager shall register itself as an “nclEditingCommand” listener in order to be notified when this type of event arrives.

Each data file structure is indeed a file content that composes an NCL application: the NCL specification file or its media content files (video, audio, text, image, ncl, lua, etc.).

A metadata structure is an XML document, as defined by the following schema. Note that the schema defines, for each pushed file, an association between its location in a transport system (transport system identification (component_tag attribute) and the file identification in the transport system (structureId attribute)) and its Universal Resource Identifier (uri attribute).

<!--

XML Schema for NCL Section Metadata File

This is NCL
Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCLSectionMetadataFile.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Section Metadata File namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:NCLSectionMetadataFile="http://www.ncl.org.br/NCLSectionMetadataFile"

 targetNamespace="http:// www.ncl.org.br/NCL3.0/NCLSectionMetadataFile"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="NCLSectionMetadataType">

 <sequence>

 <sequence>

 <element ref="NCLSectionMetadataFile:baseData" minOccurs="0"

maxOccurs="unbounded"/>

 </sequence>

 <element ref="NCLSectionMetadataFile:pushedRoot" minOccurs="0"

maxOccurs="1"/>

 <sequence>

 <element ref="NCLSectionMetadataFile:pushedData" minOccurs="0"

maxOccurs="unbounded"/>

 </sequence>

 </sequence>

 <attribute name="name" type="string" use="optional"/>

 <attribute name="size" type="positiveInteger" use="optional"/>

 </complexType>

 <complexType name="baseDataType">

 <sequence>

 <element ref="NCLSectionMetadataFile:pushedRoot" minOccurs="0"

maxOccurs="1"/>

 <sequence>

 <element ref="NCLSectionMetadataFile:pushedData"

minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </sequence>

 <attribute name="uri" type="anyURI" use="required"/>

 </complexType>

 <complexType name="pushedRootType">

 <attribute name="component_tag" type="positiveInteger"

use="optional"/>

 <attribute name="structureId" type="string" use="required"/>

 <attribute name="uri" type="anyURI" use="required"/>

 <attribute name="size" type="positiveInteger" use="optional"/>

 </complexType>

 <complexType name="pushedDataType">

 <attribute name="component_tag" type="positiveInteger"

 use="optional"/>

 <attribute name="structureId" type="string" use="required"/>

 <attribute name="uri" type="anyURI" use="required"/>

 <attribute name="size" type="positiveInteger" use="optional"/>

 </complexType

 <!-- declare global elements in this module -->

 <element name="metadata" type="NCLSectionMetadataFile:NCLSectionMetadataType"/>

 <element name="baseData" type="NCLSectionMetadataFile:baseDataType"/>

 <element name="pushedRoot" type="NCLSectionMetadataFile:pushedRootType"/>

 <element name="pushedData" type="NCLSectionMetadataFile:pushedDataType"/>

</schema>

For each NCL Document file or other XML Document files used in addDocument or addNode editing command parameters, at least one metadata structure shall be defined. Only one NCL application file or XML document file representing an NCL node to be inserted may be defined in a metadata structure. More precisely, there can be only one <pushedRoot> element in a metadata XML document. However, an NCL application (its content files) or an XML document (its content files) may extend for more than one metadata structure. Moreover, there may also be a metadata structure without any NCL application or XML document described in its <pushedRoot> and <pushedData> elements.

These three data structures can be transmitted using different transport systems, as exemplified in what follows.

 Transporting all data structures using a specific MPEG-2 section

The use of a specific type of MPEG-2 section (identified by a specific table_id value, present in the table_id field of an MPEG-2 private section), from now on called NCL Section, allows the transmission of the three data structure types: maps, metadata and data files.

Every NCL Section contains data of a single structure. However, one structure can extend through several Sections. Every data structure can be transmitted in any order and how many times it is necessary. The beginning of a data structure is delimited by the payload_unit_start_indicator field of a TS packet. After the four bytes of the TS header the TS packet payload starts with a pointer_field byte indicating the beginning of an NCL Section (see ISO/IEC 13818-1). The NCL Section header is then defined as MPEG-2 sections (see ISO/IEC 13818-1). The first byte of an NCL Section payload identifies the structure type (0x01 for metadata; 0x02 for data files, and 0x03 for event-map). The second payload byte carries the unique identifier of the structure (structureId) in this elementary stream.
NOTE
The elementary stream and the structure identifier are those that are associated by the metadata structure to a file locator (URL), through the component_tag and structureId attributes of the <pushedRoot> and <pushedData> elements.
After the second byte comes a serialized data structure that can be a mappingStructure (as depicted by Table 60), or a metadata structure (an XML document), or a data file structure (a serialized file content). The NCL Section demultiplexer is responsible for mounting the application’s structure at the receiver device.
NOTE
It is important to note that NCL Sections can also transport data structures encapsulated in other data structures. For example, MPE (Multi-protocol Encapsulation) can be used and thus, in this case, NCL Sections are MPEG-2 Datagram Sections. Moreover all data structures mentioned in this appendix can be wrapped in other protocol data format, like FLUTE packets.
In the same elementary stream that carries the XML specification (the NCL Document file or other XML Document file used in addDocument or addNode editing command), an event-map file should be transmitted in order to map the name “nclEditingCommand” to the eventId of the event descriptor, which shall carry an addDocument or addNode editing command, as described in Section 9. The privateDataPayload of the stream event descriptor shall carry a set of {uri, id} reference pairs. The uri parameters are always “null”. The id parameter of the first pair shall identify the elementary stream (“component_tag”) and its metadata structure (“structureId”) that carries the absolute path of the NCL document or the NCL node specification (the path in the data server) and the corresponding related structure (“structureId”) transported in NCL Sections of the same elementary stream. If other additional metadata structures are used in order to complete the addDocument or addNode command, other {uri, id} pairs shall be present in the command. In this case, the uri parameter shall also be “null” and the corresponding id parameter in the pair shall refer to the component_tag and the corresponding metadata structureId.

Figure 8 depicts an example of an NCL document transmission through NCL Sections. In this example, a content provider wants to transmit an interactive program named “weatherConditions.ncl” stored in one of its data servers (Local File System, in Figure 8). An MPEG-2 elementary stream (component_tag= “0x09”) shall then be generated carrying all the interactive program contents (ncl file and all media content files) and also an event-map (structureType=“0x03”; structureId=“0x12”), in Figure 8), mapping the “nclEditingCommand” name to the eventId value (value “3”, in Figure 8). An event descriptor shall also be transmitted with the appropriated eventId value, in the example “3”, and the commandTag value “0x05”, which indicates an addDocument command (see Section 4). The uri parameter shall have the “null” value and the id parameter shall have the (component_tag= “0x09”, structureId= “0x11”, in Figure 8) value.

[image: image6.emf]C:/nclRepository

Local File System

weather

images

brazilianMap.png

weatherConditions.ncl

Event Descriptor

descriptorTag = 0

descriptorLenght= descriptorLen ()

eventId= 3

Reserved

eventNPT = 0

privateDataLenght=dataLen()

commandTag= 0x05

Sequence number= 0

finalFlag= 1

privateDataPayload= “someBase”,

“null”, “0x09, 0x0B”

FCS = checksum()

<metadata name=“weatherConditions” size= “110kb”>

<baseData uri=file://c:/nclRepository/weather/

<pushedRoot structureId=“0x09” uri=“weatherConditions.ncl

size=“10kb”/>

<pushedData structureId=“0x09” uri=“../images/brazilianMap.png”

size=“100kb”/>

</baseData>

</metadata>

Metadata Structure

Event-Map File

eventId = 3

eventNameLength = 0x13

eventName = nclEditingCommand

Figure 8 – Example of an NCL document transmission using MPEG-2 NCL Section

Transporting metadata structures as Editing Command parameters

Instead of transporting metadata structures directly inside NCL sections, an alternative procedure is treating metadata structures as addDocument and addNode command parameters, which are transported in the privateDataPayload field of an event descriptor.

In this case, the set of {uri, id} parameter pairs of addDocument and addNode command is substituted by metadata structure parameters that define a set of {“uri”, “component_tag, structureId”} pairs for each pushed file.

Taking back the example of Figure 8, it would be exactly the same, except the event descriptor. Instead of having the {uri; id} pair = {“null”; “example, 11”} value as an event descriptor parameter, it would have the serialized XML metadata structure. In the metadata structure, the component-tag attribute of the <pushedRoot> and <pushedData> elements shall in this case be defined, since the metadata structure is not transported anymore in the same elementary stream of the NCL document’s files.

 Transporting metadata structures in MPEG-2 metadata sections

Another alternative is transporting metadata structures in MPEG-2 metadata sections, transported in MPEG-2 stream type=“0x16”. As usual, every MPEG-2 metadata section contains data of a single metadata structure. However, one metadata structure can extend through several metadata sections.
Table 61 shows the metadata section syntax for transport of metadata structures, which shall be in agreement with ISO/IEC 13818-1: 2007.

Table 61 – Section syntax for transport of metadata structures

	Syntax
	Nº. of bits
	Value

	Metadata section() {
	
	

	 table_id
	8
	0x06

	 section_syntax_indicator
	1
	1

	 private_indicator
	1
	1

	 random_access_indicator
	1
	1

	 decoder_config_flag
	1
	0

	 metadata_section_length
	12
	integer

	 metadata_service_id
	8
	Integer to be standardized

	 reserved
	8
	

	 section_fragment_indication
	2
	according to Table 62

	 version_number
	5
	integer

	 current_next_indicator
	1
	1

	 section_number
	8
	integer

	 last_section_number
	8
	integer

	 structureId
	8
	integer

	 For (i=1; i< N; i++) {
	
	

	 serialized_metadata_structure_byte
	8
	

	 }
	
	

	 CRC_32
	32
	

	}
	
	

Table 62 – Section fragment indication

	Value
	Description

	11
	A single metadata section carrying a complete metadata structure.

	10
	The first metadata section from a series of metadata sections with data from one metadata structure.

	01
	The last metadata section from a series of metadata sections with data from one metadata structure.

	00
	A metadata section from a series of metadata sections with data from one metadata structure, but neither the first nor the last one.

In the same elementary stream that carries the XML specification (the NCL Document file or other XML Document file used in addDocument or addNode editing commands), an event-map file should be transmitted in order to map the name “nclEditingCommand” to the eventId of the event descriptor, which shall carry an addDocument or addNode editing command, as described in Section 4. The privateDataPayload of the stream event descriptor shall carry a set of {uri, id} reference pairs. The uri parameters are always “null”. The id parameter of the first pair shall identify the elementary stream (“component_tag”) of type= “0x16” and the metadata structure (“structureId”) that carries the absolute path of the NCL document or the NCL node specification (the path in the data server). If other metadata structures are used to relate files present in the NCL document or the NCL node specification, in order to complete the addDocument or addNode command with media content, other {uri, id} pairs shall be present in the command. In this case, the uri parameter shall also be “null” and the corresponding id parameter in the pair shall refer to the component_tag and the corresponding metadata structureId.

Taking back the example of Figure 8, it would be very similar. Only minor changes must be made such that the event descriptor refers to the elementary stream and its section that carries the metadata structure (“component_tag= “0x08” and structureId= “0x11”), and that the metadata structure also refers to the elementary stream where the document’s file will be transported. Figure 9 illustrates the new situation.

[image: image7.emf]C:/nclRepository

Local File System

weather

images

brazilianMap.png

weatherConditions.ncl

Event Descriptor

descriptorTag = 0

descriptorLenght= descriptorLen ()

eventId= 3

Reserved

eventNPT = 0

privateDataLenght=dataLen()

commnandTag= 0x05

Sequence number= 0

finalFlag= 1

privateDataPayload= “someBase”,

“null”, “0x08, 0x0B”

FCS = checksum()

<metadata name=“weatherConditions” size= “110kb”>

<baseData uri=file://c:/nclRepository/weather/

<pushedRoot component_tag=“0x09” structureId=“0x0A”

uri=“weatherConditions.ncl size=“10kb”/>

<pushedData component_tag=“0x09” structureId=“0x09”

uri=“../images/brazilianMap.png” size=“100kb”/>

</baseData>

</metadata>

Metadata Structure

Event-Map File

eventId = 3

eventNameLength = 0x13

eventName = nclEditingCommand

Figure 9 – Example of an NCL document transmission using MPEG-2 Metadata Section

12.7.2 Transmission of external XML documents

External XML documents referred by <media> elements, for example, an XHTML based media object, shall be transmitted through specific MPEG-2 Sections (see stream type assignments for MPEG-2 sections in ISO/IEC 13818-6).
13 Security

The Ginga security model is fully conformant to SBTVD security model, as addressed in Ginga-J specification. It addresses the same areas of security; i.e. authentication of broadcast applications, security policies for applications, security over the interaction channel, and certificate management.
Authentication of Ginga-NCL applications shall be performed in the same way than for Ginga-J applications. If signed, Ginga-NCL application shall follow the signing framework as specified in Ginga-J. As such, non-authenticated Ginga-NCL applications will operate within a sandbox environment. Authenticated Ginga-NCL applications associated with a permission request file may be granted permissions outside the sandbox.

Appendix A
(normative)

NCL 3.0 module schemas used in the Basic DTV and the Enhanced DTV profiles
A.1 Structure module: NCL30Structure.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.
See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Structure.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the Structure module namespace,

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:structure="http://www.ncl.org.br/NCL3.0/Structure"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Structure"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- = -->

 <!-- define the top-down structure of an NCL language document. -->

 <!-- = -->

 <complexType name="nclPrototype">

 <sequence>

 <element ref="structure:head" minOccurs="0" maxOccurs="1"/>

 <element ref="structure:body" minOccurs="0" maxOccurs="1"/>

 </sequence>

 <attribute name="id" type="ID" use="required"/>

 <attribute name="title" type="string" use="optional"/>

 </complexType>

 <complexType name="headPrototype">

 </complexType>

 <complexType name="bodyPrototype">

 <attribute name="id" type="ID" use="optional"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="ncl" type="structure:nclPrototype"/>

 <element name="head" type="structure:headPrototype"/>

 <element name="body" type="structure:bodyPrototype"/>

</schema>

A.2 Layout module: NCL30Layout.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Layout.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Layout module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:layout="http://www.ncl.org.br/NCL3.0/Layout"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Layout"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="regionBasePrototype">

 <attribute name="id" type="ID" use="optional"/>

 <attribute name="type" type="string" use="optional"/>

 <attribute name="device" type="string" use="optional"/>

 </complexType>

 <complexType name="regionPrototype">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="layout:region" />

 </sequence>

 <attribute name="id" type="ID" use="required"/>

 <attribute name="title" type="string" use="optional"/>

 <attribute name="height" type="string" use="optional"/>

 <attribute name="left" type="string" use="optional"/>

 <attribute name="right" type="string" use="optional"/>

 <attribute name="top" type="string" use="optional"/>

 <attribute name="bottom" type="string" use="optional"/>

 <attribute name="width" type="string" use="optional"/>

 <attribute name="zIndex" type="integer" use="optional"/>

 </complexType>

 <!-- declare global attributes in this module -->

 <!-- define the region attributeGroup -->

 <attributeGroup name="regionAttrs">

 <attribute name="region" type="string" use="optional"/>

 </attributeGroup>

 <!-- declare global elements in this module -->

 <element name="regionBase" type="layout:regionBasePrototype"/>

 <element name="region" type="layout:regionPrototype"/>

</schema>

A.3 Media module: NCL30Media.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Media.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Media module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:media="http://www.ncl.org.br/NCL3.0/Media"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Media"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="mediaPrototype">

 <attribute name="id" type="ID" use="required"/>

 <attribute name="type" type="string" use="optional"/>

 <attribute name="src" type="anyURI" use="optional"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="media" type="media:mediaPrototype"/>

</schema>

A.4 Context module: NCL30Context.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Context.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Context module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:context="http://www.ncl.org.br/NCL3.0/Context"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Context"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- define the compositeNode element prototype -->

 <complexType name="contextPrototype">

 <attribute name="id" type="ID" use="required"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="context" type="context:contextPrototype"/>

</schema>

A.5 MediaContentAnchor module: NCL30MediaContentAnchor.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30MediaContentAnchor.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Media Content Anchor module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:mediaAnchor="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 targetNamespace="http://www.ncl.org.br/NCL3.0/MediaContentAnchor"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- define the temporalAnchorAttrs attribute group -->

 <attributeGroup name="temporalAnchorAttrs">

 <attribute name="begin" type="string" use="optional"/>

 <attribute name="end" type="string" use="optional"/>

 </attributeGroup>

 <!-- define the textAnchorAttrs attribute group -->

 <attributeGroup name="textAnchorAttrs">

 <attribute name="text" type="string" use="optional"/>

 <attribute name="position" type="unsignedLong" use="optional"/>

 </attributeGroup>

 <!-- define the sampleAnchorAttrs attribute group -->

 <attributeGroup name="sampleAnchorAttrs">

 <attribute name="first" type="unsignedLong" use="optional"/>

 <attribute name="last" type="unsignedLong" use="optional"/>

 </attributeGroup>

 <!-- define the coordsAnchorAttrs attribute group -->

 <attributeGroup name="coordsAnchorAttrs">

 <attribute name="coords" type="string" use="optional"/>

 </attributeGroup>

 <!-- define the labelAttrs attribute group -->

 <attributeGroup name="labelAttrs">

 <attribute name="label" type="string" use="optional"/>

 </attributeGroup>

 <complexType name="componentAnchorPrototype">

 <attribute name="id" type="ID" use="required"/>

 <attributeGroup ref="mediaAnchor:coordsAnchorAttrs" />

 <attributeGroup ref="mediaAnchor:temporalAnchorAttrs" />

 <attributeGroup ref="mediaAnchor:textAnchorAttrs" />

 <attributeGroup ref="mediaAnchor:sampleAnchorAttrs" />

 <attributeGroup ref="mediaAnchor:labelAttrs" />

 </complexType>

 <!-- declare global elements in this module -->

 <element name="area" type="mediaAnchor:componentAnchorPrototype"/>
</schema>

A.6 CompositeNodeInterface module: NC30CompositeNodeInterface.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30CompositeNodeInterface.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Composite Node Interface module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:compositeInterface="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 targetNamespace="http://www.ncl.org.br/NCL3.0/CompositeNodeInterface"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="compositeNodePortPrototype">

 <attribute name="id" type="ID" use="required" />

 <attribute name="component" type="IDREF" use="required"/>

 <attribute name="interface" type="string" use="optional" />

 </complexType>

 <!-- declare global elements in this module -->

 <element name="port" type="compositeInterface:compositeNodePortPrototype" />

</schema>

A.7 PropertyAnchor module: NCL30PropertyAnchor.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30PropertyAnchor.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Property Anchor module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:propertyAnchor="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 targetNamespace="http://www.ncl.org.br/NCL3.0/PropertyAnchor"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="propertyAnchorPrototype">

 <attribute name="name" type="string" use="required" />

 <attribute name="value" type="string" use="optional" />

 </complexType>

 <!-- declare global elements in this module -->
 <element name="property" type="propertyAnchor:propertyAnchorPrototype"/>

</schema>

A.8 SwitchInterface module: NCL30SwitchInterface.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30SwitchInterface.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Switch Interface module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:switchInterface="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 targetNamespace="http://www.ncl.org.br/NCL3.0/SwitchInterface"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="mappingPrototype">

 <attribute name="component" type="IDREF" use="required"/>

 <attribute name="interface" type="string" use="optional"/>

 </complexType>

 <complexType name="switchPortPrototype">

 <sequence>

 <element ref="switchInterface:mapping" minOccurs="1" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="id" type="ID" use="required"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="mapping" type="switchInterface:mappingPrototype"/>

 <element name="switchPort" type="switchInterface:switchPortPrototype" />

</schema>

A.9 Descriptor module: NCL30Descriptor.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Descriptor.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Descriptor module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:descriptor="http://www.ncl.org.br/NCL3.0/Descriptor"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Descriptor"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="descriptorParamPrototype">

 <attribute name="name" type="string" use="required" />

 <attribute name="value" type="string" use="required"/>

 </complexType>

 <complexType name="descriptorPrototype">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="descriptor:descriptorParam"/>

 </sequence>

 <attribute name="id" type="ID" use="required"/>

 <attribute name="player" type="string" use="optional"/>

 </complexType>

<!--

Formatters should support the following descriptorParam names.

* For audio players: soundLevel; balanceLevel; trebleLevel; bassLevel.
* For text players: style, which refers to a style sheet with information for text presentation.
* For visual media players: background, specifying the background color used to fill the area of a region displaying media; scroll, which allows the specification of how an author would like to configure the scroll in a region; fit, indicating how an object will be presented (hidden, fill, meet, meetBest, slice); transparency, indicating the degree of transparency of an object presentation (the value shall be between 0 and 1, or a real value in the range [0,100] ending with the character “%” (e.g. 30%)); visible, indicating if the presentation is to be seen or hidden; and the object positioning parameters: top, left, bottom, right, width, height, sie and bounds.
* For players in general: reusePlayer, which determines if a new player shall be instantiated or if a player already instantiated shall be used; and playerLife, which specifies what will happen to the player instance at the end of the presentation.

-->

 <complexType name="descriptorBasePrototype">

 <attribute name="id" type="ID" use="optional"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="descriptorParam" type="descriptor:descriptorParamPrototype"/>

 <element name="descriptor" type="descriptor:descriptorPrototype"/>

 <element name="descriptorBase" type="descriptor:descriptorBasePrototype"/>

 <!-- declare global attributes in this module -->

 <attributeGroup name="descriptorAttrs">

 <attribute name="descriptor" type="string" use="optional"/>

 </attributeGroup>

</schema>

A.10 Linking module: NCL30Linking.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Linking.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Linking module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:linking="http://www.ncl.org.br/NCL3.0/Linking"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Linking"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="paramPrototype">

 <attribute name="name" type="string" use="required"/>

 <attribute name="value" type="anySimpleType" use="required"/>

 </complexType>

 <complexType name="bindPrototype">

 <sequence minOccurs="0" maxOccurs="unbounded">

 <element ref="linking:bindParam"/>

 </sequence>

 <attribute name="role" type="string" use="required"/>

 <attribute name="component" type="IDREF" use="required"/>

 <attribute name="interface" type="string" use="optional"/>

 </complexType>

 <complexType name="linkPrototype">

 <sequence>

 <element ref="linking:linkParam" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="linking:bind" minOccurs="2" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="id" type="ID" use="optional"/>

 <attribute name="xconnector" type="string" use="required"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="linkParam" type="linking:paramPrototype"/>

 <element name="bindParam" type="linking:paramPrototype"/>

 <element name="bind" type="linking:bindPrototype" />

 <element name="link" type="linking:linkPrototype" />

</schema>

A.11 ConnectorCommonPart Module: NCL30ConnectorCommonPart.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCommonPart.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006
Schema for the NCL Connector Common Part module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:connectorCommonPart="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"

 targetNamespace="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<complexType name="parameterPrototype">

 <attribute name="name" type="string" use="required"/>

 <attribute name="type" type="string" use="optional"/>

</complexType>

<simpleType name="eventPrototype">

 <restriction base="string">

 <enumeration value="presentation" />

 <enumeration value="selection" />

 <enumeration value="attribution" />

 <enumeration value="composition" />

 </restriction>

</simpleType>

<simpleType name="logicalOperatorPrototype">

 <restriction base="string">

 <enumeration value="and" />

 <enumeration value="or" />

 </restriction>

</simpleType>

<simpleType name="transitionPrototype">

 <restriction base="string">

 <enumeration value="starts" />

 <enumeration value="stops" />

 <enumeration value="pauses" />

 <enumeration value="resumes" />

 <enumeration value="aborts" />

 </restriction>

</simpleType>

</schema>

A.12 ConnectorAssessmentExpression Module: NCL30ConnectorAssessmentExpression.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2006 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorAssessmentExpression.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006
Schema for the NCL Connector Assessment Expression module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:connectorAssessmentExpression="http://www.ncl.org.br/NCL3.0/ConnectorAssessmentExpression"

 xmlns:connectorCommonPart="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"
 targetNamespace="http://www.ncl.org.br/NCL3.0/ConnectorAssessmentExpression"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<!-- import the definitions in the modules namespaces -->

<import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCommonPart.xsd"/>

<simpleType name="comparatorPrototype">

 <restriction base="string">

 <enumeration value="eq" />

 <enumeration value="ne" />

 <enumeration value="gt" />

 <enumeration value="lt" />

 <enumeration value="gte" />

 <enumeration value="lte" />

 </restriction>

</simpleType>

<simpleType name="attributePrototype">

 <restriction base="string">

 <enumeration value="repeat" />

 <enumeration value="occurrences" />

 <enumeration value="state" />

 <enumeration value="nodeProperty" />

 </restriction>

</simpleType>

<simpleType name="statePrototype">

 <restriction base="string">

 <enumeration value="sleeping" />

 <enumeration value="occurring" />

 <enumeration value="paused" />

 </restriction>

</simpleType>

<simpleType name="valueUnion">

 <union memberTypes="string" connectorAssessmentExpression:statePrototype"/>

</simpleType>

<complexType name="assessmentStatementPrototype" >

 <sequence>

 <element ref="connectorAssessmentExpression:attributeAssessment"/>

 <choice>

 <element ref="connectorAssessmentExpression:attributeAssessment"/>

 <element ref="connectorAssessmentExpression:valueAssessment"/>

 </choice>

 </sequence>

 <attribute name="comparator" type="connectorAssessmentExpression:comparatorPrototype" use="required"/>

</complexType>

<complexType name="attributeAssessmentPrototype">

 <attribute name="role" type="string" use="required"/>

 <attribute name="eventType" type="connectorCommonPart:eventPrototype" use="required"/>

 <attribute name="key" type="string" use="optional"/>

 <attribute name="attributeType" type="connectorAssessmentExpression:attributePrototype" use="optional"/>

 <attribute name="offset" type="string" use="optional"/>

</complexType>

<complexType name="valueAssessmentPrototype">

 <attribute name="value" type="connectorAssessmentExpression:valueUnion" use="required"/>

</complexType>

<complexType name="compoundStatementPrototype">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="connectorAssessmentExpression:assessmentStatement" />

 <element ref="connectorAssessmentExpression:compoundStatement" />

 </choice>

 <attribute name="operator" type="connectorCommonPart:logicalOperatorPrototype" use="required"/>

 <attribute name="isNegated" type="boolean" use="optional"/>

</complexType>

 <!-- declare global elements in this module -->

<element name="assessmentStatement" type="connectorAssessmentExpression:assessmentStatementPrototype" />

<element name="attributeAssessment" type="connectorAssessmentExpression:attributeAssessmentPrototype" />

<element name="valueAssessment" type="connectorAssessmentExpression:valueAssessmentPrototype" />

<element name="compoundStatement" type="connectorAssessmentExpression:compoundStatementPrototype" />

</schema>

A.13 ConnectorCausalExpression Module: NCL30 ConnectorCausalExpression.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2006 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCausalExpression.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006
Schema for the NCL Connector Causal Expression module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:connectorCausalExpression="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 xmlns:connectorCommonPart="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"
 targetNamespace="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<!-- import the definitions in the modules namespaces -->

<import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorCommonPart.xsd"/>

<simpleType name="conditionRoleUnion">

 <union memberTypes="string connectorCausalExpression:conditionRolePrototype"/>

</simpleType>

<simpleType name="conditionRolePrototype">

 <restriction base="string">

 <enumeration value="onBegin" />

 <enumeration value="onEnd" />

 <enumeration value="onPause" />

 <enumeration value="onResume" />

 <enumeration value="onAbort" />

 </restriction>

</simpleType>

<simpleType name="maxUnion">

 <union memberTypes="positiveInteger connectorCausalExpression:unboundedString"/>

</simpleType>

<simpleType name="unboundedString">

 <restriction base="string">

 <pattern value="unbounded"/>

 </restriction>

</simpleType>

<complexType name="simpleConditionPrototype">

 <attribute name="role" type="connectorCausalExpression:conditionRoleUnion" use="required"/>

 <attribute name="eventType" type="connectorCommonPart:eventPrototype" use="optional"/>

 <attribute name="key" type="string" use="optional"/>

 <attribute name="transition" type="connectorCommonPart:transitionPrototype" use="optional"/>

 <attribute name="delay" type="string" use="optional"/>

 <attribute name="min" type="positiveInteger" use="optional"/>

 <attribute name="max" type="connectorCausalExpression:maxUnion" use="optional"/>

 <attribute name="qualifier" type="connectorCommonPart:logicalOperatorPrototype" use="optional"/>

</complexType>

<complexType name="compoundConditionPrototype">

 <attribute name="operator" type="connectorCommonPart:logicalOperatorPrototype" use="required"/>

 <attribute name="delay" type="string" use="optional"/>

</complexType>

<simpleType name="actionRoleUnion">

 <union memberTypes="string connectorCausalExpression:actionNamePrototype"/>

</simpleType>

<simpleType name="actionNamePrototype">

 <restriction base="string">

 <enumeration value="start" />

 <enumeration value="stop" />

 <enumeration value="pause" />

 <enumeration value="resume" />

 <enumeration value="abort" />

 <enumeration value="set" />

 </restriction>

</simpleType>

<simpleType name="actionOperatorPrototype">

 <restriction base="string">

 <enumeration value="par" />

 <enumeration value="seq" />

 </restriction>

</simpleType>

<complexType name="simpleActionPrototype">

 <attribute name="role" type="connectorCausalExpression:actionRoleUnion" use="required"/>

 <attribute name="eventType" type="connectorCommonPart:eventPrototype" use="optional"/>

 <attribute name="actionType" type="connectorCausalExpression:actionNamePrototype" use="optional"/>

 <attribute name="delay" type="string" use="optional"/>

 <attribute name="value" type="string" use="optional"/>

 <attribute name="repeat" type="positiveInteger" use="optional"/>

 <attribute name="repeatDelay" type="string" use="optional"/>

 <attribute name="min" type="positiveInteger" use="optional"/>

 <attribute name="max" type="connectorCausalExpression:maxUnion" use="optional"/>

 <attribute name="qualifier" type="connectorCausalExpression:actionOperatorPrototype" use="optional"/>

</complexType>

<complexType name="compoundActionPrototype">

 <choice minOccurs="2" maxOccurs="unbounded">

 <element ref="connectorCausalExpression:simpleAction" />

 <element ref="connectorCausalExpression:compoundAction" />

 </choice>

 <attribute name="operator" type="connectorCausalExpression:actionOperatorPrototype" use="required"/>

 <attribute name="delay" type="string" use="optional"/>

</complexType>

 <!-- declare global elements in this module -->

<element name="simpleCondition" type="connectorCausalExpression:simpleConditionPrototype" />

<element name="compoundCondition" type="connectorCausalExpression:compoundConditionPrototype" />

<element name="simpleAction" type="connectorCausalExpression:simpleActionPrototype" />

<element name="compoundAction" type="connectorCausalExpression:compoundActionPrototype" />

</schema>

A.14 CausalConnector module: NCL30CausalConnector.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2006 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30CausalConnector.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006
Schema for the NCL Causal Connector module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:causalConnector="http://www.ncl.org.br/NCL3.0/CausalConnector"

 targetNamespace="http://www.ncl.org.br/NCL3.0/CausalConnector"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<complexType name="causalConnectorPrototype">

 <attribute name="id" type="ID" use="required"/>

</complexType>

 <!-- declare global elements in this module -->
<element name="causalConnector" type="causalConnector:causalConnectorPrototype"/>

</schema>

A.15 ConnectorBase module: NCL30ConnectorBase.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2006 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ConnectorBase.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006
Schema for the NCL Connector Base module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:connectorBase="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 targetNamespace="http://www.ncl.org.br/NCL3.0/ConnectorBase"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<complexType name="connectorBasePrototype">

 <attribute name="id" type="ID" use="optional"/>

</complexType>

 <!-- declare global elements in this module -->

<element name="connectorBase" type="connectorBase:connectorBasePrototype"/>

</schema>

A.16 NCL30CausalConnectorFunctionality.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/
NCL30CausalConnectorFunctionality.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL CausalConnectorFunctionality module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:connectorCommonPart="http://www.ncl.org.br/NCL3.0/
ConnectorCommonPart"

 xmlns:connectorAssessmentExpression="http://www.ncl.org.br/NCL3.0/
ConnectorAssessmentExpression"

 xmlns:connectorCausalExpression="http://www.ncl.org.br/NCL3.0/
ConnectorCausalExpression"

 xmlns:causalConnector="http://www.ncl.org.br/NCL3.0/
CausalConnector"

 xmlns:causalConnectorFunctionality="http://www.ncl.org.br/NCL3.0/
CausalConnectorFunctionality"

 targetNamespace="http://www.ncl.org.br/NCL3.0/
CausalConnectorFunctionality"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- import the definitions in the modules namespaces -->

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCommonPart"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ConnectorCommonPart.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorAssessmentExpression"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ConnectorAssessmentExpression.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/ConnectorCausalExpression"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30ConnectorCausalExpression.xsd"/>

 <import namespace="http://www.ncl.org.br/NCL3.0/CausalConnector"

 schemaLocation="http://www.ncl.org.br/NCL3.0/modules/
NCL30CausalConnector.xsd"/>

 <!-- = -->

 <!-- CausalConnectorFunctionality -->

 <!-- = -->

 <element name="connectorParam" type="connectorCommonPart:parameterPrototype"/>

 <!-- extends causalConnector element -->

 <complexType name="causalConnectorType">

 <complexContent>

 <extension base="causalConnector:causalConnectorPrototype">

 <sequence>

 <element ref="causalConnectorFunctionality:connectorParam" minOccurs="0" maxOccurs="unbounded"/>

 <choice>

 <element ref="causalConnectorFunctionality:simpleCondition" />

 <element ref="causalConnectorFunctionality:compoundCondition" />

 </choice>

 <choice>

 <element ref="causalConnectorFunctionality:simpleAction" />

 <element ref="causalConnectorFunctionality:compoundAction" />

 </choice>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <!-- extends compoundCondition element -->

 <complexType name="compoundConditionType">

 <complexContent>

 <extension base="connectorCausalExpression:compoundConditionPrototype">

 <sequence>

 <choice>

 <element ref="causalConnectorFunctionality:simpleCondition" />

 <element ref="causalConnectorFunctionality:compoundCondition" />

 </choice>

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="causalConnectorFunctionality:simpleCondition" />

 <element ref="causalConnectorFunctionality:compoundCondition" />

 <element ref="causalConnectorFunctionality:assessmentStatement" />

 <element ref="causalConnectorFunctionality:compoundStatement" />

 </choice>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

 <element name="causalConnector" type="causalConnectorFunctionality:causalConnectorType" substitutionGroup="causalConnector:causalConnector"/>

 <element name="simpleCondition" substitutionGroup="connectorCausalExpression:simpleCondition"/>

 <element name="compoundCondition" type="causalConnectorFunctionality:compoundConditionType" substitutionGroup="connectorCausalExpression:compoundCondition"/>

 <element name="simpleAction" substitutionGroup="connectorCausalExpression:simpleAction"/>

 <element name="compoundAction" substitutionGroup="connectorCausalExpression:compoundAction"/>

 <element name="assessmentStatement" substitutionGroup="connectorAssessmentExpression:assessmentStatement"/>

 <element name="attributeAssessment" substitutionGroup="connectorAssessmentExpression:attributeAssessment"/>

 <element name="valueAssessment" substitutionGroup="connectorAssessmentExpression:valueAssessment"/>

 <element name="compoundStatement" substitutionGroup="connectorAssessmentExpression:compoundStatement"/>

</schema>

A.17 TestRule module: NCL30TestRule.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30TestRule.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL TestRule module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRule"

 targetNamespace="http://www.ncl.org.br/NCL3.0/TestRule"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="rulePrototype">

 <attribute name="id" type="ID" use="required"/>

 <attribute name="var" type="string" use="required"/>

 <attribute name="value" type="string" use="required"/>

 <attribute name="comparator" use="required">

 <simpleType>

 <restriction base="string">

 <enumeration value="eq"/>

 <enumeration value="ne"/>

 <enumeration value="gt"/>

 <enumeration value="gte"/>

 <enumeration value="lt"/>

 <enumeration value="lte"/>

 </restriction>

 </simpleType>

 </attribute>

 </complexType>

 <complexType name="compositeRulePrototype">

 <choice minOccurs="2" maxOccurs="unbounded">

 <element ref="testRule:rule"/>

 <element ref="testRule:compositeRule"/>

 </choice>

 <attribute name="id" type="ID" use="required"/>

 <attribute name="operator" use="required">

 <simpleType>

 <restriction base="string">

 <enumeration value="and"/>

 <enumeration value="or"/>

 </restriction>

 </simpleType>

 </attribute>

 </complexType>

 <complexType name="ruleBasePrototype">

 <attribute name="id" type="ID" use="optional"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="rule" type="testRule:rulePrototype"/>

 <element name="compositeRule" type="testRule:compositeRulePrototype"/>

 <element name="ruleBase" type="testRule:ruleBasePrototype"/>

</schema>

A.18 TestRuleUse module: NCL30TestRuleUse.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30TestRuleUse.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL TestRuleUse module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:testRule="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 targetNamespace="http://www.ncl.org.br/NCL3.0/TestRuleUse"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="bindRulePrototype">

 <attribute name="constituent" type="IDREF" use="required" />

 <attribute name="rule" type="string" use="required" />

 </complexType>

 <!-- declare global elements in this module -->

 <element name="bindRule" type="testRule:bindRulePrototype"/>

</schema>

A.19 ContentControl module: NCL30ContentControl.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ContentControl.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL ContentControl module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:contentControl="http://www.ncl.org.br/NCL3.0/ContentControl"

 targetNamespace="http://www.ncl.org.br/NCL3.0/ContentControl"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="defaultComponentPrototype">

 <attribute name="component" type="IDREF" use="required" />

 </complexType>

 <!-- define the switch element prototype -->

 <complexType name="switchPrototype">

 <choice>

 <element ref="contentControl:defaultComponent" minOccurs="0" maxOccurs="1"/>

 </choice>

 <attribute name="id" type="ID" use="required"/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="defaultComponent" type="contentControl:defaultComponentPrototype"/>

 <element name="switch" type="contentControl:switchPrototype"/>

</schema>

A.20 DescriptorControl module: NCL30DescriptorControl.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30DescriptorControl.xsd

Author: TeleMidia Laboratory

Revision: 19/06/2006

Schema for the NCL DescriptorControl module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:descriptorControl="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 targetNamespace="http://www.ncl.org.br/NCL3.0/DescriptorControl"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="defaultDescriptorPrototype">

 <attribute name="descriptor" type="IDREF" use="required" />

 </complexType>

 <!-- define the descriptor switch element prototype -->

 <complexType name="descriptorSwitchPrototype">

 <choice>

 <element ref="descriptorControl:defaultDescriptor" minOccurs="0" maxOccurs="1"/>

 </choice>

 <attribute name="id" type="ID" use="required”/>

 </complexType>

 <!-- declare global elements in this module -->

 <element name="defaultDescriptor" type="descriptorControl:defaultDescriptorPrototype"/>

 <element name="descriptorSwitch" type="descriptorControl:descriptorSwitchPrototype"/>

</schema>

A.21 Timing module: NCL30Timing.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Timing.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Timing module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:timing="http://www.ncl.org.br/NCL3.0/Timing"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Timing"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- declare global attributes in this module -->

 <!-- define the explicitDur attribute group -->

 <attributeGroup name="explicitDurAttrs">

 <attribute name="explicitDur" type="string" use="optional"/>

 </attributeGroup>

 <!-- define the freeze attribute group -->

 <attributeGroup name="freezeAttrs">

 <attribute name="freeze" type="boolean" use="optional"/>

 </attributeGroup>

</schema>

A.22 Import module: NCL30Import.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Import.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Import module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:import="http://www.ncl.org.br/NCL3.0/Import"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Import"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <complexType name="importBasePrototype">

 <attribute name="alias" type="ID" use="required"/>

 <attribute name="region" type="IDREF" use="optional"/>

 <attribute name="documentURI" type="anyURI" use="required"/>

 </complexType>

 <complexType name="importNCLPrototype">

 <attribute name="alias" type="ID" use="required"/>

 <attribute name="documentURI" type="anyURI" use="required"/>

 </complexType>

 <complexType name="importedDocumentBasePrototype">

 <sequence minOccurs="1" maxOccurs="unbounded">

 <element ref="import:importNCL" />

 </sequence>

 <attribute name="id" type="ID" use="optional" />

 </complexType>

 <!-- declare global elements in this module -->

 <element name="importBase" type="import:importBasePrototype"/>

 <element name="importNCL" type="import:importNCLPrototype"/>

 <element name="importedDocumentBase" type="import:importedDocumentBasePrototype"/>

</schema>

A.23 EntityReuse module: NCL30EntityReuse.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30EntityReuse.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL EntityReuse module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:entityReuse="http://www.ncl.org.br/NCL3.0/EntityReuse"

 targetNamespace="http://www.ncl.org.br/NCL3.0/EntityReuse"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <attributeGroup name="entityReuseAttrs">

 <attribute name="refer" type="string" use="optional"/>

 </attributeGroup>

</schema>

A.24 ExtendedEntityReuse module: NCL30ExtendedEntityReuse.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30ExtendedEntityReuse.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL ExtendedEntityReuse module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:extendedEntityReuse="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 targetNamespace="http://www.ncl.org.br/NCL3.0/ExtendedEntityReuse"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <attributeGroup name="extendedEntityReuseAttrs">

 <attribute name="instance" type="string" use="optional"/>

 </attributeGroup>

</schema>

A.25 KeyNavigation module: NCL30KeyNavigation.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30KeyNavigation.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL KeyNavigation module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:keyNavigation="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 targetNamespace="http://www.ncl.org.br/NCL3.0/KeyNavigation"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<simpleType name="colorPrototype">

 <restriction base="string">

 <enumeration value="white" />

 <enumeration value="black" />

 <enumeration value="silver" />

 <enumeration value="gray" />

 <enumeration value="red" />

 <enumeration value="maroon" />

 <enumeration value="fuchsia" />

 <enumeration value="purple" />

 <enumeration value="lime" />

 <enumeration value="green" />

 <enumeration value="yellow" />

 <enumeration value="olive" />

 <enumeration value="blue" />

 <enumeration value="navy" />

 <enumeration value="aqua" />

 <enumeration value="teal" />

 </restriction>

</simpleType>

 <!-- declare global attributes in this module -->

 <!-- define the keyNavigation attribute group -->

 <attributeGroup name="keyNavigationAttrs">

 <attribute name="moveLeft" type="IDREF" use="optional"/>

 <attribute name="moveRight" type="IDREF" use="optional"/>

 <attribute name="moveUp" type="IDREF" use="optional"/>

 <attribute name="moveDown" type="IDREF" use="optional"/>

 <attribute name="focusIndex" type="IDREF" use="optional"/>

 <attribute name="focusBorderColor" type="keyNavigation:colorPrototype" use="optional"/>

 <attribute name="focusBorderWidth" type="string" use="optional"/>

 <attribute name="focusBorderTransparency" type="string" use="optional"/>

 <attribute name="focusScr" type="string" use="optional"/>

 <attribute name="focusSelScr" type="string" use="optional"/>

 <attribute name="selBorderColor" type="keyNavigation:colorPrototype" use="optional"/>

 </attributeGroup>

</schema>

A.26 TransitionBase module: NCL30TransitionBase.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2006 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30TransitionBase.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Transition Base module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:transitionBase="http://www.ncl.org.br/NCL3.0/TransitionBase"

 targetNamespace="http://www.ncl.org.br/NCL3.0/TransitionBase"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

<complexType name="transitionBasePrototype">

 <attribute name="id" type="ID" use="optional"/>

</complexType>

 <!-- declare global elements in this module -->

<element name="transitionBase" type="transitionBase:transitionBasePrototype"/>

</schema>

A.27 Animation module: NCL30Animation.xsd

<!--

XML Schema for the NCL modules

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/modules/NCL30Animation.xsd

Author: TeleMidia Laboratory

Revision: 19/09/2006

Schema for the NCL Timing module namespace.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:animation="http://www.ncl.org.br/NCL3.0/Animation"

 targetNamespace="http://www.ncl.org.br/NCL3.0/Animation"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- declare global attributes in this module -->

 <!-- define the animation attribute group -->

 <attributeGroup name="animationAttrs">

 <attribute name="duration" type="string" use="optional"/>

 <attribute name="by" type="string" use="optional"/>

 </attributeGroup>

</schema>

Appendix B
(informative)

Lua 5.1 reference manual
B.1 Introduction

NOTE
The content of this Appendix was extracted from Lua 5.1 Reference Manual, by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes, Lua.org, August 2006 (ISBN 85-903798-3-3), and it is reprinted here with approval of the authors.
Lua is an extension programming language designed to support general procedural programming with data description facilities. It also offers good support for object-oriented programming, functional programming, and data-driven programming. Lua is intended to be used as a powerful, lightweight scripting language for any program that needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of ANSI C and C++).

Being an extension language, Lua has no notion of a "main" program: it only works embedded in a host client, called the embedding program or simply the host. This host program may invoke functions to execute a piece of Lua code, may write and read Lua variables, and may register C functions to be called by Lua code. Through the use of C functions, Lua may be augmented to cope with a wide range of different domains, thus creating customized programming languages sharing a syntactical framework. The Lua distribution includes a sample host program called lua, which uses the Lua library to offer a complete, stand-alone Lua interpreter.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The implementation described in this manual, as weel as some technical papers, are available at Lua's official web site, http://www.lua.org.

B.2 The language

B.2.1 Used Notation

The language constructs are explained using the usual extended BNF notation, in which {a} means 0 or more a's, and [a] means an optional a. Keywords are shown in bold, non-terminals are shown in the standard document font, and other terminal symbols are also shown in the standard document font, but enclosed in single quotes. The complete syntax of Lua can be found at the end of this manual.
B.2.2 Lexical conventions

Names (also called identifiers) in Lua may be any string of letters, digits, and underscores, not beginning with a digit. This coincides with the definition of names in most languages. (The definition of letter depends on the current locale: any character considered alphabetic by the current locale may be used in an identifier.) Identifiers are used to name variables and table fields.

The following keywords are reserved and shall not be used as names:

 and
break
do
else
elseif

 end
false
for
function
if

 in
local
nil
not
or

 repeat
return
then
true
until
while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid names. As a convention, names starting with an underscore followed by uppercase letters (such as _VERSION) are reserved for internal global variables used by Lua.

The following strings denote other tokens:

 + - * / % ^ #

 == ~= <= >= < > =

 () { } []

 ; : ,

Literal strings may be delimited by matching single or double quotes, and may contain the following C-like escape sequences:

· \a --- bell

· \b --- backspace

· \f --- form feed

· \n --- newline

· \r --- carriage return

· \t --- horizontal tab

· \v --- vertical tab

· \\ --- backslash

· \" --- quotation mark (double quote)

· \' --- apostrophe (single quote)

Moreover, a `\newline´ (that is, a backslash followed by a real newline) results in a newline in the string. A character in a string may also be specified by its numerical value using the escape sequence `\ddd´, where ddd is a sequence of up to three decimal digits. (Note that if a numerical escape is to be followed by a digit, it must be expressed using exactly three digits.) Strings in Lua may contain any 8-bit value, including embedded zeros, which may be specified as `\0´.

To put a double (single) quote, a newline, a backslash, or an embedded zero inside a literal string enclosed by double (single) quotes you must use an escape sequence. Any other character may be directly inserted into the literal. (Some control characters can cause problems for the file system, but Lua has no problem with them.)

Literal strings may also be defined using a long format enclosed by long brackets. We define an opening long bracket of level n as an opening square bracket followed by n equal signs followed by another opening square bracket. So, an opening long bracket of level 0 is written as [[, an opening long bracket of level 1 is written as [=[, and so on. A closing long bracket is defined similarly; for instance, a closing long bracket of level 4 is written as]====]. A long string starts with an opening long bracket of any level and ends at the first closing long bracket of the same level. Literals in this bracketed form can run for several lines, do not interpret any escape sequences, and ignore long brackets of any other level. They may contain anything except a closing bracket of the proper level or embedded zeros.

For convenience, when the opening long bracket is immediately followed by a newline, the newline is not included in the string. As an example, in a system using ASCII (in which `a´ is coded as 97, newline is coded as 10, and `1´ is coded as 49), the four literals below denote the same string:

 (1)
'alo\n123"'

 (2)
"alo\n123\""

 (3)
'\97lo\10\04923"'

 (4)
[[alo

123"]]

 (5)
[==[

alo

123"]==]

Numerical constants may be written with an optional decimal part and an optional decimal exponent. Examples of valid numerical constants are

 3 3.0 3.1416 314.16e-2 0.31416E1

Comments start with a double hyphen (--) anywhere outside a string. If the text immediately after -- is not an opening long bracket, the comment is a short comment, which runs until the end of the line. Otherwise, it is a long comment, which runs until the corresponding closing long bracket. Long comments are frequently used to disable code temporarily.

B.2.3 Values and types

B.2.3.1 Basic Types

Lua is a dynamically typed language. That means that variables do not have types; only values do. There are no type definitions in the language. All values carry their own type.

All values in Lua are first-class values. That means that all values may be stored in variables, passed as arguments to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread, and table. Nil is the type of the value nil, whose main property is to be different from any other value; it usually represents the absence of a useful value. Boolean is the type of the values false and true. Both nil and false make a condition false; any other value makes it true. Number represents real (double-precision floating-point) numbers. (It is easy to build Lua interpreters that use other internal representations for numbers, such as single-precision float or long integers. See file luaconf.h.) String represents arrays of characters. Lua is 8-bit clean: Strings may contain any 8-bit character, including embedded zeros (`\0´) (see B.2.2).

Lua may call (and manipulate) functions written in Lua and functions written in C (see B.2.6.9).

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type corresponds to a block of raw memory and has no pre-defined operations in Lua, except assignment and identity test. However, by using metatables, the programmer may define operations for userdata values (see B.2.9). Userdata values shall not be created or modified in Lua, only through the C API. This guarantees the integrity of data owned by the host program.

The type thread represents independent threads of execution and it is used to implement coroutines (see B.2.12). Do not confuse Lua threads with operating-system threads. Lua supports coroutines on all systems, even those that do not support threads.

The type table implements associative arrays, that is, arrays that may be indexed not only with numbers, but with any value (except nil). Tables may be heterogeneous; that is, they may contain values of all types (except nil). Tables are the sole data structuring mechanism in Lua; they may be used to represent ordinary arrays, symbol tables, sets, records, graphs, trees, etc. To represent records, Lua uses the field name as an index. The language supports this representation by providing a.name as syntactic sugar for a["name"]. There are several convenient ways to create tables in Lua (see B.2.6.8).

Like indices, the value of a table field may be of any type (except nil). In particular, because functions are first-class values, table fields may contain functions. Thus tables may also carry methods (see B.2.6.10).

Strings, tables, functions, and userdata values are objects: variables do not actually contain these values, only references to them. Assignment, parameter passing, and function returns always manipulate references to such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value.

B.2.3.2 Coercion

Lua provides automatic conversion between string and number values at run time. Any arithmetic operation applied to a string tries to convert that string to a number, following the usual conversion rules. Conversely, whenever a number is used where a string is expected, the number is converted to a string, in a reasonable format. For complete control over how numbers are converted to strings, use the format function from the string library (see string.format).

B.2.4 Variables

Variables are places that store values. There are three kinds of variables in Lua: global variables, local variables, and table fields.

A single name may denote a global variable or a local variable (or a function formal parameter, which is a particular kind of local variable):

var ::= Name

Name denotes identifiers, as defined in (see B.2.2).

Variables are assumed to be global unless explicitly declared local (see B.2.5.8). Local variables are lexically scoped: Local variables can be freely accessed by functions defined inside their scope (see B.2.7).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

var ::= prefixexp `[´ exp `]´

The first expression (prefixexp) should result in a table value; the second expression (exp) identifies a specific entry in that table. The expression denoting the table to be indexed has a restricted syntax (see B.2.6.1).

The syntax var.Name is just syntactic sugar for var["Name"] and is used to denote table fields:

var ::= prefixexp `.´ Name

The meaning of accesses to global variables and table fields may be changed via metatables. An access to an indexed variable t[i] is equivalent to a call gettable_event(t,i). (see B.2.9 for a complete description of the gettable_event function. This function is not defined or callable in Lua. We use it here only for explanatory purposes.)

All global variables live as fields in ordinary Lua tables, called environment tables or simply environments (see B.2.10). Each function has its own reference to an environment, so that all global variables in that function will refer to that environment table. When a function is created, it inherits the environment from the function that created it. To get the environment table of a Lua function, you call getfenv. To replace it, you call setfenv. (You may only manipulate the environment of C functions through the debug library; (see B.5.10).)

An access to a global variable x is equivalent to _env.x, which in turn is equivalent to

 gettable_event(_env, "x")

where _env is the environment of the running function (see B.2.9 for a complete description of the gettable_event function. This function is not defined or callable in Lua. Similarly, the _env variable is not defined in Lua. We use them here only for explanatory purposes.)

B.2.5 Statements

B.2.5.1 Basic Concepts

Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set includes assignment, control structures, function calls, table constructors, and variable declarations.

B.2.5.2 Chunks

The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements, which are executed sequentially. Each statement may be optionally followed by a semicolon:

chunk ::= {stat [`;´]}

There are no empty statements and thus `;;´ is not legal.

Lua handles a chunk as the body of an anonymous function with a variable number of arguments (see B.2.6.10). As such, chunks may define local variables, receive arguments, and return values.

A chunk may be stored in a file or in a string inside the host program. When a chunk is executed, first it is pre-compiled into instructions for a virtual machine, and then the compiled code is executed by an interpreter for the virtual machine.

Chunks may also be pre-compiled into binary form; see program luac for details. Programs in source and compiled forms are interchangeable; Lua automatically detects the file type and acts accordingly.

B.2.5.3 Blocks

A block is a list of statements; syntactically, a block is the same as a chunk:

block ::= chunk

A block may be explicitly delimited to produce a single statement:

stat ::= do block end
Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used to add a return or break statement in the middle of another block (see B.2.5.5).

B.2.5.4 Assignment

Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on the left side and a list of expressions on the right side. The elements in both lists are separated by commas:

stat ::= varlist1 `=´ explist1

varlist1 ::= var {`,´ var}

explist1 ::= exp {`,´ exp}

Expressions are discussed in B.2.6.

Before the assignment, the list of values is adjusted to the length of the list of variables. If there are more values than needed, the excess values are thrown away. If there are fewer values than needed, the list is extended with as many nil's as needed. If the list of expressions ends with a function call, then all values returned by that call enter in the list of values, before the adjustment (except when the call is enclosed in parentheses; see B.2.6).

The assignment statement first evaluates all its expressions and only then are the assignments performed. Thus the code

 i = 3

 i, a[i] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is assigned 4. Similarly, the line
 x, y = y, x

exchanges the values of x and y.

The meaning of assignments to global variables and table fields may be changed via metatables. An assignment to an indexed variable t[i] = val is equivalent to settable_event(t,i,val) (see B.2.9 for a complete description of the settable_event function. This function is not defined or callable in Lua. We use it here only for explanatory purposes.)

An assignment to a global variable x = val is equivalent to the assignment _env.x = val, which in turn is equivalent to

 settable_event(_env, "x", val)

where _env is the environment of the running function. (The _env variable is not defined in Lua. We use it here only for explanatory purposes.)

B.2.5.5 Control structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

stat ::= while exp do block end

stat ::= repeat block until exp

stat ::= if exp then block {elseif exp then block} [else block] end
Lua also has a for statement, in two flavors (see B.2.5.6).

The condition expression of a control structure may return any value. Both false and nil are considered false. All values different from nil and false are considered true (in particular, the number 0 and the empty string are also true).

In the repeat--until loop, the inner block does not end at the until keyword, but only after the condition. So, the condition may refer to local variables declared inside the loop block.

The return statement is used to return values from a function or a chunk (which is just a function). Functions and chunks may return more than one value, so the syntax for the return statement is

stat ::= return [explist1]

The break statement is used to terminate the execution of a while, repeat, or for loop, skipping to the next statement after the loop:

stat ::= break
A break ends the innermost enclosing loop.

The return and break statements may only be written as the last statement of a block. If it is really necessary to return or break in the middle of a block, then an explicit inner block may be used, as in the idioms `do return end´ and `do break end´, because now return and break are the last statements in their (inner) blocks.

B.2.5.6 For statement

The for statement has two forms: one numeric and one generic.

The numeric for loop repeats a block of code while a control variable runs through an arithmetic progression. It has the following syntax:

stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end
The block is repeated for name starting at the value of the first exp, until it passes the second exp by steps of the third exp. More precisely, a for statement like
 for var = e1, e2, e3 do block end

is equivalent to the code:
 do

 local _var, _limit, _step = tonumber(e1), tonumber(e2),
 tonumber(e3)

 if not (_var and _limit and _step) then error() end

 while (_step>0 and _var<=_limit)
 or (_step<=0 and _var>=_limit) do

 local var = _var

 block

 _var = _var + _step

 end

 end

Note the following:

· All three control expressions are evaluated only once, before the loop starts. They must all result in numbers.

· _var, _limit, and _step are invisible variables. The names are here for explanatory purposes only.

· If the third expression (the step) is absent, then a step of 1 is used.

· You may use break to exit a for loop.

· The loop variable var is local to the loop; you shall not use its value after the for ends or is broken. If you need the value of the loop variable var, then assign it to another variable before breaking or exiting the loop.

The generic for statement works over functions, called iterators. On each iteration, the iterator function is called to produce a new value, stopping when this new value is nil. The generic for loop has the following syntax:

stat ::= for namelist in explist1 do block end

namelist ::= Name {`,´ Name}

A for statement like
 for var_1, ..., var_n in explist do block end

is equivalent to the code:
 do

 local _f, _s, _var = explist

 while true do

 local var_1, ... , var_n = _f(_s, _var)

 _var = var_1

 if _var == nil then break end

 block

 end

 end

Note the following:

· explist is evaluated only once. Its results are an iterator function, a state, and an initial value for the first iterator variable.

· _f, _s, and _var are invisible variables. The names are here for explanatory purposes only.

· You may use break to exit a for loop.

· The loop variables var_i are local to the loop; you shall not use their values after the for ends. If you need these values, then assign them to other variables before breaking or exiting the loop.

B.2.5.7 Function calls as statements

To allow possible side-effects, function calls may be executed as statements:

stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in B.2.6.9.

B.2.5.8 Local declarations

Local variables may be declared anywhere inside a block. The declaration may include an initial assignment:

stat ::= local namelist [`=´ explist1]

If present, an initial assignment has the same semantics of a multiple assignment (see B.2.5.4). Otherwise, all variables are initialized with nil.

A chunk is also a block (see B.2.5.2), and so local variables may be declared in a chunk outside any explicit block. The scope of such local variables extends until the end of the chunk.

The visibility rules for local variables are explained in B.2.7.

B.2.6 Expressions

B.2.6.1 Basic Expressions
The basic expressions in Lua are the following:

exp ::= prefixexp

exp ::= nil | false | true

exp ::= Number

exp ::= String

exp ::= function

exp ::= tableconstructor

exp ::= `...´

exp ::= exp binop exp

exp ::= unop exp

prefixexp ::= var | functioncall | `(´ exp `)´

Numbers and literal strings are explained in B.2.2; variables are explained in B.2.4; function definitions are explained in B.2.6.10; function calls are explained in B.2.6.9; table constructors are explained in B.2.6.8. Vararg expressions, denoted by three dots (`...´), may only be used inside vararg functions; they are explained in B.2.6.10.

Binary operators comprise arithmetic operators (see B.2.6.2), relational operators (see B.2.6.3), and logical operators (see B.2.6.4). Unary operators comprise the unary minus (see B.2.6.2), the unary not (see B.2.6.4), and the unary length operator (see B.2.6.6).

Both function calls and vararg expressions may result in multiple values. If the expression is used as a statement (see B.2.5.7) (only possible for function calls), then its return list is adjusted to zero elements, thus discarding all returned values. If the expression is used inside another expression or in the middle of a list of expressions, then its result list is adjusted to one element, thus discarding all values except the first one. If the expression is used as the last element of a list of expressions, then no adjustment is made, unless the call is enclosed in parentheses.

Here are some examples:

 f()

-- adjusted to 0 results

 g(f(), x)
-- f() is adjusted to 1 result

 g(x, f())
-- g gets x plus all values returned by f()

 a,b,c = f(), x
-- f() is adjusted to 1 result (c gets nil)

 a,b = ...
-- a gets the first vararg parameter, b gets

-- the second (both a and b may get nil if

-- there is no corresponding vararg parameter)

 a,b,c = x, f()
-- f() is adjusted to 2 results

 a,b,c = f()
-- f() is adjusted to 3 results

 return f()
-- returns all values returned by f()

 return ...
-- returns all received vararg parameters

 return x,y,f()
-- returns x, y, and all values returned by f()

 {f()}

-- creates a list with all values returned by f()

 {...}

-- creates a list with all vararg parameters

 {f(), nil}
-- f() is adjusted to 1 result

An expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is always a single value, even if f returns several values. (The value of (f(x,y,z)) is the first value returned by f or nil if f does not return any values.)

B.2.6.2 Arithmetic operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multiplication), / (division), % (modulo), and ^ (exponentiation); and unary - (negation). If the operands are numbers, or strings that may be converted to numbers (see B.2.3.2), then all operations have the usual meaning. Exponentiation works for any exponent. For instance, x^(-0.5) computes the inverse of the square root of x. Modulus is defined as
 a % b == a - math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

B.2.6.3 Relational operators

The relational operators in Lua are
 == ~= < > <= >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is false. Otherwise, the values of the operands are compared. Numbers and strings are compared in the usual way. Objects (tables, userdata, threads, and functions) are compared by reference: Two objects are considered equal only if they are the same object. Every time you create a new object (a table, userdata, thread, or function), this new object is different from any previously existing object.

You may change the way that Lua compares tables and userdata by using the "eq" metamethod (see B.2.9).

The conversion rules of B.2.3.2 do not apply to equality comparisons. Thus, "0"==0 evaluates to false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared as such. Otherwise, if both arguments are strings, then their values are compared according to the current locale. Otherwise, Lua tries to call the "lt" or the "le" metamethod (see B.2.9).

B.2.6.4 Logical operators

The logical operators in Lua are
 and or not

Like the control structures (see B.2.5.5), all logical operators consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns its first argument if this value is false or nil; otherwise, and returns its second argument. The disjunction operator or returns its first argument if this value is different from nil and false; otherwise, or returns its second argument. Both and and or use short-cut evaluation; that is, the second operand is evaluated only if necessary. Here are some examples:

 10 or 20 --> 10

 10 or error() --> 10

 nil or "a" --> "a"

 nil and 10 --> nil

 false and error() --> false

 false and nil --> false

 false or nil --> nil

 10 and 20 --> 20

(Here and in the sequel, `-->´ indicates the result of the preceding expression.)

B.2.6.5 Concatenation

The string concatenation operator in Lua is denoted by two dots (`..´). If both operands are strings or numbers, then they are converted to strings according to the rules mentioned in B.2.3.2. Otherwise, the "concat" metamethod is called (see B.2.9).

B.2.6.6 The length operator

The length operator is denoted by the unary operator #. The length of a string is its number of bytes (that is, the usual meaning of string length when each character is one byte).

The length of a table t is defined to be any integer index n such that t[n] is not nil and t[n+1] is nil; moreover, if t[1] is nil, n may be zero. For a regular array, with non-nil values from 1 to a given n, its length is exactly that n, the index of its last value. If the array has "holes" (that is, nil values between other non-nil values), then #t may be any of the indices that directly precedes a nil value (that is, it may consider any such nil value as the end of the array).

B.2.6.7 Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:
 or

 and

 < > <= >= ~= ==

 ..

 + -

 * / %

 not # - (unary)

 ^

As usual, you may use parentheses to change the precedences of an expression. The concatenation (`..´) and exponentiation (`^´) operators are right associative. All other binary operators are left associative.

B.2.6.8 Table constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is created. Constructors may be used to create empty tables, or to create a table and initialize some of its fields. The general syntax for constructors is

tableconstructor ::= `{´ [fieldlist] `}´

fieldlist ::= field {fieldsep field} [fieldsep]

field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

fieldsep ::= `,´ | `;´

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and value exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting with 1. Fields in the other formats do not affect this counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to
 do

 local t = {}

 t[f(1)] = g

 t[1] = "x" -- 1st exp

 t[2] = "y" -- 2nd exp

 t.x = 1 -- t["x"] = 1

 t[3] = f(x) -- 3rd exp

 t[30] = 23

 t[4] = 45 -- 4th exp

 a = t

 end

If the last field in the list has the form exp and the expression is a function call or a vararg expression, then all values returned by that expression enter the list consecutively (see B.2.6.9). To avoid this, enclose the function call (or the vararg expression) in parentheses (see B.2.6).

The field list may have an optional trailing separator, as a convenience for machine-generated code.

B.2.6.9 Function calls

A function call in Lua has the following syntax:

functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then that function is called with the given arguments. Otherwise, the prefixexp "call" metamethod is called, having as first parameter the value of prefixexp, followed by the original call arguments (see B.2.9).

The form

functioncall ::= prefixexp `:´ Name args

may be used to call "methods". A call v:name(...) is syntactic sugar for v.name(v,...), except that v is evaluated only once.

Arguments have the following syntax:

args ::= `(´ [explist1] `)´

args ::= tableconstructor

args ::= String

All argument expressions are evaluated before the call. A call of the form f{...} is syntactic sugar for f({...}); that is, the argument list is a single new table. A call of the form f'...' (or f"..." or f[[...]]) is syntactic sugar for f('...'); that is, the argument list is a single literal string.

As an exception to the free-format syntax of Lua, you shall not put a line break before the `(´ in a function call. That restriction avoids some ambiguities in the language. If you write

 a = f

 (g).x(a)

Lua would see that as a single statement, a = f(g).x(a). So, if you want two statements, you must add a semi-colon between them. If you actually want to call f, you must remove the line break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or proper tail recursion): In a tail call, the called function reuses the stack entry of the calling function. Therefore, there is no limit on the number of nested tail calls that a program may execute. However, a tail call erases any debug information about the calling function. Note that a tail call only happens with a particular syntax, where the return has one single function call as argument; this syntax makes the calling function return exactly the returns of the called function. So, none of the following examples are tail calls:

 return (f(x)) -- results adjusted to 1

 return 2 * f(x)

 return x, f(x) -- additional results

 f(x); return -- results discarded

 return x or f(x) -- results adjusted to 1

B.2.6.10 Function definitions

The syntax for function definition is

function ::= function funcbody

funcbody ::= `(´ [parlist1] `)´ block end
The following syntactic sugar simplifies function definitions:

stat ::= function funcname funcbody

stat ::= local function Name funcbody

funcname ::= Name {`.´ Name} [`:´ Name]

The statement
 function f () ... end

translates to
 f = function () ... end

The statement
 function t.a.b.c.f () ... end

translates to
 t.a.b.c.f = function () ... end

The statement
 local function f () ... end

translates to
 local f; f = function () ... end

not this:
 local f = function () ... end

(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes the function definition, the function is instantiated (or closed). This function instance (or closure) is the final value of the expression. Different instances of the same function may refer to different external local variables and may have different environment tables.

Parameters act as local variables that are initialized with the argument values:

parlist1 ::= namelist [`,´ `...´] | `...´

When a function is called, the list of arguments is adjusted to the length of the list of parameters, unless the function is a variadic or vararg function, which is indicated by three dots (`...´) at the end of its parameter list. A vararg function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the function through a vararg expression, which is also written as three dots. The value of this expression is a list of all actual extra arguments, similar to a function with multiple results. If a vararg expression is used inside another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the expression is used as the last element of a list of expressions, then no adjustment is made (unless the call is enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end

 function g(a, b, ...) end

 function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg expression:
 CALL PARAMETERS

 f(3) a=3, b=nil

 f(3, 4) a=3, b=4

 f(3, 4, 5) a=3, b=4

 f(r(), 10) a=1, b=10

 f(r()) a=1, b=2

 g(3) a=3, b=nil, ... --> (nothing)

 g(3, 4) a=3, b=4, ... --> (nothing)

 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8

 g(5, r()) a=5, b=1, ... --> 2 3

Results are returned using the return statement (see B.2.5.5). If control reaches the end of a function without encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra parameter self. Thus, the statement

 function t.a.b.c:f (...) ... end

is syntactic sugar for
 t.a.b.c.f = function (self, ...) ... end

B.2.7 Visibility rules

Lua is a lexically scoped language. The scope of variables begins at the first statement after their declaration and lasts until the end of the innermost block that includes the declaration. Consider the following example:

 x = 10 -- global variable

 do -- new block

 local x = x -- new `x', with value 10

 print(x) --> 10

 x = x+1

 do -- another block

 local x = x+1 -- another `x'

 print(x) --> 12

 end

 print(x) --> 11

 end

 print(x) --> 10 (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables may be freely accessed by functions defined inside their scope. A local variable used by an inner function is called an upvalue, or external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the following example:

 a = {}

 local x = 20

 for i=1,10 do

 local y = 0

 a[i] = function () y=y+1; return x+y end

 end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses a different y variable, while all of them share the same x.

B.2.8 Error handling

Because Lua is an embedded extension language, all Lua actions start from C code in the host program calling a function from the Lua library (see lua_pcall). Whenever an error occurs during Lua compilation or execution, control returns to C, which may take appropriate measures (such as printing an error message).

Lua code may explicitly generate an error by calling the error function. If you need to catch errors in Lua, you may use the pcall function.

B.2.9 Metatables

Every value in Lua may have a metatable. This metatable is an ordinary Lua table that defines the behavior of the original value under certain special operations. You may change several aspects of the behavior of operations over a value by setting specific fields in its metatable. For instance, when a non-numeric value is the operand of an addition, Lua checks for a function in the field "__add" in its metatable. If it finds one, Lua calls that function to perform the addition.

We call the keys in a metatable events and the values metamethods. In the previous example, the event is "add" and the metamethod is the function that performs the addition.

You may query the metatable of any value through the getmetatable function.

You may replace the metatable of tables through the setmetatable function. You shall not change the metatable of other types from Lua (except using the debug library); you must use the C API for that.

Tables and userdata have individual metatables (although multiple tables and userdata may share a same table as their metatable); values of all other types share one single metatable per type. So, there is one single metatable for all numbers, and for all strings, etc.

A metatable may control how an object behaves in arithmetic operations, order comparisons, concatenation, length operation, and indexing. A metatable may also define a function to be called when a userdata is garbage collected. For each of those operations Lua associates a specific key called an event. When Lua performs one of those operations over a value, it checks whether that value has a metatable with the corresponding event. If so, the value associated with that key (the metamethod) controls how Lua will perform the operation.

Metatables control the operations listed next. Each operation is identified by its corresponding name. The key for each operation is a string with its name prefixed by two underscores, `__´; for instance, the key for operation "add" is the string "__add". The semantics of these operations is better explained by a Lua function describing how the interpreter executes that operation.

The code in Lua shown in this section is only illustrative; the real behavior is hard coded in the interpreter and it is much more efficient than this simulation. All functions used in these descriptions (rawget, tonumber, etc.) are described in B.5.2. In particular, to retrieve the metamethod of a given object, we use the expression

 metatable(obj)[event]

This should be read as

 rawget(getmetatable(obj) or {}, event)

That is, the access to a metamethod does not invoke other metamethods, and the access to objects with no metatables does not fail (it simply results in nil).

· "add": the + operation.

The function getbinhandler below defines how Lua chooses a handler for a binary operation. First, Lua tries the first operand. If its type does not define a handler for the operation, then Lua tries the second operand.

 function getbinhandler (op1, op2, event)

 return metatable(op1)[event] or metatable(op2)[event]

 end

Using that function, the behavior of the op1 + op2 is
 function add_event (op1, op2)

 local o1, o2 = tonumber(op1), tonumber(op2)

 if o1 and o2 then -- both operands are numeric?

 return o1 + o2 -- `+' here is the primitive `add'

 else -- at least one of the operands is not numeric

 local h = getbinhandler(op1, op2, "__add")

 if h then

 -- call the handler with both operands

 return h(op1, op2)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

· "sub": the - operation. Behavior similar to the "add" operation.

· "mul": the * operation. Behavior similar to the "add" operation.

· "div": the / operation. Behavior similar to the "add" operation.

· "mod": the % operation. Behavior similar to the "add" operation, with the operation o1 - floor(o1/o2)*o2 as the primitive operation.

· "pow": the ^ (exponentiation) operation. Behavior similar to the "add" operation, with the function pow (from the C math library) as the primitive operation.

· "unm": the unary - operation.
 function unm_event (op)

 local o = tonumber(op)

 if o then -- operand is numeric?

 return -o -- `-' here is the primitive `unm'

 else -- the operand is not numeric.

 -- Try to get a handler from the operand

 local h = metatable(op).__unm

 if h then

 -- call the handler with the operand

 return h(op)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

· "concat": the .. (concatenation) operation.
 function concat_event (op1, op2)

 if (type(op1) == "string" or type(op1) == "number") and

 (type(op2) == "string" or type(op2) == "number") then

 return op1 .. op2 -- primitive string concatenation

 else

 local h = getbinhandler(op1, op2, "__concat")

 if h then

 return h(op1, op2)

 else

 error("...")

 end

 end

 end

· "len": the # operation.

 function len_event (op)

 if type(op) == "string" then

 return strlen(op) -- primitive string length

 elseif type(op) == "table" then

 return #op -- primitive table length

 else

 local h = metatable(op).__len

 if h then

 -- call the handler with the operand

 return h(op)

 else -- no handler available: default behavior

 error("...")

 end

 end

 end

See B.2.6.6 for a description of the length of a table.

· "eq": the == operation. The function getcomphandler defines how Lua chooses a metamethod for comparison operators. A metamethod only is selected when both objects being compared have the same type and the same metamethod for the selected operation.

 function getcomphandler (op1, op2, event)

 if type(op1) ~= type(op2) then return nil end

 local mm1 = metatable(op1)[event]

 local mm2 = metatable(op2)[event]

 if mm1 == mm2 then return mm1 else return nil end

 end

The "eq" event is defined as follows:
 function eq_event (op1, op2)

 if type(op1) ~= type(op2) then -- different types?

 return false -- different objects

 end

 if op1 == op2 then -- primitive equal?

 return true -- objects are equal

 end

 -- try metamethod

 local h = getcomphandler(op1, op2, "__eq")

 if h then

 return h(op1, op2)

 else

 return false

 end

 end

a ~= b is equivalent to not (a == b).

· "lt": the < operation.

 function lt_event (op1, op2)

 if type(op1) == "number" and type(op2) == "number" then

 return op1 < op2 -- numeric comparison

 elseif type(op1)=="string" and type(op2)=="string" then

 return op1 < op2 -- lexicographic comparison

 else

 local h = getcomphandler(op1, op2, "__lt")

 if h then

 return h(op1, op2)

 else

 error("...");

 end

 end

 end

a > b is equivalent to b < a.

· "le": the <= operation.

 function le_event (op1, op2)

 if type(op1) == "number" and type(op2) == "number" then

 return op1 <= op2 -- numeric comparison

 elseif type(op1)=="string" and type(op2)=="string" then

 return op1 <= op2 -- lexicographic comparison

 else

 local h = getcomphandler(op1, op2, "__le")

 if h then

 return h(op1, op2)

 else

 h = getcomphandler(op1, op2, "__lt")

 if h then

 return not h(op2, op1)

 else

 error("...");

 end

 end

 end

 end

a >= b is equivalent to b <= a. Note that, in the absence of a "le" metamethod, Lua tries the "lt", assuming that a <= b is equivalent to not (b < a).

· "index": The indexing access table[key].

 function gettable_event (table, key)

 local h

 if type(table) == "table" then

 local v = rawget(table, key)

 if v ~= nil then return v end

 h = metatable(table).__index

 if h == nil then return nil end

 else

 h = metatable(table).__index

 if h == nil then

 error("...");

 end

 end

 if type(h) == "function" then

 return h(table, key) -- call the handler

 else return h[key] -- or repeat operation on it

 end

 end

· "newindex": The indexing assignment table[key] = value.

 function settable_event (table, key, value)

 local h

 if type(table) == "table" then

 local v = rawget(table, key)

 if v ~= nil then rawset(table, key, value); return end

 h = metatable(table).__newindex

 if h == nil then rawset(table, key, value); return end

 else

 h = metatable(table).__newindex

 if h == nil then

 error("...");

 end

 end

 if type(h) == "function" then

 return h(table, key,value) -- call the handler

 else h[key] = value -- or repeat operation on it

 end

 end

· "call": called when Lua calls a value.

 function function_event (func, ...)

 if type(func) == "function" then

 return func(...) -- primitive call

 else

 local h = metatable(func).__call

 if h then

 return h(func, ...)

 else

 error("...")

 end

 end

 end

B.2.10 Environments

Besides metatables, objects of types thread, function, and userdata have another table associated with them, called their environment. Like metatables, environments are regular tables and multiple objects may share the same environment.

Environments associated with userdata have no meaning for Lua. It is only a feature for programmers to associate a table to a userdata.

Environments associated with threads are called global environments. They are used as the default environment for threads and non-nested functions created by that thread (through loadfile, loadstring or load) and may be directly accessed by C code (see B.3.4).

Environments associated with C functions may be directly accessed by C code (see B.3.4). They are used as the default environment for other C functions created by that function.

Environments associated with Lua functions are used to resolve all accesses to global variables within that function (see B.2.4). They are used as the default environment for other Lua functions created by that function.

You may change the environment of a Lua function or the running thread by calling setfenv. You may get the environment of a Lua function or the running thread by calling getfenv. To manipulate the environment of other objects (userdata, C functions, other threads) you must use the C API.

B.2.11 Garbage collection

B.2.11.1 Basic Concepts

Lua performs automatic memory management. That means that you have to worry neither about allocating memory for new objects nor about freeing it when the objects are no longer needed. Lua manages memory automatically by running a garbage collector from time to time to collect all dead objects (that is, those objects that are no longer accessible from Lua). All objects in Lua are subject to automatic management: tables, userdata, functions, threads, and strings.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-collection cycles: the garbage-collector pause and the garbage-collector step multiplier.

The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values make the collector less aggressive. Values smaller than 1 mean the collector will not wait to start a new cycle. A value of 2 means that the collector waits more or less to double the total memory in use before starting a new cycle.

The step multiplier controls the relative speed of the collector relative to memory allocation. Larger values make the collector more aggressive but also increases the size of each incremental step. Values smaller than 1 make the collector too slow and can result in the collector never finishing a cycle. The default, 2, means that the collector runs at "twice" the speed of memory allocation.

You may change those numbers calling lua_gc in C or collectgarbage in Lua. Both get as arguments percentage points (so an argument 100 means a real value of 1). With those functions you may also get direct control of the collector (e.g., stop and restart it).

B.2.11.2 Garbage-Collection metamethods

Using the C API, you may set garbage-collector metamethods for userdata (see B.2.9). These metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource management (such as closing files, network or database connections, or freeing your own memory).

Garbage userdata with a field __gc in their metatables are not collected immediately by the garbage collector. Instead, Lua puts them in a list. After the collection, Lua does the equivalent of the following function for each userdata in that list:

 function gc_event (udata)

 local h = metatable(udata).__gc

 if h then

 h(udata)

 end

 end

At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order of their creation, among those collected in that cycle. That is, the first finalizer to be called is the one associated with the userdata created last in the program.

B.2.11.3 Weak tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage collector. In other words, if the only references to an object are weak references, then the garbage collector will collect that object.

A weak table may have weak keys, weak values, or both. A table with weak keys allows the collection of its keys, but prevents the collection of its values. A table with both weak keys and weak values allows the collection of both keys and values. In any case, if either the key or the value is collected, the whole pair is removed from the table. The weakness of a table is controlled by the value of the __mode field of its metatable. If the __mode field is a string containing the character `k´, the keys in the table are weak. If __mode contains `v´, the values in the table are weak.

After you use a table as a metatable, you should not change the value of its field __mode. Otherwise, the weak behavior of the tables controlled by this metatable is undefined.

B.2.12 Coroutines

Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an independent thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends its execution by explicitly calling a yield function.

You create a coroutine with a call to coroutine.create. Its sole argument is a function that is the main function of the coroutine. The create function only creates a new coroutine and returns a handle to it (an object of type thread); it does not start the coroutine execution.

When you first call coroutine.resume, passing as its first argument the thread returned by coroutine.create, the coroutine starts its execution, at the first line of its main function. Extra arguments passed to coroutine.resume are passed on to the coroutine main function. After the coroutine starts running, it runs until it terminates or yields.

A coroutine may terminate its execution in two ways: Normally, when its main function returns (explicitly or implicitly, after the last instruction); and abnormally, if there is an unprotected error. In the first case, coroutine.resume returns true, plus any values returned by the coroutine main function. In case of errors, coroutine.resume returns false plus an error message.

A coroutine yields by calling coroutine.yield. When a coroutine yields, the corresponding coroutine.resume returns immediately, even if the yield happens inside nested function calls (that is, not in the main function, but in a function directly or indirectly called by the main function). In the case of a yield, coroutine.resume also returns true, plus any values passed to coroutine.yield. The next time you resume the same coroutine, it continues its execution from the point where it yielded, with the call to coroutine.yield returning any extra arguments passed to coroutine.resume.

The coroutine.wrap function creates a coroutine, just like coroutine.create, but instead of returning the coroutine itself, it returns a function that, when called, resumes the coroutine. Any arguments passed to that function go as extra arguments to coroutine.resume. coroutine.wrap returns all the values returned by coroutine.resume, except the first one (the boolean error code). Unlike coroutine.resume, coroutine.wrap does not catch errors; any error is propagated to the caller.

As an example, consider the next code:

 function foo (a)

 print("foo", a)

 return coroutine.yield(2*a)

 end

 co = coroutine.create(function (a,b)

 print("co-body", a, b)

 local r = foo(a+1)

 print("co-body", r)

 local r, s = coroutine.yield(a+b, a-b)

 print("co-body", r, s)

 return b, "end"

 end)

 print("main", coroutine.resume(co, 1, 10))

 print("main", coroutine.resume(co, "r"))

 print("main", coroutine.resume(co, "x", "y"))

 print("main", coroutine.resume(co, "x", "y"))

When you run it, it produces the following output:
 co-body 1 10

 foo 2

 main true 4

 co-body r

 main true 11 -9

 co-body x y

 main true 10 end

 main false cannot resume dead coroutine

B.3 The application program interface

B.3.1 Basic Concepts

All C API functions and related types and constants are declared in the header file lua.h.

Even when we use the term "function", any facility in the API may be provided as a macro instead. All such macros use each of its arguments exactly once (except for the first argument, which is always a Lua state), and so do not generate any hidden side-effects.

As in most C libraries, the Lua API functions do not check their arguments for validity or consistency. However, you may change this behavior by compiling Lua with a proper definition for the macro luai_apicheck, in file luaconf.h.

B.3.2 The stack

Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a Lua value (nil, number, string, etc.).

Whenever Lua calls C, the called function gets a new stack, which is independent of previous stacks and of stacks of C functions that are still active. That stack initially contains any arguments to the C function and it is where the C function pushes its results to be returned to the caller (see lua_CFunction).

For convenience, most query operations in the API do not follow a strict stack discipline. Instead, they may refer to any element in the stack by using an index: A positive index represents an absolute stack position (starting at 1); a negative index represents an offset relative to the top of the stack. More specifically, if the stack has n elements, then index 1 represents the first element (that is, the element that was pushed onto the stack first) and index n represents the last element; index -1 also represents the last element (that is, the element at the top) and index -n represents the first element. We say that an index is valid if it lies between 1 and the stack top (that is, if 1 <= abs(index) <= top).

B.3.3 Stack size

When you interact with Lua API, you are responsible for ensuring consistency. In particular, you are responsible for controlling stack overflow. You may use the function lua_checkstack to grow the stack size.

Whenever Lua calls C, it ensures that at least LUA_MINSTACK stack positions are available. LUA_MINSTACK is defined as 20, so that usually you do not have to worry about stack space unless your code has loops pushing elements onto the stack.

Most query functions accept as indices any value inside the available stack space, that is, indices up to the maximum stack size you have set through lua_checkstack. Such indices are called acceptable indices. More formally, we define an acceptable index as follows:

 (index < 0 && abs(index) <= top) || (index > 0 && index <= stackspace)

Note that 0 is never an acceptable index.

B.3.4 Pseudo-indices

Unless otherwise noted, any function that accepts valid indices may also be called with pseudo-indices, which represent some Lua values that are accessible to C code but which are not in the stack. Pseudo-indices are used to access the thread environment, the function environment, the registry, and the upvalues of a C function (see B.3.5).

The thread environment (where global variables live) is always at pseudo-index LUA_GLOBALSINDEX. The environment of the running C function is always at pseudo-index LUA_ENVIRONINDEX.

To access and change the value of global variables, you may use regular table operations over an environment table. For instance, to access the value of a global variable, do

 lua_getfield(L, LUA_GLOBALSINDEX, varname);

B.3.5 C Closures

When a C function is created, it is possible to associate some values with it, thus creating a C closure; these values are called upvalues and are accessible to the function whenever it is called (see lua_pushcclosure).

Whenever a C function is called, its upvalues are located at specific pseudo-indices. Those pseudo-indices are produced by the macro lua_upvalueindex. The first value associated with a function is at position lua_upvalueindex(1), and so on. Any access to lua_upvalueindex(n), where n is greater than the number of upvalues of the current function, produces an acceptable (but invalid) index.

B.3.6 Registry

Lua provides a registry, a pre-defined table that may be used by any C code to store whatever Lua value it needs to store. This table is always located at pseudo-index LUA_REGISTRYINDEX. Any C library may store data into this table, but it should take care to choose keys different from those used by other libraries, to avoid collisions. Typically, you should use as key a string containing your library name or a light userdata with the address of a C object in your code.

The integer keys in the registry are used by the reference mechanism, implemented by the auxiliary library, and therefore should not be used for other purposes.

B.3.7 Error handling in C

Internally, Lua uses the C longjmp facility to handle errors. (You may also choose to use exceptions if you use C++; See file luaconf.h.) When Lua faces any error (such as memory allocation errors, type errors, syntax errors, and runtime errors) it raises an error; that is, it does a long jump. A protected environment uses setjmp to set a recover point; any error jumps to the most recent active recover point.

Almost any function in the API may raise an error, for instance due to a memory allocation error. The following functions run in protected mode (that is, they create a protected environment to run), so they never raise an error: lua_newstate, lua_close, lua_load, lua_pcall, and lua_cpcall.

Inside a C function you may raise an error by calling lua_error.

B.3.8 Functions and types

Here we list all functions and types from the C API in alphabetical order.

lua_Alloc
 typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);

The type of the memory allocation function used by Lua states. The allocator function must provide a functionality similar to realloc, but not exactly the same. Its arguments are ud, an opaque pointer passed to lua_newstate; ptr, a pointer to the block being allocated/reallocated/freed; osize, the original size of the block; nsize, the new size of the block. ptr is NULL if and only if osize is zero. When nsize is zero, the allocator must return NULL; if osize is not zero, it should free the block pointed by ptr. When nsize is not zero, the allocator returns NULL if and only if it cannot fill the request. When nsize is not zero and osize is zero, the allocator should behave like malloc. When nsize and osize are not zero, the allocator behaves like realloc. Lua assumes that the allocator never fails when osize >= nsize.

Here is a simple implementation for the allocator function. It is used in the auxiliary library by lua_newstate.

 static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {

 (void)ud; /* not used */

 (void)osize; /* not used */

 if (nsize == 0) {

 free(ptr); /* ANSI requires that free(NULL) has no effect */

 return NULL;

 }

 else

 /* ANSI requires that realloc(NULL, size) == malloc(size) */

 return realloc(ptr, nsize);

 }

lua_atpanic
 lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);

Sets a new panic function and returns the old one.

If an error happens outside any protected environment, Lua calls a panic function and then calls exit(EXIT_FAILURE), thus exiting the host application. Your panic function can avoid this exit by never returning (e.g., doing a long jump).
The panic function may access the error message at the top of the stack.

lua_call
 void lua_call (lua_State *L, int nargs, int nresults);

Calls a function.

To call a function you must use the following protocol: First, the function to be called is pushed onto the stack; then, the arguments to the function are pushed in direct order; that is, the first argument is pushed first. Finally you call lua_call; nargs is the number of arguments that you pushed onto the stack. All arguments and the function value are popped from the stack when the function is called. The function results are pushed onto the stack when the function returns. The number of results is adjusted to nresults, unless nresults is LUA_MULTRET. In that case, all results from the function are pushed. Lua takes care that the returned values fit into the stack space. The function results are pushed onto the stack in direct order (the first result is pushed first), so that after the call the last result is on the top of the stack.

Any error inside the called function is propagated upwards (with a longjmp).

The following example shows how the host program can do the equivalent to this Lua code:

 a = f("how", t.x, 14)

Here it is in C:
 lua_getfield(L, LUA_GLOBALSINDEX, "f");
/* function to be called */

 lua_pushstring(L, "how");

/* 1st argument */

 lua_getfield(L, LUA_GLOBALSINDEX, "t");
/* table to be indexed */

 lua_getfield(L, -1, "x");

/* push result of t.x (2nd arg) */

 lua_remove(L, -2);

/* remove `t' from the stack */

 lua_pushinteger(L, 14);

/* 3rd argument */

 lua_call(L, 3, 1);

/* call function with 3 arguments and 1 result */

 lua_setfield(L, LUA_GLOBALSINDEX, "a");
/* set global variable `a' */

Note that the code above is "balanced": at its end, the stack is back to its original configuration. This is considered good programming practice.

lua_CFunction
 typedef int (*lua_CFunction) (lua_State *L);

Type for C functions.

In order to communicate properly with Lua, a C function must use the following protocol, which defines the way parameters and results are passed: A C function receives its arguments from Lua in its stack in direct order (the first argument is pushed first). So, when the function starts, lua_gettop(L) returns the number of arguments received by the function. The first argument (if any) is at index 1 and its last argument is at index lua_gettop(L). To return values to Lua, a C function just pushes them onto the stack, in direct order (the first result is pushed first), and returns the number of results. Any other value in the stack below the results will be properly discarded by Lua. Like a Lua function, a C function called by Lua may also return many results.

As an example, the following function receives a variable number of numerical arguments and returns their average and sum:

static int foo (lua_State *L) {

 int n = lua_gettop(L); /* number of arguments */

 lua_Number sum = 0;

 int i;

 for (i = 1; i <= n; i++) {

 if (!lua_isnumber(L, i)) {

 lua_pushstring(L,"incorrect argument to function `average'");

 lua_error(L);

 }

 sum += lua_tonumber(L, i);

 }

 lua_pushnumber(L, sum/n); /* first result */

 lua_pushnumber(L, sum); /* second result */

 return 2; /* number of results */

}

lua_checkstack
 int lua_checkstack (lua_State *L, int extra);

Ensures that there are at least extra free stack slots in the stack. It returns false if it cannot grow the stack to that size. This function never shrinks the stack; if the stack is already larger than the new size, it is left unchanged.

lua_close
 void lua_close (lua_State *L);

Destroys all objects in the given Lua state (calling the corresponding garbage-collection metamethods, if any) and frees all dynamic memory used by that state. On several platforms, you do not need to call this function, because all resources are naturally released when the host program ends. On the other hand, long-running programs, such as a daemon or a web server, might need to release states as soon as they are not needed, to avoid growing too large.

lua_concat
 void lua_concat (lua_State *L, int n);

Concatenates the n values at the top of the stack, pops them, and leaves the result at the top. If n is 1, the result is that single string (that is, the function does nothing); if n is 0, the result is the empty string. Concatenation is done following the usual semantics of Lua (see B.2.6.5).

lua_cpcall
 int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);

Calls the C function func in protected mode. func starts with only one element in its stack, a light userdata containing ud. In case of errors, lua_cpcall returns the same error codes as lua_pcall, plus the error object on the top of the stack; otherwise, it returns zero, and does not change the stack. All values returned by func are discarded.

lua_createtable
 void lua_createtable (lua_State *L, int narr, int nrec);

Creates a new empty table and pushes it onto the stack. The new table has space pre-allocated for narr array elements and nrec non-array elements. This pre-allocation is useful when you know exactly how many elements the table will have. Otherwise you may use the function lua_newtable.

lua_dump
 int lua_dump (lua_State *L, lua_Writer writer, void *data);

Dumps a function as a binary chunk. Receives a Lua function on the top of the stack and produces a binary chunk that, if loaded again, results in a function equivalent to the one dumped. As it produces parts of the chunk, lua_dump calls function writer (see lua_Writer) with the given data to write them.

The value returned is the error code returned by the last call to the writer; 0 means no errors.

This function does not pop the function from the stack.

lua_equal
 int lua_equal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are equal, following the semantics of the Lua == operator (that is, may call metamethods). Otherwise returns 0. Also returns 0 if any of the indices is non valid.

lua_error
 int lua_error (lua_State *L);

Generates a Lua error. The error message (which may actually be a Lua value of any type) must be on the stack top. This function does a long jump, and therefore never returns. (see luaL_error).

lua_gc
 int lua_gc (lua_State *L, int what, int data);

Controls the garbage collector.

This function performs several tasks, according to the value of the parameter what:

· LUA_GCSTOP--- stops the garbage collector.

· LUA_GCRESTART--- restarts the garbage collector.

· LUA_GCCOLLECT--- performs a full garbage-collection cycle.

· LUA_GCCOUNT--- returns the current amount of memory (in Kbytes) in use by Lua.

· LUA_GCCOUNTB--- returns the remainder of dividing the current amount of bytes of memory in use by Lua by 1024.

· LUA_GCSTEP--- performs an incremental step of garbage collection. The step "size" is controlled by data (larger values mean more steps) in a non-specified way. If you want to control the step size you must tune experimentally the value of data. The function returns 1 if that step finished a garbage-collection cycle.

· LUA_GCSETPAUSE--- sets data/100 as the new value for the pause of the collector (see B.2.11). The function returns the previous value of the pause.

· LUA_GCSETSTEPMUL--- sets arg/100 as the new value for the step multiplier of the collector (see B.2.11). The function returns the previous value of the step multiplier.

lua_getallocf
 lua_Alloc lua_getallocf (lua_State *L, void **ud);

Returns the memory allocator function of a given state. If ud is not NULL, Lua stores in *ud the opaque pointer passed to lua_newstate.

lua_getfenv
 void lua_getfenv (lua_State *L, int index);

Pushes on the stack the environment table of the value at the given index.

lua_getfield
 void lua_getfield (lua_State *L, int index, const char *k);

Pushes onto the stack the value t[k], where t is the value at the given valid index index. As in Lua, this function may trigger a metamethod for the "index" event (see B.2.9).

lua_getglobal
 void lua_getglobal (lua_State *L, const char *name);

Pushes onto the stack the value of the global name. It is defined as a macro:

 #define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)

lua_getmetatable
 int lua_getmetatable (lua_State *L, int index);

Pushes onto the stack the metatable of the value at the given acceptable index. If the index is not valid, or if the value does not have a metatable, the function returns 0 and pushes nothing on the stack.

lua_gettable
 void lua_gettable (lua_State *L, int index);

Pushes onto the stack the value t[k], where t is the value at the given valid index index and k is the value at the top of the stack.

This function pops the key from the stack (putting the resulting value in its place). As in Lua, this function may trigger a metamethod for the "index" event (see B.2.9).

lua_gettop
 int lua_gettop (lua_State *L);

Returns the index of the top element in the stack. Because indices start at 1, that result is equal to the number of elements in the stack (and so 0 means an empty stack).

lua_insert
 void lua_insert (lua_State *L, int index);

Moves the top element into the given valid index, shifting up the elements above that position to open space. Shall not be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_Integer
 typedef ptrdiff_t lua_Integer;

The type used by the Lua API to represent integral values.

By default it is a ptrdiff_t, which is usually the largest integral type the machine handles "comfortably".

lua_isboolean
 int lua_isboolean (lua_State *L, int index);

Returns 1 if the value at the given acceptable index has type boolean, and 0 otherwise.

lua_iscfunction
 int lua_iscfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a C function, and 0 otherwise.

lua_isfunction
 int lua_isfunction (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a function (either C or Lua), and 0 otherwise.

lua_islightuserdata
 int lua_islightuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a light userdata, and 0 otherwise.

lua_isnil
 int lua_isnil (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is nil, and 0 otherwise.

lua_isnumber
 int lua_isnumber (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a number or a string convertible to a number, and 0 otherwise.

lua_isstring
 int lua_isstring (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a string or a number (which is always convertible to a string), and 0 otherwise.

lua_istable
 int lua_istable (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a table, and 0 otherwise.

lua_isthread
 int lua_isthread (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a thread, and 0 otherwise.

lua_isuserdata
 int lua_isuserdata (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a userdata (either full or light), and 0 otherwise.

lua_lessthan
 int lua_lessthan (lua_State *L, int index1, int index2);

Returns 1 if the value at acceptable index index1 is smaller than the value at acceptable index index2, following the semantics of the Lua < operator (that is, may call metamethods). Otherwise returns 0. Also returns 0 if any of the indices is non valid.

lua_load
 int lua_load (lua_State *L, lua_Reader reader, void *data, const char *chunkname);

Loads a Lua chunk. If there are no errors, lua_load pushes the compiled chunk as a Lua function on top of the stack. Otherwise, it pushes an error message. The return values of lua_load are:

· 0 --- no errors;

· LUA_ERRSYNTAX --- syntax error during pre-compilation.

· LUA_ERRMEM --- memory allocation error.

lua_load automatically detects whether the chunk is text or binary, and loads it accordingly (see program luac).

lua_load uses a user-supplied reader function to read the chunk (see lua_Reader). The data argument is an opaque value passed to the reader function.

The chunkname argument gives a name to the chunk, which is used for error messages and in debug information (see B.3.9).

lua_newstate
 lua_State *lua_newstate (lua_Alloc f, void *ud);

Creates a new, independent state. Returns NULL if cannot create the state (due to lack of memory). The argument f is the allocator function; Lua does all memory allocation for that state through that function. The second argument, ud, is an opaque pointer that Lua simply passes to the allocator in every call.

lua_newtable
 void lua_newtable (lua_State *L);

Creates a new empty table and pushes it onto the stack. Equivalent to lua_createtable(L, 0, 0).

lua_newthread
 lua_State *lua_newthread (lua_State *L);

Creates a new thread, pushes it on the stack, and returns a pointer to a lua_State that represents this new thread. The new state returned by this function shares with the original state all global objects (such as tables), but has an independent execution stack.

There is no explicit function to close or to destroy a thread. Threads are subject to garbage collection, like any Lua object.

lua_newuserdata
 void *lua_newuserdata (lua_State *L, size_t size);

This function allocates a new block of memory with the given size, pushes on the stack a new full userdata with the block address, and returns this address.

Userdata represents C values in Lua. A full userdata represents a block of memory. It is an object (like a table): You must create it, it may have its own metatable, and you may detect when it is being collected. A full userdata is only equal to itself (under raw equality).

When Lua collects a full userdata with a gc metamethod, Lua calls the metamethod and marks the userdata as finalized. When that userdata is collected again then Lua frees its corresponding memory.

lua_next
 int lua_next (lua_State *L, int index);

Pops a key from the stack, and pushes a key-value pair from the table at the given index (the "next" pair after the given key). If there are no more elements in the table, then lua_next returns 0 (and pushes nothing).

A typical traversal looks like this:

 /* table is in the stack at index `t' */

 lua_pushnil(L); /* first key */

 while (lua_next(L, t) != 0) {

 /* `key' is at index -2 and `value' at index -1 */

 printf("%s - %s\n",

 lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1)));

 lua_pop(L, 1); /* removes `value'; keeps `key' for next iteration */

 }

While traversing a table, do not call lua_tolstring directly on a key, unless you know that the key is actually a string. Recall that lua_tolstring changes the value at the given index; this confuses the next call to lua_next.

lua_Number
 typedef double lua_Number;

The type of numbers in Lua. By default, it is double, but that may be changed in luaconf.h.

Through the configuration file you may change Lua to operate with another type for numbers (e.g., float or long).

lua_objlen
 size_t lua_objlen (lua_State *L, int index);

Returns the "length" of the value at the given acceptable index: for strings, this is the string length; for tables, this is the result of the length operator (`#´); for userdata, this is the size of the block of memory allocated for the userdata; for other values, it is 0.

lua_pcall
 lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);

Calls a function in protected mode.

Both nargs and nresults have the same meaning as in lua_call. If there are no errors during the call, lua_pcall behaves exactly like lua_call. However, if there is any error, lua_pcall catches it, pushes a single value on the stack (the error message), and returns an error code. Like lua_call, lua_pcall always removes the function and its arguments from the stack.

If errfunc is 0, then the error message returned on the stack is exactly the original error message. Otherwise, errfunc is the stack index of an error handler function. (In the current implementation, that index shall not be a pseudo-index.) In case of runtime errors, that function will be called with the error message and its return value will be the message returned on the stack by lua_pcall.

Typically, the error handler function is used to add more debug information to the error message, such as a stack traceback. Such information cannot be gathered after the return of lua_pcall, since by then the stack has unwound.

The lua_pcall function returns 0 in case of success or one of the following error codes (defined in lua.h):

· LUA_ERRRUN --- a runtime error.

· LUA_ERRMEM --- memory allocation error. For such errors, Lua does not call the error handler function.

· LUA_ERRERR --- error while running the error handler function.

lua_pop
 void lua_pop (lua_State *L, int n);

Pops n elements from the stack.

lua_pushboolean
 void lua_pushboolean (lua_State *L, int b);

Pushes a boolean value with value b onto the stack.

lua_pushcclosure
 void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);

Pushes a new C closure onto the stack.

When a C function is created, it is possible to associate some values with it, thus creating a C closure (see B.3.5); these values are then accessible to the function whenever it is called. To associate values with a C function, first these values should be pushed onto the stack (when there are multiple values, the first value is pushed first). Then lua_pushcclosure is called to create and push the C function onto the stack, with the argument n telling how many values should be associated with the function. lua_pushcclosure also pops these values from the stack.

lua_pushcfunction
 void lua_pushcfunction (lua_State *L, lua_CFunction f);

Pushes a C function onto the stack. This function receives a pointer to a C function and pushes on the stack a Lua value of type function that, when called, invokes the corresponding C function.

Any function to be registered in Lua must follow the correct protocol to receive its parameters and return its results (see lua_CFunction).

The call lua_pushcfunction(L, f) is equivalent to lua_pushcclosure(L, f, 0).

lua_pushfstring
 const char *lua_pushfstring (lua_State *L, const char *fmt, ...);

Pushes onto the stack a formatted string and returns a pointer to that string. It is similar to the C function sprintf, but has some important differences:

· You do not have to allocate the space for the result: The result is a Lua string and Lua takes care of memory allocation (and deallocation, through garbage collection).

· The conversion specifiers are quite restricted. There are no flags, widths, or precisions. The conversion specifiers may only be `%%´ (inserts a `%´ in the string), `%s´ (inserts a zero-terminated string, with no size restrictions), `%f´ (inserts a lua_Number), `%p´ (inserts a pointer as an hexadecimal numeral), `%d´ (inserts an int), and `%c´ (inserts an int as a character).

lua_pushinteger
 void lua_pushinteger (lua_State *L, lua_Integer n);

Pushes a number with value n onto the stack.

lua_pushlightuserdata
 void lua_pushlightuserdata (lua_State *L, void *p);

Pushes a light userdata onto the stack.

Userdata represents C values in Lua. A light userdata represents a pointer. It is a value (like a number): You do not create it, it has no metatables, it is not collected (as it was never created). A light userdata is equal to "any" light userdata with the same C address.

lua_pushlstring
 void lua_pushlstring (lua_State *L, const char *s, size_t len);

Pushes the string pointed by s with size len onto the stack. Lua makes (or reuses) an internal copy of the given string, so the memory at s may be freed or reused immediately after the function returns. The string may contain embedded zeros.

lua_pushnil
 void lua_pushnil (lua_State *L);

Pushes a nil value onto the stack.

lua_pushnumber
 void lua_pushnumber (lua_State *L, lua_Number n);

Pushes a number with value n onto the stack.

lua_pushstring
 void lua_pushstring (lua_State *L, const char *s);

Pushes the zero-terminated string pointed by s onto the stack. Lua makes (or reuses) an internal copy of the given string, so the memory at s may be freed or reused immediately after the function returns. The string shall not contain embedded zeros; it is assumed to end at the first zero.

lua_pushthread
 void lua_pushthread (lua_State *L);

Pushes the thread represented by L onto the stack.

lua_pushvalue
 void lua_pushvalue (lua_State *L, int index);

Pushes a copy of the element at the given valid index onto the stack.

lua_pushvfstring
 const char *lua_pushvfstring (lua_State *L, const char *fmt,
 va_list argp);

Equivalent to lua_pushfstring, except that it receives a va_list instead of a variable number of arguments.

lua_rawequal
 int lua_rawequal (lua_State *L, int index1, int index2);

Returns 1 if the two values in acceptable indices index1 and index2 are primitively equal (that is, without calling metamethods). Otherwise returns 0. Also returns 0 if any of the indices are non valid.

lua_rawget
 void lua_rawget (lua_State *L, int index);

Similar to lua_gettable, but does a raw access (i.e., without metamethods).
lua_rawgeti
 void lua_rawgeti (lua_State *L, int index, int n);

Pushes onto the stack the value t[n], where t is the value at the given valid index index. The access is raw; that is, it does not invoke metamethods.

lua_rawset
 void lua_rawset (lua_State *L, int index);

Similar to lua_settable, but does a raw assignment (i.e., without metamethods).

lua_rawseti
 void lua_rawseti (lua_State *L, int index, int n);

Does the equivalent of t[n] = v, where t is the value at the given valid index index and v is the value at the top of the stack,

This function pops the value from the stack. The assignment is raw; that is, it does not invoke metamethods.

lua_Reader
 typedef const char * (*lua_Reader)

 (lua_State *L, void *data, size_t *size);

The reader function used by lua_load. Every time it needs another piece of the chunk, lua_load calls the reader, passing along its data parameter. The reader must return a pointer to a block of memory with a new piece of the chunk and set size to the block size. The block must exist until the reader function is called again. To signal the end of the chunk, the reader must return NULL. The reader function may return pieces of any size greater than zero.

lua_register
 void lua_register (lua_State *L, const char *name, lua_CFunction f);

Sets the C function f as the new value of global name. It is defined as a macro:

 #define lua_register(L,n,f) (lua_pushcfunction(L, f), lua_setglobal(L, n))

lua_remove
 void lua_remove (lua_State *L, int index);

Removes the element at the given valid index, shifting down the elements above that position to fill the gap. Shall not be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_replace
 void lua_replace (lua_State *L, int index);

Moves the top element into the given position (and pops it), without shifting any element (therefore replacing the value at the given position).

lua_resume
 int lua_resume (lua_State *L, int narg);

Starts and resumes a coroutine in a given thread.

To start a coroutine, you first create a new thread (see lua_newthread); then you push on its stack the main function plus any eventual arguments; then you call lua_resume, with narg being the number of arguments. This call returns when the coroutine suspends or finishes its execution. When it returns, the stack contains all values passed to lua_yield, or all values returned by the body function. lua_resume returns LUA_YIELD if the coroutine yields, 0 if the coroutine finishes its execution without errors, or an error code in case of errors (see lua_pcall). In case of errors, the stack is not unwound, so you may use the debug API over it. The error message is on the top of the stack. To restart a coroutine, you put on its stack only the values to be passed as results from yield, and then call lua_resume.

lua_setallocf
 void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Changes the allocator function of a given state to f with user data ud.

lua_setfenv
 int lua_setfenv (lua_State *L, int index);

Pops a table from the stack and sets it as the new environment for the value at the given index. If the value at the given index is neither a function nor a thread nor a userdata, lua_setfenv returns 0. Otherwise it returns 1.

lua_setfield
 void lua_setfield (lua_State *L, int index, const char *k);

Does the equivalent to t[k] = v, where t is the value at the given valid index index and v is the value at the top of the stack,

This function pops the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see B.2.9).

lua_setglobal
 void lua_setglobal (lua_State *L, const char *name);

Pops a value from the stack and sets it as the new value of global name. It is defined as a macro:

 #define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)

lua_setmetatable
 int lua_setmetatable (lua_State *L, int index);

Pops a table from the stack and sets it as the new metatable for the value at the given acceptable index.

lua_settable
 void lua_settable (lua_State *L, int index);

Does the equivalent to t[k] = v, where t is the value at the given valid index index, v is the value at the top of the stack, and k is the value just below the top.

This function pops both the key and the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see B.2.9).

lua_settop
 void lua_settop (lua_State *L, int index);

Accepts any acceptable index, or 0, and sets the stack top to that index. If the new top is larger than the old one, then the new elements are filled with nil. If index is 0, then all stack elements are removed.

lua_State
 typedef struct lua_State lua_State;

Opaque structure that keeps the whole state of a Lua interpreter. The Lua library is fully reentrant: it has no global variables. All information about a state is kept in this structure.

A pointer to this state must be passed as the first argument to every function in the library, except to lua_newstate, which creates a Lua state from scratch.

lua_status
 int lua_status (lua_State *L);

Returns the status of the thread L.

The status may be 0 for a normal thread, an error code if the thread finished its execution with an error, or LUA_YIELD if the thread is suspended.

lua_toboolean
 int lua_toboolean (lua_State *L, int index);

Converts the Lua value at the given acceptable index to a C boolean value (0 or 1). Like all tests in Lua, lua_toboolean returns 1 for any Lua value different from false and nil; otherwise it returns 0. It also returns 0 when called with a non-valid index. (If you want to accept only actual boolean values, use lua_isboolean to test the value's type.)

lua_tocfunction
 lua_CFunction lua_tocfunction (lua_State *L, int index);

Converts a value at the given acceptable index to a C function. That value must be a C function; otherwise, returns NULL.

lua_tointeger
 lua_Integer lua_tointeger (lua_State *L, int idx);

Converts the Lua value at the given acceptable index to the signed integral type lua_Integer. The Lua value must be a number or a string convertible to a number (see B.2.3.2); otherwise, lua_tointeger returns 0.

If the number is not an integer, it is truncated in some non-specified way.

lua_tolstring
 const char *lua_tolstring (lua_State *L, int index, size_t *len);

Converts the Lua value at the given acceptable index to a string (const char*). If len is not NULL, it also sets *len with the string length. The Lua value must be a string or a number; otherwise, the function returns NULL. If the value is a number, then lua_tolstring also changes the actual value in the stack to a string. (This change confuses lua_next when lua_tolstring is applied to keys during a table traversal.)

lua_tolstring returns a fully aligned pointer to a string inside the Lua state. This string always has a zero (`\0´) after its last character (as in C), but may contain other zeros in its body. Because Lua has garbage collection, there is no guarantee that the pointer returned by lua_tolstring will be valid after the corresponding value is removed from the stack.

lua_tonumber
 lua_Number lua_tonumber (lua_State *L, int index);

Converts the Lua value at the given acceptable index to a number (see lua_Number). The Lua value must be a number or a string convertible to a number (see B.2.3.2); otherwise, lua_tonumber returns 0.

lua_topointer
 const void *lua_topointer (lua_State *L, int index);

Converts the value at the given acceptable index to a generic C pointer (void*). The value may be a userdata, a table, a thread, or a function; otherwise, lua_topointer returns NULL. Lua ensures that different objects return different pointers. There is no direct way to convert the pointer back to its original value.

Typically this function is used only for debug information.

lua_tostring
 const char *lua_tostring (lua_State *L, int index);

Equivalent to lua_tolstring with len equal to NULL.

lua_tothread
 lua_State *lua_tothread (lua_State *L, int index);

Converts the value at the given acceptable index to a Lua thread (represented as lua_State*). This value must be a thread; otherwise, the function returns NULL.

lua_touserdata
 void *lua_touserdata (lua_State *L, int index);

If the value at the given acceptable index is a full userdata, returns its block address. If the value is a light userdata, returns its pointer. Otherwise, returns NULL.

lua_type
 int lua_type (lua_State *L, int index);

Returns the type of the value in the given acceptable index, or LUA_TNONE for a non-valid index (that is, an index to an "empty" stack position). The types returned by lua_type are coded by the following constants defined in lua.h: LUA_TNIL, LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE, LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, and LUA_TLIGHTUSERDATA.

lua_typename
 const char *lua_typename (lua_State *L, int tp);

Returns the name of the type encoded by the value tp, which must be one the values returned by lua_type.

lua_Writer
 typedef int (*lua_Writer) (lua_State *L, const void* p, size_t sz, void* ud);

The writer function used by lua_dump. Every time it produces another piece of chunk, lua_dump calls the writer, passing along the buffer to be written (p), its size (sz), and the data parameter supplied to lua_dump.

The writer returns an error code: 0 means no errors; any other value means an error and stops lua_dump from calling the writer again.

lua_xmove
 void lua_xmove (lua_State *from, lua_State *to, int n);

Exchange values between different threads of the same global state.

This function pops n values from the stack from, and pushes them onto the stack to.

lua_yield
 int lua_yield (lua_State *L, int nresults);

Yields a coroutine.

This function should only be called as the return expression of a C function, as follows:

 return lua_yield (L, nresults);

When a C function calls lua_yield in that way, the running coroutine suspends its execution, and the call to lua_resume that started this coroutine returns. The parameter nresults is the number of values from the stack that are passed as results to lua_resume.

B.3.9 The debug interface

Lua has no built-in debugging facilities. Instead, it offers a special interface by means of functions and hooks. This interface allows the construction of different kinds of debuggers, profilers, and other tools that need "inside information" from the interpreter.

lua_Debug
 typedef struct lua_Debug {

 int event;

 const char *name;

/* (n) */

 const char *namewhat;
/* (n) */

 const char *what;

/* (S) */

 const char *source;

/* (S) */

 int currentline;

/* (l) */

 int nups;

/* (u) number of upvalues */

 int linedefined;

/* (S) */

 int lastlinedefined;

/* (S) */

 char short_src[LUA_IDSIZE];
/* (S) */

 /* private part */

 ...

 } lua_Debug;

A structure used to carry different pieces of information about an active function. lua_getstack fills only the private part of this structure, for later use. To fill the other fields of lua_Debug with useful information, call lua_getinfo.

The fields of lua_Debug have the following meaning:

· source --- If the function was defined in a string, then source is that string. If the function was defined in a file, then source starts with a `@´ followed by the file name.

· short_src --- a "printable" version of source, to be used in error messages.

· linedefined --- the line number where the definition of the function starts.

· lastlinedefined --- the line number where the definition of the function ends.

· what --- the string "Lua" if the function is a Lua function, "C" if it is a C function, "main" if it is the main part of a chunk, and "tail" if it was a function that did a tail call. In the latter case, Lua has no other information about the function.

· currentline --- the current line where the given function is executing. When no line information is available, currentline is set to -1.

· name --- a reasonable name for the given function. Because functions in Lua are first-class values, they do not have a fixed name: Some functions may be the value of multiple global variables, while others may be stored only in a table field. The lua_getinfo function checks how the function was called to find a suitable name. If it cannot find a name, then name is set to NULL.

· namewhat --- explains the name field. The value of namewhat may be "global", "local", "method", "field", "upvalue", or "" (the empty string), according to how the function was called. (Lua uses the empty string when no other option seems to apply.)

· nups --- the number of upvalues of the function.

lua_gethook
 lua_Hook lua_gethook (lua_State *L);

Returns the current hook function.

lua_gethookcount
 int lua_gethookcount (lua_State *L);

Returns the current hook count.

lua_gethookmask
 int lua_gethookmask (lua_State *L);

Returns the current hook mask.

lua_getinfo
 int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);

Fills the fields of lua_Debug with useful information.

This function returns 0 on error (for instance, an invalid option in what). Each character in the string what selects some fields of the structure ar to be filled, as indicated by the letter in parentheses in the definition of lua_Debug: `S´ fills in the fields source, linedefined, lastlinedefined, and what; `l´ fills in the field currentline, etc. Moreover, `f´ pushes onto the stack the function that is running at the given level.

To get information about a function that is not active (that is, not in the stack), you push it onto the stack and start the what string with the character `>´. For instance, to know in which line a function f was defined, you may write the following code:

 lua_Debug ar;

 lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global `f' */

 lua_getinfo(L, ">S", &ar);

 printf("%d\n", ar.linedefined);

lua_getlocal
 const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);

Gets information about a local variable of a given activation record. The parameter ar must be a valid activation record that was filled by a previous call to lua_getstack or given as argument to a hook (see lua_Hook). The index n selects which local variable to inspect (1 is the first parameter or active local variable, and so on, until the last active local variable). lua_getlocal pushes the variable's value onto the stack and returns its name.

Variable names starting with `(´ (open parentheses) represent internal variables (loop control variables, temporaries, and C function locals).

Returns NULL (and pushes nothing) when the index is greater than the number of active local variables.

lua_getstack
 int lua_getstack (lua_State *L, int level, lua_Debug *ar);

Get information about the interpreter runtime stack.

This function fills parts of a lua_Debug structure with an identification of the activation record of the function executing at a given level. Level 0 is the current running function, whereas level n+1 is the function that has called level n. When there are no errors, lua_getstack returns 1; when called with a level greater than the stack depth, it returns 0.

lua_getupvalue
 const char *lua_getupvalue (lua_State *L, int funcindex, int n);

Gets information about a closure's upvalue. (For Lua functions, upvalues are the external local variables that the function uses, and that consequently are included in its closure.) lua_getupvalue gets the index n of an upvalue, pushes the upvalue's value onto the stack, and returns its name. funcindex points to the closure in the stack. (Upvalues have no particular order, as they are active through the whole function. So, they are numbered in an arbitrary order.)

Returns NULL (and pushes nothing) when the index is greater than the number of upvalues. For C functions, this function uses the empty string "" as a name for all upvalues.

lua_Hook
 typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);

Type for debugging hook functions.

Whenever a hook is called, its ar argument has its field event set to the specific event that triggered the hook. Lua identifies these events with the following constants: LUA_HOOKCALL, LUA_HOOKRET, LUA_HOOKTAILRET, LUA_HOOKLINE, and LUA_HOOKCOUNT. Moreover, for line events, the field currentline is also set. To get the value of any other field in ar, the hook must call lua_getinfo. For return events, event may be LUA_HOOKRET, the normal value, or LUA_HOOKTAILRET. In the latter case, Lua is simulating a return from a function that did a tail call; in this case, it is useless to call lua_getinfo.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back Lua to execute a function or a chunk, that execution occurs without any calls to hooks.

lua_sethook
 int lua_sethook (lua_State *L, lua_Hook func, int mask, int count);

Sets the debugging hook function.

func is the hook function. mask specifies on which events the hook will be called: It is formed by a bitwise or of the constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and LUA_MASKCOUNT. The count argument is only meaningful when the mask includes LUA_MASKCOUNT. For each event, the hook is called as explained below:

· The call hook is called when the interpreter calls a function. The hook is called just after Lua enters the new function, before the function gets its arguments.

· The return hook is called when the interpreter returns from a function. The hook is called just before Lua leaves the function. You have no access to the values to be returned by the function.

· The line hook is called when the interpreter is about to start the execution of a new line of code, or when it jumps back in the code (even to the same line). (This event only happens while Lua is executing a Lua function.)

· The count hook is called after the interpreter executes every count instructions. (This event only happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

lua_setlocal
 const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);

Sets the value of a local variable of a given activation record. Parameters ar and n are as in lua_getlocal (see lua_getlocal). lua_setlocal assigns the value at the top of the stack to the variable and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of active local variables.

lua_setupvalue
 const char *lua_setupvalue (lua_State *L, int funcindex, int n);

Sets the value of a closure's upvalue. Parameters funcindex and n are as in lua_getupvalue (see lua_getupvalue). It assigns the value at the top of the stack to the upvalue and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of upvalues.

B.4 The auxiliary library

B.4.1 Basic Concepts
The auxiliary library provides several convenient functions to interface C with Lua. While the basic API provides the primitive functions for all interactions between C and Lua, the auxiliary library provides higher-level functions for some common tasks.

All functions from the auxiliary library are defined in header file lauxlib.h and have a prefix luaL_.

All functions in the auxiliary library are built on top of the basic API, and so they provide nothing that cannot be done with that API.

Several functions in the auxiliary library are used to check C function arguments. Their names are always luaL_check* or luaL_opt*. All of these functions raise an error if the check is not satisfied. Because the error message is formatted for arguments (e.g., "bad argument #1"), you should not use these functions for other stack values.
B.4.2 Functions and types

Here we list all functions and types from the auxiliary library in alphabetical order.

luaL_addchar
 void luaL_addchar (luaL_Buffer B, char c);

Adds the character c to the buffer B (see luaL_Buffer).

luaL_addlstring
 void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);

Adds the string pointed by s with length l to the buffer B (see luaL_Buffer). The string may contain embedded zeros.

luaL_addsize
 void luaL_addsize (luaL_Buffer B, size_t n);

Adds a string of length n previously copied to the buffer area (see luaL_prepbuffer) to the buffer B (see luaL_Buffer).

luaL_addstring
 void luaL_addstring (luaL_Buffer *B, const char *s);

Adds the zero-terminated string pointed by s to the buffer B (see luaL_Buffer). The string shall not contain embedded zeros.

luaL_addvalue
 void luaL_addvalue (luaL_Buffer *B);

Adds the value at the top of the stack to the buffer B (see luaL_Buffer). Pops the value.

This is the only function on string buffers that may (and must) be called with an extra element on the stack, which is the value to be added to the buffer.

luaL_argcheck
 void luaL_argcheck (lua_State *L, int cond, int numarg, const char *extramsg);

Checks whether cond is true. If not, raises an error with message "bad argument #<numarg> to <func> (<extramsg>)", where func is retrieved from the call stack.

luaL_argerror
 int luaL_argerror (lua_State *L, int numarg, const char *extramsg);

Raises an error with message "bad argument #<numarg> to <func> (<extramsg>)", where func is retrieved from the call stack.

This function never returns, but it is an idiom to use it as return luaL_argerror ... in C functions.

luaL_Buffer
 typedef struct luaL_Buffer luaL_Buffer;

Type for a string buffer.

A string buffer allows C code to build Lua strings piecemeal. Its pattern of use is as follows:

· First you declare a variable b of type luaL_Buffer.

· Then you initialize it with a call luaL_buffinit(L, &b).

· Then you add string pieces to the buffer calling any of the luaL_add* functions.

· You finish by calling luaL_pushresult(&b). That call leaves the final string on the top of the stack.

During its normal operation, a string buffer uses a variable number of stack slots. So, while using a buffer, you shall not assume that you know where the top of the stack is. You may use the stack between successive calls to buffer operations as long as that use is balanced; that is, when you call a buffer operation, the stack is at the same level it was immediately after the previous buffer operation. (The only exception to this rule is luaL_addvalue.) After calling luaL_pushresult the stack is back to its level when the buffer was initialized, plus the final string on its top.

luaL_buffinit
 void luaL_buffinit (lua_State *L, luaL_Buffer *B);

Initializes a buffer B. This function does not allocate any space; the buffer must be declared as a variable (see luaL_Buffer).

luaL_callmeta
 int luaL_callmeta (lua_State *L, int obj, const char *e);

Calls a metamethod.

If the object at index obj has a metatable and that metatable has a field e, this function calls that field and passes the object as its only argument. In that case this function returns 1 and pushes on the stack the value returned by the call. If there is no metatable or no metamethod, this function returns 0 (without pushing any value on the stack).

luaL_checkany
 void luaL_checkany (lua_State *L, int narg);

Checks whether the function has an argument of any type (including nil) at position narg.

luaL_checkint
 int luaL_checkint (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to an int.

luaL_checkinteger
 lua_Integer luaL_checkinteger (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to a lua_Integer.

luaL_checklong
 long luaL_checklong (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number cast to a long.

luaL_checklstring
const char *luaL_checklstring (lua_State *L, int narg, size_t *l);

Checks whether the function argument narg is a string and returns that string; if l is not NULL fills *l with the string's length.

luaL_checknumber
 lua_Number luaL_checknumber (lua_State *L, int narg);

Checks whether the function argument narg is a number and returns that number.

luaL_checkoption
 int luaL_checkoption (lua_State *L, int narg, const char *def, const char *const lst[]);

Checks whether the function argument narg is a string and searches for that string into the array lst (which must be NULL-terminated). If def is not NULL, uses def as a default value when the function has no argument narg or if that argument is nil.

Returns the index in the array where the string was found. Raises an error if the argument is not a string or if the string cannot be found.

This is a useful function for mapping strings to C enums. The usual convention in Lua libraries is to use strings instead of numbers to select options.

luaL_checkstack
 void luaL_checkstack (lua_State *L, int sz, const char *msg);

Grows the stack size to top + sz elements, raising an error if the stack cannot grow to that size. msg is an additional text to go into the error message.

luaL_checkstring
 const char *luaL_checkstring (lua_State *L, int narg);

Checks whether the function argument narg is a string and returns that string.

luaL_checktype
 void luaL_checktype (lua_State *L, int narg, int t);

Checks whether the function argument narg has type t.

luaL_checkudata
void *luaL_checkudata (lua_State *L, int narg, const char *tname);

Checks whether the function argument narg is a userdata of the type tname (see luaL_newmetatable).

luaL_error
 int luaL_error (lua_State *L, const char *fmt, ...);

Raises an error. The error message format is given by fmt plus any extra arguments, following the same rules of lua_pushfstring. It also adds at the beginning of the message the file name and the line number where the error occurred, if that information is available.

This function never returns, but it is an idiom to use it as return luaL_error ... in C functions.

luaL_getmetafield
 int luaL_getmetafield (lua_State *L, int obj, const char *e);

Pushes on the stack the field e from the metatable of the object at index obj. If the object does not have a metatable, or if the metatable does not have that field, returns 0 and pushes nothing.

luaL_getmetatable
 void luaL_getmetatable (lua_State *L, const char *tname);

Pushes on the stack the metatable associated to name tname in the registry (see luaL_newmetatable).

luaL_gsub
 const char *luaL_gsub (lua_State *L, const char *s, const char *p, const char *r);

Creates a copy of string s by replacing any occurrence of the string p with the string r. Pushes the resulting string on the stack and returns it.

luaL_loadbuffer
 int luaL_loadbuffer (lua_State *L, const char *buff, size_t sz, const char *name);

Loads a buffer as a Lua chunk. This function uses lua_load to load the chunk in the buffer pointed by buff with size sz.

This function returns the same results as lua_load. name is the chunk name, used for debug information and error messages.

luaL_loadfile
 int luaL_loadfile (lua_State *L, const char *filename);

Loads a file as a Lua chunk. This function uses lua_load to load the chunk in the file named filename. If filename is NULL, then it loads from the standard input. The first line in the file is ignored if it starts with a #.

This function returns the same results as lua_load, but it has an extra error code LUA_ERRFILE if it cannot open/read the file.

luaL_loadstring
 int luaL_loadstring (lua_State *L, const char *s);

Loads a string as a Lua chunk. This function uses lua_load to load the chunk in the zero-terminated string s.

This function returns the same results as lua_load.

luaL_newmetatable
 int luaL_newmetatable (lua_State *L, const char *tname);

If the registry already has the key tname, returns 0. Otherwise, creates a new table to be used as a metatable for userdata, adds it to the registry with key tname, and returns 1.

In both cases pushes on the stack the final value associated with tname in the registry.

luaL_newstate
 lua_State *luaL_newstate (void);

Creates a new Lua state, calling lua_newstate with an allocation function based on the standard C realloc function and setting a panic function (see lua_atpanic) that prints an error message to the standard error output in case of fatal errors.

Returns the new state, or NULL if there is a memory allocation error.

luaL_openlibs
 void luaL_openlibs (lua_State *L);

Opens all standard Lua libraries into the given state.

luaL_optint
 int luaL_optint (lua_State *L, int narg, int d);

If the function argument narg is a number, returns that number cast to an int. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optinteger
 lua_Integer luaL_optinteger (lua_State *L, int narg, lua_Integer d);

If the function argument narg is a number, returns that number cast to a lua_Integer. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optlong
 long luaL_optlong (lua_State *L, int narg, long d);

If the function argument narg is a number, returns that number cast to a long. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optlstring
 const char *luaL_optlstring (lua_State *L, int narg, const char *d, size_t *l);

If the function argument narg is a string, returns that string. If that argument is absent or is nil, returns d. Otherwise, raises an error.

If l is not NULL, fills the position *l with the results's length.

luaL_optnumber
 lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);

If the function argument narg is a number, returns that number. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_optstring
 const char *luaL_optstring (lua_State *L, int narg, const char *d);

If the function argument narg is a string, returns that string. If that argument is absent or is nil, returns d. Otherwise, raises an error.

luaL_prepbuffer
 char *luaL_prepbuffer (luaL_Buffer *B);

Returns an address to a space of size LUAL_BUFFERSIZE where you may copy a string to be added to buffer B (see luaL_Buffer). After copying the string into that space you must call luaL_addsize with the size of the string to actually add it to the buffer.

luaL_pushresult
 void luaL_pushresult (luaL_Buffer *B);

Finishes the use of buffer B leaving the final string on the top of the stack.

luaL_ref
 int luaL_ref (lua_State *L, int t);

Creates and returns a reference, in the table at index t, for the object at the top of the stack (and pops the object).

A reference is a unique integer key. As long as you do not manually add integer keys into table t, luaL_ref ensures the uniqueness of the key it returns. You may retrieve an object referred by reference r by calling lua_rawgeti(L, t, r). Function luaL_unref frees a reference and its associated object.

If the object at the top of the stack is nil, luaL_ref returns the constant LUA_REFNIL. The constant LUA_NOREF is guaranteed to be different from any reference returned by luaL_ref.

luaL_Reg
 typedef struct luaL_Reg {

 const char *name;

 lua_CFunction func;

 } luaL_Reg;

Type for arrays of functions to be registered by luaL_register. name is the function name and func is a pointer to the function. Any array of luaL_Reg must end with an sentinel entry in which both name and func are NULL.

luaL_register
 void luaL_register (lua_State *L, const char *libname, const luaL_Reg *l);

Opens a library.

When called with libname equal to NULL, simply registers all functions in the list l (see luaL_Reg) into the table on the top of the stack.

When called with a non-null libname, creates a new table t, sets it as the value of the global variable libname, sets it as the value of package.loaded[libname], and registers on it all functions in the list l. If there is a table in package.loaded[libname] or in variable libname, reuses that table instead of creating a new one.

In any case the function leaves the table on the top of the stack.

luaL_typename
 const char *luaL_typename (lua_State *L, int idx);

Returns the name of the type of the value at index idx.

luaL_typerror
 int luaL_typerror (lua_State *L, int narg, const char *tname);

Generates an error with a message like

 <location>: bad argument <narg> to <function> (<tname> expected, got <realt>)

where <location> is produced by luaL_where, <function> is the name of the current function, and <realt> is the type name of the actual argument.

luaL_unref
 void luaL_unref (lua_State *L, int t, int ref);

Releases reference ref from the table at index t (see luaL_ref). The entry is removed from the table, so that the referred object may be collected. The reference ref is also freed to be used again.

If ref is LUA_NOREF or LUA_REFNIL, luaL_unref does nothing.

luaL_where
 void luaL_where (lua_State *L, int lvl);

Pushes on the stack a string identifying the current position of the control at level lvl in the call stack. Typically this string has the format <chunkname>:<currentline>:. Level 0 is the running function, level 1 is the function that called the running function, etc.

This function is used to build a prefix for error messages.

B.5 Standard libraries

B.5.1 Overview
The standard Lua libraries provide useful functions that are implemented directly through the C API. Some of these functions provide essential services to the language (e.g., type and getmetatable); others provide access to "outside" services (e.g., I/O); and others could be implemented in Lua itself, but are quite useful or have critical performance requirements that deserve an implementation in C (e.g., sort).
All libraries are implemented through the official C API and are provided as separate C modules. Currently, Lua has the following standard libraries:

· basic library;

· package library;

· string manipulation;

· table manipulation;

· mathematical functions (sin, log, etc.);

· input and output;

· operating system facilities;

· debug facilities.

Except for the basic and package libraries, each library provides all its functions as fields of a global table or as methods of its objects.

To have access to these libraries, the C host program must call luaL_openlibs, which open all standard libraries. Alternatively, it may open them individually by calling luaopen_base (for the basic library), luaopen_package (for the package library), luaopen_string (for the string library), luaopen_table (for the table library), luaopen_math (for the mathematical library), luaopen_io (for the I/O and the Operating System libraries), and luaopen_debug (for the debug library). These functions are declared in lualib.h and should not be called directly: you must call them like any other Lua C function, e.g., by using lua_call.

B.5.2 Basic functions

The basic library provides some core functions to Lua. If you do not include this library in your application, you should check carefully whether you need to provide implementations for some of its facilities.

assert (v [, message])
Issues an error when the value of its argument v is false (i.e., nil or false); otherwise, returns all its arguments. message is an error message; when absent, it defaults to "assertion failed!"

collectgarbage (opt [, arg])
This function is a generic interface to the garbage collector. It performs different functions according to its first argument, opt:

· "stop" --- stops the garbage collector.

· "restart" --- restarts the garbage collector.

· "collect" --- performs a full garbage-collection cycle.

· "count" --- returns the total memory in use by Lua (in Kbytes).

· "step" --- performs a garbage-collection step. The step "size" is controlled by arg (larger values mean more steps) in a non-specified way. If you want to control the step size you must tune experimentally the value of arg. Returns true if that step finished a collection cycle.

· "steppause" --- sets arg/100 as the new value for the pause of the collector (see B.2.11).

· "setstepmul" --- sets arg/100 as the new value for the step multiplier of the collector (see B.2.11).

dofile (filename)
Opens the named file and executes its contents as a Lua chunk. When called without arguments, dofile executes the contents of the standard input (stdin). Returns all values returned by the chunk. In case of errors, dofile propagates the error to its caller (that is, dofile does not run in protected mode).

error (message [, level])
Terminates the last protected function called and returns message as the error message. Function error never returns.

Usually, error adds some information about the error position at the beginning of the message. The level argument specifies how to get the error position. With level 1 (the default), the error position is where the error function was called. Level 2 points the error to where the function that called error was called; and so on. Passing a level 0 avoids the addition of error position information to the message.

_G
A global variable (not a function) that holds the global environment (that is, _G._G = _G). Lua itself does not use this variable; changing its value does not affect any environment, nor vice-versa. (Use setfenv to change environments.)

getfenv (f)
Returns the current environment in use by the function. f may be a Lua function or a number that specifies the function at that stack level: Level 1 is the function calling getfenv. If the given function is not a Lua function, or if f is 0, getfenv returns the global environment. The default for f is 1.

getmetatable (object)
If object does not have a metatable, returns nil. Otherwise, if the object's metatable has a "__metatable" field, returns the associated value. Otherwise, returns the metatable of the given object.

ipairs (t)
Returns three values: an iterator function, the table t, and 0, so that the construction

 for i,v in ipairs(t) do ... end

will iterate over the pairs (1,t[1]), (2,t[2]), ..., up to the first integer key with a nil value in the table.

See next for the caveats of modifying the table during its traversal.

load (func [, chunkname])
Loads a chunk using function func to get its pieces. Each call to func must return a string that concatenates with previous results. A return of nil (or no value) signals the end of the chunk.

If there are no errors, returns the compiled chunk as a function; otherwise, returns nil plus the error message. The environment of the returned function is the global environment.

chunkname is used as the chunk name for error messages and debug information.

loadfile ([filename])
Similar to load, but gets the chunk from file filename or from the standard input, if no file name is given.

loadstring (string [, chunkname])
Similar to load, but gets the chunk from the given string.

To load and run a given string, use the idiom

 assert(loadstring(s))()

next (table [, index])
Allows a program to traverse all fields of a table. Its first argument is a table and its second argument is an index in this table. next returns the next index of the table and its associated value. When called with nil as its second argument, next returns an initial index and its associated value. When called with the last index, or with nil in an empty table, next returns nil. If the second argument is absent, then it is interpreted as nil. In particular, you may use next(t) to check whether a table is empty.

Lua has no declaration of fields. There is no difference between a field not present in a table or a field with value nil. Therefore, next only considers fields with non-nil values. The order in which the indices are enumerated is not specified, even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs function.)

The behavior of next is undefined if, during the traversal, you assign any value to a non-existent field in the table. You may however modify existing fields. In particular, you may clear existing fields.

pairs (t)
Returns three values: the next function, the table t, and nil, so that the construction

 for k,v in pairs(t) do ... end

will iterate over all key--value pairs of table t.

See next for the caveats of modifying the table during its traversal.

pcall (f, arg1, arg2, ...)
Calls function f with the given arguments in protected mode. That means that any error inside f is not propagated; instead, pcall catches the error and returns a status code. Its first result is the status code (a boolean), which is true if the call succeeds without errors. In such case, pcall also returns all results from the call, after this first result. In case of any error, pcall returns false plus the error message.

print (e1, e2, ...)

Receives any number of arguments, and prints their values in stdout, using the tostring function to convert them to strings. print is not intended for formatted output, but only as a quick way to show a value, typically for debugging. For formatted output, use string.format.

rawequal (v1, v2)
Checks whether v1 is equal to v2, without invoking any metamethod. Returns a boolean.
rawget (table, index)
Gets the real value of table[index], without invoking any metamethod. table must be a table and index any value different from nil.
rawset (table, index, value)
Sets the real value of table[index] to value, without invoking any metamethod. table must be a table, index any value different from nil, and value any Lua value.
select (index, ...)
If index is a number, returns all arguments after argument number index. Otherwise, index must be the string "#", and select returns the total number of extra arguments it received.

setfenv (f, table)
Sets the environment to be used by the given function. f may be a Lua function or a number that specifies the function at that stack level: Level 1 is the function calling setfenv. setfenv returns the given function.

As a special case, when f is 0 setfenv changes the environment of the running thread. In this case, setfenv returns no values.

setmetatable (table, metatable)
Sets the metatable for the given table. (You shall not change the metatable of other types from Lua, only from C.) If metatable is nil, removes the metatable of the given table. If the original metatable has a "__metatable" field, raises an error.

This function returns table.

tonumber (e [, base])
Tries to convert its argument to a number. If the argument is already a number or a string convertible to a number, then tonumber returns that number; otherwise, it returns nil.

An optional argument specifies the base to interpret the numeral. The base may be any integer between 2 and 36, inclusive. In bases above 10, the letter `A´ (in either upper or lower case) represents 10, `B´ represents 11, and so forth, with `Z´ representing 35. In base 10 (the default), the number may have a decimal part, as well as an optional exponent part (see B.2.2). In other bases, only unsigned integers are accepted.

tostring (e)
Receives an argument of any type and converts it to a string in a reasonable format. For complete control of how numbers are converted, use string.format.

If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with e as argument, and uses the result of the call as its result.

type (v)
Returns the type of its only argument, coded as a string. The possible results of this function are "nil" (a string, not the value nil), "number", "string", "boolean, "table", "function", "thread", and "userdata".

unpack (list [, i [, j]])
Returns the elements from the given table. This function is equivalent to

 return list[i], list[i+1], ..., list[j]

except that the above code may be written only for a fixed number of elements. By default, i is 1 and j is the length of the list, as defined by the length operator (see B.2.6.6).

_VERSION
A global variable (not a function) that holds a string containing the current interpreter version. The current contents of this variable is "Lua 5.1".

xpcall (f, err)
This function is similar to pcall, except that you may set a new error handler.

xpcall calls function f in protected mode, using err as the error handler. Any error inside f is not propagated; instead, xpcall catches the error, calls the err function with the original error object, and returns a status code. Its first result is the status code (a boolean), which is true if the call succeeds without errors. In this case, xpcall also returns all results from the call, after this first result. In case of any error, xpcall returns false plus the result from err.

B.5.3 Coroutine manipulation

The operations related to coroutines comprise a sub-library of the basic library and come inside the table coroutine. See B.2.12 for a general description of coroutines.

coroutine.create (f)
Creates a new coroutine, with body f. f must be a Lua function. Returns this new coroutine, an object with type "thread".

coroutine.resume (co [, val1, ..., valn])
Starts or continues the execution of coroutine co. The first time you resume a coroutine, it starts running its body. The values val1, ..., valn are passed as the arguments to the body function. If the coroutine has yielded, resume restarts it; the values val1, ..., valn are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed to yield (if the coroutine yields) or any values returned by the body function (if the coroutine terminates). If there is any error, resume returns false plus the error message.

coroutine.running ()
Returns the running coroutine, or nil when called by the main thread.

coroutine.status (co)
Returns the status of coroutine co, as a string: "running", if the coroutine is running (that is, it called status); "suspended", if the coroutine is suspended in a call to yield, or if it has not started running yet; "normal" if the coroutine is active but not running (that is, it has resumed another coroutine); and "dead" if the coroutine has finished its body function, or if it has stopped with an error.

coroutine.wrap (f)
Creates a new coroutine, with body f. f must be a Lua function. Returns a function that resumes the coroutine each time it is called. Any arguments passed to the function behave as the extra arguments to resume. Returns the same values returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield ([val1, ..., valn])
Suspends the execution of the calling coroutine. The coroutine may be running neither a C function, nor a metamethod, nor an iterator. Any arguments to yield are passed as extra results to resume.

B.5.4 Modules

The package library provides basic facilities for loading and building modules in Lua. It exports two of its functions directly in the global environment: require and module. Everything else is exported in a table package.

module (name [, ...])
Creates a module. If there is a table in package.loaded[name], that table is the module. Otherwise, if there is a global table t with the given name, that table is the module. Otherwise creates a new table t and sets it as the value of the global name and the value of package.loaded[name]. This function also initializes t._NAME with the given name, t._M with the module (t itself), and t._PACKAGE with the package name (the full module name minus last component; see below). Finally, module sets t as the new environment of the current function and the new value of package.loaded[name], so that require returns t.

If name is a compound name (that is, one with components separated by dots), module creates (or reuses, if they already exist) tables for each component. For instance, if name is a.b.c, then module stores the module table in field c of field b of global a.

This function may receive optional options after the module name, where each option is a function to be applied over the module.

require (modname)

Loads the given module. The function starts by looking into the table package.loaded to determine whether modname is already loaded. If it is, then require returns the value stored at package.loaded[modname]. Otherwise, it tries to find a loader for that module.

To find a loader, first require queries package.preload[modname]. If it has a value, that value (which should be a function) is the loader. Otherwise require searches for a Lua loader using the path stored in package.path. If that also fails, it searches for a C loader using the path stored in package.cpath. If that also fails, it tries an all-in-one loader (see below).

When loading a C library, require first uses a dynamic link facility to link the application with the library. Then it tries to find a C function inside that library to be used as the loader. The name of that C function is the string "luaopen_" concatenated with a copy of the module name where each dot is replaced by an underscore. Moreover, if the module name has a hyphen, its prefix up to (and including) the first hyphen is removed. For instance, if the module name is a.v1-b.c, the function name will be luaopen_b_c.

If require finds neither a Lua library nor a C library for a module, it calls the all-in-one loader. That loader searches the C path for a library for the root name of the given module. For instance, when requiring a.b.c, it will search for a C library for a. If found, it looks into it for an open function for the submodule; in our example, that would be luaopen_a_b_c. With that facility, a package may pack several C submodules into one single library, with each submodule keeping its original open function.

Once a loader is found, require calls the loader with a single argument, modname. If the loader returns any value, require assigns it to package.loaded[modname]. If the loader returns no value and has not assigned any value to package.loaded[modname], then require assigns true to that entry. In any case, require returns the final value of package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for that module, then require signals an error.

package.cpath
The path used by require to search for a C loader.

Lua initializes the C path package.cpath in the same way it initializes the Lua path package.path, using the environment variable LUA_CPATH (plus another default path defined in luaconf.h).

package.loaded
A table used by require to control which modules are already loaded. When you require a module modname and package.loaded[modname] is not false, require simply returns the value stored there.

package.loadlib (libname, funcname)
Dynamically links the host program with the C library libname. Inside this library, looks for a function funcname and returns this function as a C function. (So, funcname must follow the protocol (see lua_CFunction)).

This is a low-level function. It completely bypasses the package and module system. Unlike require, it does not perform any path searching and does not automatically adds extensions. libname must be the complete file name of the C library, including if necessary a path and extension. funcname must be the exact name exported by the C library (which may depend on the C compiler and linker used).

This function is not supported by ANSI C. As such, it is only available on some platforms (Windows, Linux, Mac OS X, Solaris, BSD, plus other Unix systems that support the dlfcn standard).

package.path
The path used by require to search for a Lua loader.

At start-up, Lua initializes this variable with the value of the environment variable LUA_PATH or with a default path defined in luaconf.h, if the environment variable is not defined. Any ";;" in the value of the environment variable is replaced by the default path.

A path is a sequence of templates separated by semicolons. For each template, require will change each interrogation mark in the template by filename, which is modname with each dot replaced by a "directory separator" (such as "/" in Unix); then it will try to load the resulting file name. So, for instance, if the Lua path is

 "./?.lua;./?.lc;/usr/local/?/init.lua"

the search for a Lua loader for module foo will try to load the files ./foo.lua, ./foo.lc, and /usr/local/foo/init.lua, in that order.

package.preload
A table to store loaders for specific modules (see require).

package.seeall (module)
Sets a metatable for module with its __index field referring to the global environment, so that this module inherits values from the global environment. To be used as an option to function module.

B.5.5 String manipulation

This library provides generic functions for string manipulation, such as finding and extracting substrings, and pattern matching. When indexing a string in Lua, the first character is at position 1 (not at 0, as in C). Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the string. Thus, the last character is at position -1, and so on.

The string library provides all its functions inside the table string. It also sets a metatable for strings where the __index field points to the metatable itself. Therefore, you may use the string functions in object-oriented style. For instance, string.byte(s, i) may be written as s:byte(i).

string.byte (s [, i [, j]])
Returns the internal numerical codes of the characters s[i], s[i+1], ..., s[j]. The default value for i is 1; the default value for j is i.

Note that numerical codes are not necessarily portable across platforms.

string.char (i1, i2, ...)
Receives 0 or more integers. Returns a string with length equal to the number of arguments, in which each character has the internal numerical code equal to its corresponding argument.

Note that numerical codes are not necessarily portable across platforms.

string.dump (function)
Returns a string containing a binary representation of the given function, so that a later loadstring on that string returns a copy of the function. function must be a Lua function without upvalues.

string.find (s, pattern [, init [, plain]])
Looks for the first match of pattern in the string s. If it finds a match, then find returns the indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional numerical argument init specifies where to start the search; its default value is 1 and may be negative. A value of true as a fourth, optional argument plain turns off the pattern matching facilities, so the function does a plain "find substring" operation, with no characters in pattern being considered "magic". Note that if plain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned, after the two indices.

string.format (formatstring, e1, e2, ...)
Returns a formatted version of its variable number of arguments following the description given in its first argument (which must be a string). The format string follows the same rules as the printf family of standard C functions. The only differences are that the options/modifiers *, l, L, n, p, and h are not supported and that there is an extra option, q. The q option formats a string in a form suitable to be safely read back by the Lua interpreter: The string is written between double quotes, and all double quotes, newlines, embedded zeros, and backslashes in the string are correctly escaped when written. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

 "a string with \"quotes\" and \

 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s expect a string.

This function does not accept string values containing embedded zeros.

string.gmatch (s, pattern)
Returns an iterator function that, each time it is called, returns the next captures from pattern over string s.

If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop

 s = "hello world from Lua"

 for w in string.gmatch(s, "%a+") do

 print(w)

 end

will iterate over all the words from string s, printing one per line. The next example collects all pairs key=value from the given string into a table:

 t = {}

 s = "from=world, to=Lua"

 for k, v in string.gmatch(s, "(%w+)=(%w+)") do

 t[k] = v

 end

string.gsub (s, pattern, repl [, n])
Returns a copy of s in which all occurrences of the pattern have been replaced by a replacement string specified by repl, which may be a string, a table, or a function. gsub also returns, as its second value, the total number of substitutions made.

If repl is a string, then its value is used for replacement. The character % works as an escape character: Any sequence in repl of the form %n, with n between 1 and 9, stands for the value of the n-th captured substring (see below). The sequence %0 stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key; if the pattern specifies no captures, then the whole match is used as the key.

If repl is a function, then this function is called every time a match occurs, with all captured substrings passed as arguments, in order; if the pattern specifies no captures, then the whole match is passed as a sole argument.

If the value returned by the table query or by the function call is a string or a number, then it is used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum number of substitutions to occur. For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

 x = string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

 x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)",

 "%2 %1")

 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER", "%$(%w+)",

 os.getenv)

 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)

 return loadstring(s)()

 end)

 --> x="4+5 = 9"

 local t = {name="lua", version="5.1"}

 x = string.gsub("$name%-$version.tar.gz", "%$(%w+)", t)

 --> x="lua-5.1.tar.gz"

string.len (s)
Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are counted, so "a\000bc\000" has length 5.

string.lower (s)
Receives a string and returns a copy of that string with all uppercase letters changed to lowercase. All other characters are left unchanged. The definition of what an uppercase letter is depends on the current locale.

string.match (s, pattern [, init])
Looks for the first match of pattern in the string s. If it finds one, then match returns the captures from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is returned. A third, optional numerical argument init specifies where to start the search; its default value is 1 and may be negative.

string.rep (s, n)
Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)
Returns a string that is the string s reversed.

string.sub (s, i [, j])
Returns the substring of s that starts at i and continues until j; i and j may be negative. If j is absent, then it is assumed to be equal to -1 (which is the same as the string length). In particular, the call string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of s with length i.

string.upper (s)
Receives a string and returns a copy of that string with all lowercase letters changed to uppercase. All other characters are left unchanged. The definition of what a lowercase letter is depends on the current locale.

Patterns

A character class is used to represent a set of characters. The following combinations are allowed in describing a character class:

· x (where x is not one of the magic characters ^$()%.[]*+-?) --- represents the character x itself.

· . --- (a dot) represents all characters.

· %a --- represents all letters.

· %c --- represents all control characters.

· %d --- represents all digits.

· %l --- represents all lowercase letters.

· %p --- represents all punctuation characters.

· %s --- represents all space characters.

· %u --- represents all uppercase letters.

· %w --- represents all alphanumeric characters.

· %x --- represents all hexadecimal digits.

· %z --- represents the character with representation 0.

· %x (where x is any non-alphanumeric character) --- represents the character x. This is the standard way to escape the magic characters. Any punctuation character (even the non magic) may be preceded by a `%´ when used to represent itself in a pattern.

· [set] --- represents the class which is the union of all characters in set. A range of characters may be specified by separating the end characters of the range with a `-´. All classes %x described above may also be used as components in set. All other characters in set represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-] represents the octal digits plus the lowercase letters plus the `-´ character.

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z] or [a-%%] have no meaning.

· [^set] --- represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter represents the complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In particular, the class [a-z] cannot be equivalent to %l.

A pattern item may be

· a single character class, which matches any single character in the class;

· a single character class followed by `*´, which matches 0 or more repetitions of characters in the class. These repetition items will always match the longest possible sequence;

· a single character class followed by `+´, which matches 1 or more repetitions of characters in the class. These repetition items will always match the longest possible sequence;

· a single character class followed by `-´, which also matches 0 or more repetitions of characters in the class. Unlike `*´, these repetition items will always match the shortest possible sequence;

· a single character class followed by `?´, which matches 0 or 1 occurrence of a character in the class;

· %n, for n between 1 and 9; such item matches a substring equal to the n-th captured string (see below);

· %bxy, where x and y are two distinct characters; such item matches strings that start with x, end with y, and where the x and y are balanced. This means that, if one reads the string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y where the count reaches 0. For instance, the item %b() matches expressions with balanced parentheses.

A pattern is a sequence of pattern items. A `^´ at the beginning of a pattern anchors the match at the beginning of the subject string. A `$´ at the end of a pattern anchors the match at the end of the subject string. At other positions, `^´ and `$´ have no special meaning and represent themselves.

A pattern may contain sub-patterns enclosed in parentheses; they describe captures. When a match succeeds, the substrings of the subject string that match captures are stored (captured) for future use. Captures are numbered according to their left parentheses. For instance, in the pattern "(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the first capture (and therefore has number 1); the character matching "." is captured with number 2, and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and 5.

A pattern shall not contain embedded zeros. Use %z instead.

B.5.6 Table manipulation

This library provides generic functions for table manipulation. It provides all its functions inside the table table.

Most functions in the table library assume that the table represents an array or a list. For those functions, when we talk about the "length" of a table we mean the result of the length operator.

table.concat (table [, sep [, i [, j]]])
Returns table[i]..sep..table[i+1] ... sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)
Inserts element value at position pos in table, shifting up other elements to open space, if necessary. The default value for pos is n+1, where n is the length of the table (see B.2.6.6), so that a call table.insert(t,x) inserts x at the end of table t.

table.maxn (table)
Returns the largest positive numerical index of the given table, or zero if the table has no positive numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])
Removes from table the element at position pos, shifting down other elements to close the space, if necessary. Returns the value of the removed element. The default value for pos is n, where n is the length of the table, so that a call table.remove(t) removes the last element of table t.

table.sort (table [, comp])
Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of the table. If comp is given, then it must be a function that receives two table elements, and returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true after the sort). If comp is not given, then the standard Lua operator < is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given order may have their relative positions changed by the sort.

B.5.7 Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the table math. The library provides the following functions:

 math.abs
math.acos
math.asin

math.atan
math.atan2

 math.ceil
math.cos
math.cosh

math.deg
math.exp

 math.floor
math.fmod
math.frexp

math.ldexp
math.log

 math.log10
math.max
math.min

math.modf
math.pow

 math.rad
math.random
math.randomseed
math.sin

 math.sinh
math.sqrt
math.tan

math.tanh

plus a variable math.pi and a variable math.huge, with the value HUGE_VAL. Most of those functions are only interfaces to the corresponding functions in the C library. All trigonometric functions work in radians. The functions math.deg and math.rad convert between radians and degrees.

The function math.max returns the maximum value of its numeric arguments. Similarly, math.min computes the minimum. Both may be used with 1, 2, or more arguments.

The function math.modf corresponds to the modf C function. It returns two values: The integral part and the fractional part of its argument. The function math.frexp also returns 2 values: The normalized fraction and the exponent of its argument.

The functions math.random and math.randomseed are interfaces to the simple random generator functions rand and srand that are provided by ANSI C. (No guarantees can be given for their statistical properties.) When called without arguments, math.random returns a pseudo-random real number in the range [0,1). When called with a number n, math.random returns a pseudo-random integer in the range [1,n]. When called with two arguments, l and u, math.random returns a pseudo-random integer in the range [l,u]. The math.randomseed function sets a "seed" for the pseudo-random generator: Equal seeds produce equal sequences of numbers.

B.5.8 Input and output facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file descriptors; that is, there are operations to set a default input file and a default output file, and all input/output operations are over those default files. The second style uses explicit file descriptors.

When using implicit file descriptors, all operations are supplied by table io. When using explicit file descriptors, the operation io.open returns a file descriptor and then all operations are supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors with their usual meanings from C: io.stdin, io.stdout, and io.stderr.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second result) and some value different from nil on success.

io.close ([file])
Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()
Equivalent to file:flush over the default output file.

io.input ([file])
When called with a file name, it opens the named file (in text mode), and sets its handle as the default input file. When called with a file handle, it simply sets that file handle as the default input file. When called without parameters, it returns the current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.lines ([filename])
Opens the given file name in read mode and returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction

 for line in io.lines(filename) do ... end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns nil (to finish the loop) and automatically closes the file.

The call io.lines() (without a file name) is equivalent to io.input():lines(); that is, it iterates over the lines of the default input file. In that case it does not close the file when the loop ends.

io.open (filename [, mode])
This function opens a file, in the mode specified in the string mode. It returns a new file handle, or, in case of errors, nil plus an error message.

The mode string may be any of the following:

· "r" --- read mode (the default);

· "w" --- write mode;

· "a" --- append mode;

· "r+" --- update mode, all previous data is preserved;

· "w+" --- update mode, all previous data is erased;

· "a+" --- append update mode, previous data is preserved, writing is only allowed at the end of file.

The mode string may also have a `b´ at the end, which is needed in some systems to open the file in binary mode. This string is exactly what is used in the standard C function fopen.

io.output ([file])
Similar to io.input, but operates over the default output file.

io.popen ([prog [, mode]])
Starts program prog in a separated process and returns a file handle that you may use to read data from that program (if mode is "r", the default) or to write data to that program (if mode is "w").

This function is system dependent and is not available on all platforms.

io.read (format1, ...)
Equivalent to io.input():read.

io.tmpfile ()
Returns a handle for a temporary file. This file is opened in update mode and it is automatically removed when the program ends.

io.type (obj)
Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle, "closed file" if obj is a closed file handle, and nil if obj is not a file handle.

io.write (value1, ...)
Equivalent to io.output():write.

file:close ()
Closes file. Note that files are automatically closed when their handles are garbage collected, but that takes an unpredictable amount of time to happen.

file:flush ()
Saves any written data to file.

file:lines ()
Returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction

 for line in file:lines() do ... end

will iterate over all lines of the file. (Unlike io.lines, this function does not close the file when the loop ends.)

file:read (format1, ...)
Reads the file file, according to the given formats, which specify what to read. For each format, the function returns a string (or a number) with the characters read, or nil if it cannot read data with the specified format. When called without formats, it uses a default format that reads the entire next line (see below).

The available formats are

· "*n" reads a number; this is the only format that returns a number instead of a string.

· "*a" reads the whole file, starting at the current position. On end of file, it returns the empty string.

· "*l" reads the next line (skipping the end of line), returning nil on end of file. This is the default format.

· number reads a string with up to that number of characters, returning nil on end of file. If number is zero, it reads nothing and returns an empty string, or nil on end of file.

file:seek ([whence] [, offset])
Sets and gets the file position, measured from the beginning of the file, to the position given by offset plus a base specified by the string whence, as follows:

· "set" --- base is position 0 (beginning of the file);

· "cur" --- base is current position;

· "end" --- base is end of file;

In case of success, function seek returns the final file position, measured in bytes from the beginning of the file. If this function fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek() returns the current file position, without changing it; the call file:seek("set") sets the position to the beginning of the file (and returns 0); and the call file:seek("end") sets the position to the end of the file, and returns its size.

file:setvbuf (mode [, size])
Sets the buffering mode for an output file. There are three available modes:

· "no" --- no buffering; the result of any output operation appears immediately.

· "full" --- full buffering; output operation is performed only when the buffer is full (or when you explicitly flush the file (see B.5.8)).

· "line" --- line buffering; output is buffered until a newline is output or there is any input from some special files (such as a terminal device).

For the last two cases, sizes specifies the size of the buffer, in bytes. The default is an appropriate size.

file:write (value1, ...)
Writes the value of each of its arguments to the file. The arguments must be strings or numbers. To write other values, use tostring or string.format before write.

B.5.9 Operating system facilities

This library is implemented through table os.

os.clock ()
Returns an approximation of the amount in seconds of CPU time used by the program.

os.date ([format [, time]])
Returns a string or a table containing date and time, formatted according to the given string format.

If the time argument is present, this is the time to be formatted (see the os.time function for a description of this value). Otherwise, date formats the current time.

If format starts with `!´, then the date is formatted in Coordinated Universal Time. After that optional character, if format is *t, then date returns a table with the following fields: year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday (weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).

If format is not *t, then date returns the date as a string, formatted according to the same rules as the C function strftime.

When called without arguments, date returns a reasonable date and time representation that depends on the host system and on the current locale (that is, os.date() is equivalent to os.date("%c")).

os.difftime (t2, t1)
Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other systems, this value is exactly t2-t1.

os.execute ([command])
This function is equivalent to the C function system. It passes command to be executed by an operating system shell. It returns a status code, which is system-dependent. If command is absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])
Calls the C function exit, with an optional code, to terminate the host program. The default value for code is the success code.

os.getenv (varname)
Returns the value of the process environment variable varname, or nil if the variable is not defined.

os.remove (filename)
Deletes the file or directory with the given name. Directories must be empty to be removed. If this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)
Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a string describing the error.

os.setlocale (locale [, category])
Sets the current locale of the program. locale is a string specifying a locale; category is an optional string describing which category to change: "all", "collate", "ctype", "monetary", "numeric", or "time"; the default category is "all". The function returns the name of the new locale, or nil if the request cannot be honored.

os.time ([table])
Returns the current time when called without arguments, or a time representing the date and time specified by the given table. This table must have fields year, month, and day, and may have fields hour, min, sec, and isdst (for a description of these fields, see the os.date function).

The returned value is a number, whose meaning depends on your system. In POSIX, Windows, and some other systems, this number counts the number of seconds since some given start time (the "epoch"). In other systems, the meaning is not specified, and the number returned by time may be used only as an argument to date and difftime.

os.tmpname ()
Returns a string with a file name that may be used for a temporary file. The file must be explicitly opened before its use and explicitly removed when no longer needed.

B.5.10 The debug library

This library provides the functionality of the debug interface to Lua programs. You should exert care when using this library. The functions provided here should be used exclusively for debugging and similar tasks, such as profiling. Please resist the temptation to use them as a usual programming tool: They can be very slow. Moreover, several of its functions violate some assumptions about Lua code (e.g., that variables local to a function cannot be accessed from outside or that userdata metatables cannot be changed by Lua code) and therefore can compromise otherwise secure code.

All functions in this library are provided inside the debug table.

debug.debug ()
Enters an interactive mode with the user, running each string that the user enters. Using simple commands and other debug facilities, the user may inspect global and local variables, change their values, evaluate expressions, and so on. A line containing only the word cont finishes this function, so that the caller continues its execution.

Note that commands for debug.debug are not lexically nested within any function, and so have no direct access to local variables.

debug.getfenv (o)
Returns the environment of object o.

debug.gethook ()
Returns the current hook settings, as three values: the current hook function, the current hook mask, and the current hook count (as set by the debug.sethook function).

debug.getinfo (function [, what])
Returns a table with information about a function. You may give the function directly, or you may give a number as the value of function, which means the function running at level function of the call stack: Level 0 is the current function (getinfo itself); level 1 is the function that called getinfo; and so on. If function is a number larger than the number of active functions, then getinfo returns nil.

The returned table contains all the fields returned by lua_getinfo, with the string what describing which fields to fill in. The default for what is to get all information available. If present, the option `f´ adds a field named func with the function itself.

For instance, the expression debug.getinfo(1,"n").name returns a name of the current function, if a reasonable name can be found, and debug.getinfo(print) returns a table with all available information about the print function.

debug.getlocal (level, local)
This function returns the name and the value of the local variable with index local of the function at level level of the stack. (The first parameter or local variable has index 1, and so on, until the last active local variable.) The function returns nil if there is no local variable with the given index, and raises an error when called with a level out of range. (You may call debug.getinfo to check whether the level is valid.)

Variable names starting with `(´ (open parentheses) represent internal variables (loop control variables, temporaries, and C function locals).

debug.getmetatable (object)
Returns the metatable of the given object or nil if it does not have a metatable.

debug.getregistry ()
Returns the registry table (see B.3.6).

debug.getupvalue (func, up)
This function returns the name and the value of the upvalue with index up of the function func. The function returns nil if there is no upvalue with the given index.

debug.setfenv (object, table)
Sets the environment of the given object to the given table.

debug.sethook (hook, mask [, count])
Sets the given function as a hook. The string mask and the number count describe when the hook will be called. The string mask may have the following characters, with the given meaning:

· "c" --- The hook is called every time Lua calls a function;

· "r" --- The hook is called every time Lua returns from a function;

· "l" --- The hook is called every time Lua enters a new line of code.

With a count different from zero, the hook is called after every count instructions.

When called without arguments, debug.sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has triggered its call: "call", "return" (or "tail return"), "line", and "count". For line events, the hook also gets the new line number as its second parameter. Inside a hook, you may call getinfo with level 2 to get more information about the running function (level 0 is the getinfo function, and level 1 is the hook function), unless the event is "tail return". In this case, Lua is only simulating the return, and a call to getinfo will return invalid data.

debug.setlocal (level, local, value)
This function assigns the value value to the local variable with index local of the function at level level of the stack. The function returns nil if there is no local variable with the given index, and raises an error when called with a level out of range. (You may call getinfo to check whether the level is valid.) Otherwise, it returns the name of the local variable.

debug.setmetatable (object, table)
Sets the metatable for the given object to the given table (which may be nil).

debug.setupvalue (func, up, value)
This function assigns the value value to the upvalue with index up of the function func. The function returns nil if there is no upvalue with the given index. Otherwise, it returns the name of the upvalue.

debug.traceback ([message])
Returns a string with a traceback of the call stack. An optional message string is appended at the beginning of the traceback. This function is typically used with xpcall to produce better error messages.

B.6 Lua Stand-alone

Although Lua has been designed as an extension language, to be embedded in a host C program, it is also frequently used as a stand-alone language. An interpreter for Lua as a stand-alone language, called simply lua, is provided with the standard distribution. The stand-alone interpreter includes all standard libraries, including the debug library. Its usage is:

 lua [options] [script [args]]

The options are:

· -e stat executes string stat;

· -l mod "requires" mod;

· -i enters interactive mode after running script;

· -v prints version information;

· -- stops handling options;

· - executes stdin as a file and stops handling options.

After handling its options, lua runs the given script, passing to it the given args as string arguments. When called without arguments, lua behaves as lua -v -i when the standard input (stdin) is a terminal, and as lua - otherwise.

Before running any argument, the interpreter checks for an environment variable LUA_INIT. If its format is @filename, then lua executes the file. Otherwise, lua executes the string itself.

All options are handled in order, except -i. For instance, an invocation like

 $ lua -e'a=1' -e 'print(a)' script.lua

will first set a to 1, then print the value of a (which is `1´), and finally run the file script.lua with no arguments. (Here $ is the shell prompt. Your prompt may be different.)

Before starting to run the script, lua collects all arguments in the command line in a global table called arg. The script name is stored at index 0, the first argument after the script name goes to index 1, and so on. Any arguments before the script name (that is, the interpreter name plus the options) go to negative indices. For instance, in the call

 $ lua -la b.lua t1 t2

the interpreter first runs the file a.lua, then creates a table

 arg = { [-2] = "lua", [-1] = "-la", [0] = "b.lua", [1] = "t1", [2] = "t2" }

and finally runs the file b.lua. The script is called with arg[1], arg[2], ... as arguments; it may also access those arguments with the vararg expression `...´.

In interactive mode, if you write an incomplete statement, the interpreter waits for its completion by issuing a different prompt.

If the global variable _PROMPT contains a string, then its value is used as the prompt. Similarly, if the global variable _PROMPT2 contains a string, its value is used as the secondary prompt (issued during incomplete statements). Therefore, both prompts may be changed directly on the command line. For instance,

 $ lua -e"_PROMPT='myprompt> '" -i

(the outer pair of quotes is for the shell, the inner pair is for Lua), or in any Lua programs by assigning to _PROMPT. Note the use of -i to enter interactive mode; otherwise, the program would just end silently right after the assignment to _PROMPT.

To allow the use of Lua as a script interpreter in Unix systems, the stand-alone interpreter skips the first line of a chunk if it starts with #. Therefore, Lua scripts may be made into executable programs by using chmod +x and the #! form, as in

 #!/usr/local/bin/lua

(Of course, the location of the Lua interpreter can be different in your machine. If lua is in your PATH, then

 #!/usr/bin/env lua

is a more portable solution.)

B.7 Incompatibilities with the version 5.0

Note: Here we list the incompatibilities that can be found when moving a program from Lua 5.0 to Lua 5.1. You can avoid most of the incompatibilities compiling Lua with appropriate options (see file luaconf.h). However, all those compatibility options will be removed in the next version of Lua.

B.7.1 Changes in the language

These are the changes in the language introduced by Lua 5.1:

· The vararg system changed from the pseudo-argument arg with a table with the extra arguments to the vararg expression. (Option LUA_COMPAT_VARARG in luaconf.h.)

· There was a subtle change in the scope of the implicit variables of the for statement and for the repeat statement.

· The long string/long comment syntax ([[...]]) does not allow nesting. You may use the new syntax ([=[...]=]) in those cases. (Option LUA_COMPAT_LSTR in luaconf.h.)

B.7.2 Changes in the libraries

These are the changes in the libraries introduced by Lua 5.1:

· Function string.gfind was renamed string.gmatch. (Option LUA_COMPAT_GFIND)

· When string.gsub is called with a function as its third argument, whenever that function returns nil or false the replacement string is the whole match, instead of the empty string.

· Function table.setn was deprecated. Function table.getn corresponds to the new length operator (#); use the operator instead of the function. (Option LUA_COMPAT_GETN)

· Function loadlib was renamed package.loadlib. (Option LUA_COMPAT_LOADLIB)

· Function math.mod was renamed math.fmod. (Option LUA_COMPAT_MOD)

· There were substantial changes in function require due to the new module system. However, the new behavior is mostly compatible with the old, but require gets the path from package.path instead of from LUA_PATH.

· Function collectgarbage has different arguments. Function gcinfo is deprecated; use collectgarbage("count") instead.

B.7.3 Changes in the API

These are the changes in the C API introduced by Lua 5.1:

· The luaopen_* functions (to open libraries) shall not be called directly, like a regular C function. They must be called through Lua, like a Lua function.

· Function lua_open was replaced by lua_newstate to allow the user to set a memory allocation function. You may use luaL_newstate from the standard library to create a state with a standard allocation function (based on realloc).

· Functions luaL_getn and luaL_setn (from the auxiliary library) are deprecated. Use lua_objlen instead of luaL_getn and nothing instead of luaL_setn.

· Function luaL_openlib was replaced by luaL_register.

B.8 The complete syntax of Lua

Here is the complete syntax of Lua in extended BNF. It does not describe operator priorities or some syntactical restrictions, such as return and break statements may only appear as the last statement of a block.

 chunk ::= {stat [`;´]} [laststat[`;´]]

 block ::= chunk

 stat ::= varlist1 `=´ explist1 |

functioncall |

do block end |

while exp do block end |

repeat block until exp |

if exp then block {elseif exp then block}[else block] end |

for Name `=´ exp `,´ exp [`,´ exp] do block end |

for namelist in explist1 do block end |

function funcname funcbody |

local function Name funcbody |

local namelist [`=´ explist1]

 laststat ::= return [explist1] | break
 funcname ::= Name {`.´ Name} [`:´ Name]

 varlist1 ::= var {`,´ var}

 var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name

 namelist ::= Name {`,´ Name}

 explist1 ::= {exp `,´} exp

 exp ::= nil | false | true | Number | String | `...´ |

 function | prefixexp | tableconstructor |

 exp binop | exp | unop exp

 prefixexp ::= var | functioncall | `(´ exp `)´

 functioncall ::= prefixexp args | prefixexp `:´ Name args

 args ::= `(´ [explist1] `)´ | tableconstructor | String

 function ::= function funcbody

 funcbody ::= `(´ [parlist1] `)´ block end
 parlist1 ::= namelist [`,´ `...´] | `...´

 tableconstructor ::= `{´ [fieldlist] `}´

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp

 fieldsep ::= `,´ | `;´

 binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ |

 `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ |

 and | or
 unop ::= `-´ | not | `#´

Appendix C
(informative)

Connector Base
This Connector Base that may be imported by any NCL 3.0 document.
<!--

This is NCL

Copyright: 2000-2005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.0/connectorBases/causalConnBase.ncl

Author: TeleMidia Laboratory

Revision: 19/09/2006

-->

<?xml version="1.0" encoding="ISO-8859-1"?>

<ncl id="causalConnBase" xmlns="http://www.ncl.org.br/NCL3.0/CausalConnectorProfile">

<head>

<connectorBase>

<!-- OnBegin -->

<causalConnector id="onBeginStart">

 <simpleCondition role="onBegin"/>

 <simpleAction role="start"/>

</causalConnector>

<causalConnector id="onBeginStop">

 <simpleCondition role="onBegin"/>

 <simpleAction role="stop"/>

</causalConnector>

<causalConnector id="onBeginPause">

 <simpleCondition role="onBegin"/>

 <simpleAction role="pause"/>

</causalConnector>

<causalConnector id="onBeginResume">

 <simpleCondition role="onBegin"/>

 <simpleAction role="resume"/>

</causalConnector>

<causalConnector id="onBeginSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnEnd -->

<causalConnector id="onEndStart">

 <simpleCondition role="onEnd"/>

 <simpleAction role="start"/>

</causalConnector>

<causalConnector id="onEndStop">

 <simpleCondition role="onEnd"/>

 <simpleAction role="stop"/>

</causalConnector>

<causalConnector id="onEndPause">

 <simpleCondition role="onEnd"/>

 <simpleAction role="pause"/>

</causalConnector>

<causalConnector id="onEndResume">

 <simpleCondition role="onEnd"/>

 <simpleAction role="resume"/>

</causalConnector>

<causalConnector id="onEndSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnMouseSelection -->

<causalConnector id="onSelectionStart">

 <simpleCondition role="onSelection"/>

 <simpleAction role="start" />

</causalConnector>

<causalConnector id="onSelectionStop">

 <simpleCondition role="onSelection"/>

 <simpleAction role="stop" />

</causalConnector>

<causalConnector id="onSelectionPause">

 <simpleCondition role="onSelection"/>

 <simpleAction role="pause" />

</causalConnector>

<causalConnector id="onSelectionResume">

 <simpleCondition role="onSelection"/>

 <simpleAction role="resume" />

</causalConnector>

<causalConnector id="onSelectionSetVar">

 <connectorParam name="var" />

 <simpleCondition role="onSelection"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnKeySelection -->

<causalConnector id="onKeySelectionStart">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <simpleAction role="start"/>

</causalConnector>

<causalConnector id="onKeySelectionStop">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <simpleAction role="stop"/>

</causalConnector>

<causalConnector id="onKeySelectionPause">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <simpleAction role="pause"/>

</causalConnector>

<causalConnector id="onKeySelectionResume">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <simpleAction role="resume"/>

</causalConnector>

<causalConnector id="onKeySelectionSetVar">

 <connectorParam name="keyCode"/>

 <connectorParam name="var"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnBeginAttribution -->

<causalConnector id="onBeginAttributionStart">

 <simpleCondition role="onBeginAttribution"/>

 <simpleAction role="start"/>

</causalConnector>

<causalConnector id="onBeginAttributionStop">

 <simpleCondition role="onBeginAttribution"/>

 <simpleAction role="stop"/>

</causalConnector>

<causalConnector id="onBeginAttributionPause">

 <simpleCondition role="onBeginAttribution"/>

 <simpleAction role="pause"/>

</causalConnector>

<causalConnector id="onBeginAttributionResume">

 <simpleCondition role="onBeginAttribution"/>

 <simpleAction role="resume"/>

</causalConnector>

<causalConnector id="onBeginAttributionSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnEndAttribution -->

<causalConnector id="onEndAttributionStart">

 <simpleCondition role="onEndAttribution"/>

 <simpleAction role="start"/>

</causalConnector>

<causalConnector id="onEndAttributionStop">

 <simpleCondition role="onEndAttribution"/>

 <simpleAction role="stop"/>

</causalConnector>

<causalConnector id="onEndAttributionPause">

 <simpleCondition role="onEndAttribution"/>

 <simpleAction role="pause"/>

</causalConnector>

<causalConnector id="onEndAttributionResume">

 <simpleCondition role="onEndAttribution"/>

 <simpleAction role="resume"/>

</causalConnector>

<causalConnector id="onEndAttributionSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <simpleAction role="set" value="$var"/>

</causalConnector>

<!-- OnBegin multiple actions -->

<causalConnector id="onBeginStartStop">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStartPause">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStartResume">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStartSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStopStart">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStopPause">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStopResume">

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginStopSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginSetStart">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginSetStop">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginSetPause">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginSetResume">

 <connectorParam name="var"/>

 <simpleCondition role="onBegin"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!-- OnEnd multiple actions -->

<causalConnector id="onEndStartStop">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStartPause">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStartResume">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStartSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStopStart">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStopPause">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStopResume">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndStopSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndSetStart">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndSetStop">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stet" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndSetPause">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndSetResume">

 <connectorParam name="var"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!-- OnMouseSelection multiple actions -->

<causalConnector id="onSelectionStartStop">

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStartPause">

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStartResume">

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStartSet">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStopStart">

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStopPause">

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStopResume">

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionStopSet">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionSetStart">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionSetStop">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="stet" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionSetPause">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onSelectionSetResume">

 <connectorParam name="var"/>

 <simpleCondition role="onSelection"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!-- OnKeySelection multiple actions -->

<causalConnector id="onKeySelectionStartStop">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStartPause">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStartResume">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStartSet">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStopStart">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStopPause">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStopResume">

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStopSet">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionSetStart">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionSetStop">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionSetPause">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionSetResume">

 <connectorParam name="var"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!-- OnBeginAttribution multiple actions -->

<causalConnector id="onBeginAttributionStartStop">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStartPause">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStartResume">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStartSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStopStart">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStopPause">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStopResume">

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionStopSet">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionSetStart">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionSetStop">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionSetPause">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onBeginAttributionSetResume">

 <connectorParam name="var"/>

 <simpleCondition role="onBeginAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!-- OnEndAttribution multiple actions -->

<causalConnector id="onEndAttributionStartStop">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStartPause">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStartResume">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStartSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="start"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStopStart">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStopPause">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStopResume">

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionStopSet">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$var"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionSetStart">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionSetStop">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="stet" value="$var"/>

 <simpleAction role="stop"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionSetPause">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="pause"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndAttributionSetResume">

 <connectorParam name="var"/>

 <simpleCondition role="onEndAttribution"/>

 <compoundAction operator="seq">

 <simpleAction role="set" value="$var"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<!--Miscellaneous-->

<causalConnector id="onKeySelectionStopResizePauseStart">

 <connectorParam name="width"/>

 <connectorParam name="height"/>

 <connectorParam name="left"/>

 <connectorParam name="top"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="setWidth" value="$width"/>

 <simpleAction role="setHeight" value="$height"/>

 <simpleAction role="setLeft" value="$left"/>

 <simpleAction role="setTop" value="$top"/>

 <simpleAction role="pause"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onEndResizeResume">

 <connectorParam name="left"/>

 <connectorParam name="top"/>

 <connectorParam name="width"/>

 <connectorParam name="height"/>

 <simpleCondition role="onEnd"/>

 <compoundAction operator="seq">

 <simpleAction role="setLeft" value="$left"/>

 <simpleAction role="setTop" value="$top"/>

 <simpleAction role="setWidth" value="$width"/>

 <simpleAction role="setHeight" value="$height"/>

 <simpleAction role="resume"/>

 </compoundAction>

</causalConnector>

<causalConnector id="onKeySelectionStopSetPauseStart">

 <connectorParam name="bounds"/>

 <connectorParam name="keyCode"/>

 <simpleCondition role="onSelection" key="$keyCode"/>

 <compoundAction operator="seq">

 <simpleAction role="stop"/>

 <simpleAction role="set" value="$bounds"/>

 <simpleAction role="pause"/>

 <simpleAction role="start"/>

 </compoundAction>

</causalConnector>

</connectorBase>

</head>

</ncl>
References
[ACAP, 2005]
Advanced Application Platform (ACAP), ATSC Standard: Document A/101, August 2005.

[ARIB Standard B-24, 2004]
ARIB B-24 XML-based Multimedia Coding Scheme, ARIB Standard B-24 Data Coding and Transmission Specifications for Digital Broadcasting, version 4.0, February 2004.

[Cascading Style Sheets, 1998]
Cascading Style Sheets, level 2, Bert Bos, Håkon Wium Lie, Chris Lilley, Ian Jacobs. W3C Recommendation 12 May 1998,

Available at http://www.w3.org/TR/REC-CSS2

DVB-HTML, 2001]
Perrot P. DVB-HTML - An Optional Declarative Language within MHP 1.1, EBU Technical Review. 2001.

[Namespaces in XML, 1999]
Namespaces in XML, W3C Recommendation, January 1999.
[NCM Core, 2005]
Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM Core, Technical Report, Departamento de Informática PUC-Rio, May 2005, ISSN: 0103-9741. Also available in http://www.ncl.org.br

[NCL Digital TV Profiles, 2006]
Soares L.F.G; Rodrigues R.F. Part 8 – NCL (Nested Context Language) Digital TV Profiles, Technical Report, Departamento de Informática PUC-Rio, No. 35/06, October 2006, ISSN: 0103-9741. Also available in http://www.ncl.org.br.

[NCL Live Editing Commands, 2006]
Soares L.F.G; Rodrigues R.F; Costa, R.R.; Moreno, M.F. Part 9 – NCL Live Editing Commands. Technical Report, Departamento de Informática PUC-Rio, No. 36/06, December 2006, ISSN: 0103-9741. Also available in http://www.ncl.org.br.

[NCL Main Profile, 2005]
Soares L.F.G; Rodrigues R.F; Costa, R.R. Nested Context Model 3.0: Part 6 – NCL (Nested Context Language) Main Profile, Technical Report, Departamento de Informática PUC-Rio, May 2005, ISSN: 0103-9741. Also available in http://www.ncl.org.br.

[RDF, 1999]
Resource Description Framework (RDF) Model and Syntax Specification, Ora Lassila and Ralph R. Swick. W3C Recommendation, 22 February 1999.

Available at http://www.w3.org/TR/REC-rdf-syntax/
[SMIL 2.1 Specification, 2005]
SMIL 2.1 - Synchronized Multimedia Integration Language – SMIL 2.1 Specification, W3C Recommendation, December 2005.

[XHTML 1.0, 2002]
XHTML™ 1.0 2º Edition - Extensible HyperText Markup Language, W3C Recommendation, August 2002.

�Vale lembrar que o descritor npt deve ser enviado mesmo quando nao estiver ocorrendo. Por exemplo, durante uma propaganda, o npt do filme continua sendo enviado como “pausado”, enquanto que o da propaganda está ocorrendo. Agora uma pergunta: nao deveria existir o caso em que nao existe relação com o contentId? Ou seja, um caso em que o standby deve ser NULL (por exemplo, todos os nós nao relacionados com npt)?

	
	

	
	51/286

[image: image8.png][image: image9.png][image: image10.png]

[image: image11.png]Local File System

Sarvioe Domain

4

Stream Event Desoriptor

| CitnciReposiory
L-Coweather
) weatherConditions.nc!

-ﬁ images
1=\ braziianMap.png

‘moduleld = 1
objectKey
objectiind=s1g
2bindings
binding #1
objectiiam
weatheC onditiors ol
objectType = I
10R=1.12
binding #2
objecthiam
objectType
10R =113

Sbjectiiey
Sbjectiang = il
ata

bjectiey= 3
objectKing = dir
1binding
binding #1
objecttiame =
brazilanMap.png
objectType= I
10R=12.1

moduleld = 2
objectiey
objectkind = fil
data

objectiey =2

objectiing = ste

eventList

eventilame
gingaEditingCommand|

eventld

descriptorTag= 0

descriptorLenght = desoriptorLen)

eventid= 3

Reserved

eventhPT =0

privateD ataLenght = dataLen

commandTag = 005

sequenceNumber = 0

finalFlag = 1

privateD ataPayload = "someBas &',
“x.sbtudiicAnciRepostoryweather”,

112
FCS'=shedksum)

